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Background: Oncolytic viruses (OVs) are emerging as potent inducers of immunogenic

cell death (ICD), releasing danger-associated molecular patterns (DAMPs) that induce

potent anticancer immunity. Oncolytic Newcastle disease virus (NDV) has been shown

to educe ICD in both glioma and lung cancer cells. The objective of this study is to

investigate whether oncolytic NDV induces ICD in melanoma cells and how it is regulated.

Methods: Various time points were actuated to check the expression and release of

ICD markers induced by NDV strain, NDV/FMW in melanoma cell lines. The expression

and release of ICD markers induced by oncolytic NDV strain, NDV/FMW, in melanoma

cell lines at various time points were determined. Surface-exposed calreticulin (CRT)

was inspected by confocal imaging. The supernatants of NDV/FMW infected cells were

collected and concentrated for the determination of ATP secretion by ELISA, HMGB1,

and HSP70/90 expression by immunoblot (IB) analysis. Pharmacological inhibition

of apoptosis, autophagy, necroptosis, ER Stress, and STAT3 (signal transducer and

activator of transcription 3) was achieved by treatment with small molecule inhibitors.

Melanoma cell lines stably depleted of STAT3 were established with lentiviral constructs.

Supernatants from NDV-infected cells were intratumorally injected to mice bearing

melanoma cells-derived tumors.

Results: Oncolytic NDV induced CRT exposure, the release of HMGB1 and

HSP70/90 as well as secretion of ATP in melanoma cells. Inhibition of apoptosis,

autophagy, necroptosis or ER stress attenuated NDV/FMW-induced release of HMGB1

and HSP70/90. Moreover, NDV/FMW-induced ICD markers in melanoma cells were

also suppressed by either treatment with a STAT3 inhibitor or shRNA-mediated

depletion of STAT3. Of translational importance, treatment of mice bearing melanoma

cells-derived tumors with supernatants from NDV/FMW-infected cells significantly

inhibited tumor growth.
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Conclusions: Our data authenticate that oncolytic NDV/FMWmight be a potent inducer

of ICD in melanoma cells, which is amalgamated with several forms of cell death. We also

show that STAT3 plays a role in NDV/FMW-induced ICD in melanoma cells. Together,

our data highlight oncolytic NDV as propitious for cancer therapeutics by stimulatingan

anti-melanoma immune response.

Keywords: newcastle disease virus, immunogenic cell death, melanoma, signal transducer and activator of

transcription 3, virotherapy

INTRODUCTION

The recent approval of a modified herpes virus (T-Vec) for the
treatment of advanced melanoma patients points to the potential
of oncolytic viruses (OVs)-mediated therapy of cancers (1–4).
Notably, oncolytic virotherapy improves immune checkpoint
blockade-based immunotherapy in several types of cancers as
demonstrated in a few preclinical and clinical trials (5–7).
A potential mechanism for the enhanced clinical benefit of
immune checkpoint blockade by this new combinatorial strategy,
i.e., OVs combination with immune checkpoint inhibitors, is
that OVs can recondition the tumor microenvironment (8–
11). Particularly, in addition to their direct cytolytic effects
(a mechanism known as oncolysis), a growing number of
OVs are now being acknowledged for their capacity to induce
immunogenic cell death (ICD) of cancer and stromal cells
and to release tumor-associated antigens (12–19), which re-
educates the host’s immune system to induce antitumor
immunities (8, 20–22). ICD is characterized by the secretion,
release, or surface exposure of damage-associated molecular
patterns (DAMPs), OV-derived pathogen-associated molecular
pattern (PAMP) molecules and inflammatory cytokines (23–26).
The well-characterized DAMPs as hallmarks of ICD generally
include surface-exposed endoplasmic reticulum (ER) chaperone
calreticulin (ecto-CRT), secretion of ATP and release of high
mobility group box 1 (HMGB1) (27–30). Other DAMPs such as
heat-shock proteins (HSP90 and HSP70) and ER sessile proteins
are also exposed on the outer membrane of the dying cells
or released (31–33). After secretion, these DAMP molecules
bind to their receptors CD91 (CRT), P2RX7 (ATP), and TLR4
(HMGB1) on dendritic cell, which support their recruitment
and improve their antigen uptake and capacity to stimulate
the T cells (34–36). Given the emerging role of ICD in OVs-
mediated immunotherapy, it is increasingly important to fully
understand howOVs trigger ICD in infected cancer cells, thereby
maximizing ICD-triggered antitumor immunity.

Among the OVs that have completed the first phase I/II
clinical trials, Newcastle disease virus (NDV), which is an avian
paramyxovirus, has achieved longstanding benefit as an oncolytic
agent in patients of advanced cancers (37–41). Recent studies
by Zamarin et al. showed that intratumoral therapy with NDV
sensitizes the tumors to the efficacy of CTLA-4, PD-1, and PD-L1
blockade in animal models (42, 43). In addition, oncolytic NDV
has been shown to trigger tumor-specific immune memory in
orthotopic glioma through the induction of ICD (44). Our lab
recently reported that an oncolytic NDV strain FMW (here as

NDV/FMW) is a potent ICD-inducer in lung cancer cells (45, 46).
However, whether oncolytic NDV induces ICD in other cancer
types and the underlying mechanism (s) remain to be explored.

In the present study, our aim was to explore whether
NDV/FMW induces ICD in melanoma cells and its regulation.
We show that NDV/FMW triggers ICD in both cultural
melanoma cells and in mouse models, which can be modulated
by targeting signal transducer and activator of transcription
3 (STAT3).

MATERIALS AND METHODS

Cell Lines and Virus
The human melanoma cell lines A375 and C8161 as well as
chicken embryo fibroblast cell line DF1 and human embryonic
kidney cells (293T) were originally obtained fromAmerican Type
Culture Collection (ATCC) and kept in our lab. These cells were
cultured at 37◦C and 5%CO2 in DMEM, supplemented with 10%
fetal bovine serum (FBS). Oncolytic NDV strain, NDV/FMW,
which has been previously shown to induce cytotoxic effects
in A549/DDP and parental cells (46), was used throughout the
study. Virus titer was expressed as log10 of 50% the infective dose
(TCID50) in culture.

Antibodies and Regents
Anti-calreticulin (CRT) and anti-p62/SQSTM1 antibodies
were purchased from Abcam. Anti-HN, anti-HSP90, and
anti-STAT3 antibodies were obtained from Santa Cruz. Anti-
β-actin and goat anti-rabbit antibody were purchased from
Proteintech. Goat anti-mouse and Goat anti-rabbit antibodies
for immunoblot analysis were obtained from Bioworld. The
secondary antibodies of Alexa 488, Alexa 568 and Alexa 647
for immunofluorescence were obtained from Invitrogen.
The following antibodies from Cell Signaling Technology
were used: HMGB1, HSP70, poly (ADP-ribose) polymerase
(PARP), p-eIF2α, p-STAT3 (Y705), Bcl-xl, Mcl-1, β-catenin.
Mitoxantrone (MTX), Necrostain-1 (Nec-1), Z-VAD-FMK
(Z-VAD), chloroquine (CQ), GSK2606414 (GSK), and C188-9
were obtained from Selleckchem. Recombinant interleukin-6
(IL-6) were obtained from PeproTech. Drugs were dissolved
in dimethyl sulfoxide (DMSO) as stock solutions and stored
at −20◦C. ENLITEN R©ATP Assay System Bioluminescence
Detection Kit for ATP Measurement (#FF2000) was purchased
from Promega. PI, Pierce R©Protein Concentrator 2–6 mL/10K
filters were purchased from Thermo Scientific. HMGB1
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ELISA Kit II (#L534) was purchased from SHINO-TEST
CORPORATION. Trypan blue dye was obtained from Sigma.

Virus Infection
Melanoma cell lines were infected with NDV/FMW at a
multiplicity of infection (MOI) of 1, or mock-infected with
PBS, at 37◦C in serum-free DMEM for 1 h. The cells were
washed three times with PBS and incubated at 37◦C in DMEM
supplemented with 1% FBS. For pharmacological modulation of
STAT3 signal pathway, cells were treated with C188-9 (0.9µM)
and IL-6 (30 ng/mL) for 1 h prior to virus infection. Subsequently,
the cells were infected with NDV/FMW in the presence or
absence of various compounds for 1 h and then cultured in
fresh DMEM containing C188-9 or IL-6 for the indicated times.
For experiments that involved the determination of virus yield,
tumor cells were infected with NDV/FMW at an MOI of 0.01,
and multi-step viral growth curves were measured as previously
described (47).

Lentiviral Constructs and Stable Cell Lines
A375 and C8161 cell lines stably depleted of STAT3 were
established with the lentiviral construct. The 293T cells were
transfected with packaging plasmid (PSPAX and PMD2G) and
knockdown plasmid (STAT3 shRNA) or control plasmid (non-
coding shRNA) for 48 h, the supernatants were collected and
infected A375 and C8161 cells for 48 h. Stable clones were then
selected using puromycin (Sigma). The selected cell populations
were subjected to immunoblotting to investigate the silencing
efficiency. The plasmids of STAT3 shRNA (#6774) and non-
coding shRNA (RHS4346) were obtained from CCSB-Broad
Lentiviral Expression Library (Dharmacon).

Preparation of Concentrated Supernatants
The supernatants (6mL) of NDV/FMW infected and uninfected
cells were collected and placed into the PierceProtein
Concentrator 2–6 mL/10K filters (ThermoFisher Scientific),
and then the samples were centrifugated at 1,000 rpm until
the volume from 6mL to 100 µl. The concentrated cell-free
supernatants were subjected to immunoblot (IB) analysis to
examine secreted HMGB1 and HSP70/90.

Immunoblot Analysis
A375 and C8161 cells were infected or uninfected with
NDV/FMW at MOI of 1 for 12, 24 and 48 h, and then
cells were placed on ice, washed with cold PBS, harvested
using a scraper and lysed in lysis buffer for 25min. Cell
lysates were centrifuged at 12,000 g for 10min at 4◦C and
supernatants were subjected to western blot analysis. Cell lysates
and the concentrated cell-free supernatants were loaded on
SDS-PAGE and transferred onto a nitrocellulose membrane.
The membranes were blocked with 5% non-fat milk in TBST
(Tris-buffered saline tween) at room temperature for 3 h and
incubated with primary antibodies at 4◦C overnight. Following
washing three times with TBST, the membranes were incubated
at room temperature for 1 h with corresponding horseradish
peroxidase-conjugated secondary antibodies. The blots were

detected using an ECL Western Blot Substrate kit according to
the manufacturer’s protocol.

Trypan Blue Exclusion Assay
A375 and C8161 cells were infected and uninfected with
NDV/FMW (MOI = 1) for 48 h, then the cell were collected and
diluted in Trypan blue dye by preparing a 1:1 dilution of the cell
suspension using a 0.4% Trypan blue solution for 2min at room
temperature. Cell viability was analyzed using hemocytometer.
The ratio of unstained cell numbers to total cell numbers was
reported as the viability percentage for each cell category.

Flow Cytometric Analysis
A375 and C8161 cells were infected or uninfected with
NDV/FMW(MOI= 1) for 48 h, and then the cells were harvested
with 0.25% trypsin without EDTA, washed twice with ice-cold
PBS and resuspended in 500 µL PBS. Subsequently, cells were
incubated with an anti-CRT antibody for 2 h on ice, following
by washing and incubated with AlexaFluor 488-conjugates for
30min, then PI was added into cells with the final concentration
of 1µg/mL and the cells were incubated for 15min in dark.
The samples were analyzed by flow cytometry analysis. Surface
expression of CRT was analyzed by flow cytometry.

Determination of ATP Secretion
ATP secretion was measured with the ENLITEN ATP
Assay (Promega, FF2000) according to the manufacturer’s
protocol, using a multifunctional enzyme labeling instrument
(Enspire2300, Perkin Elmer, USA). The supernatants of A375
and C8161 cells were collected, dying floating cells were removed
by centrifugation at 1,000 rpm for 5min. The 2% bleach (sodium
hypochlorite) solution was used to remove bacteria and traces
of ATP from the reagent injector and tubing. One hundred
microliter of reagent and 100 µl of supernatant both added to 96
wells plate for each assay. According to the ATP standard curve,
the ATP concentration of the supernatants was obtained.

HMGB1 and Enzyme-Linked
Immunosorbent Assays
The HMGB1 ELISA Kit was used to detect HMGB1 release.
After drawing a standard curve series using sample diluents
and standard, the supernatants of cells were collected and
centrifugated to remove floating cells. One hundred microliter
of sample diluents were added to each well, 10 µL of sample
diluent to zero well for the negative control, and 10µL of samples
were added to each well. After shaking the plate with a plate
mixer, all wells were covered with a plate seal and incubated for
24 h at 37◦C. All wells were washed 5 times with wash solution
(400 µL/well). After the final wash, the plates were turned over
and gently tap 5 times on a lint-free paper towel to remove any
remaining wash buffer. Then 100 µL of POD-conjugate solution
was added to each well and incubated for 2 h at 25◦C. After
washing, 100 µL of substrate solution was added to each well and
incubated for 30min at room temperature. Then 100 µL of stop
solution was added to each well in the same sequence, and the
absorbance of each well at 450 nm was tested by a luminometer.
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Confocal Imaging
For immunofluorescence microscopy, cells were placed on
coverslips (NEST, 801008). Virus-infected and uninfected cells
were washed twice with ice-cold PBS and fixed in 4%
paraformaldehyde for 10min and incubated at room temperature
for 60min in 3% Bovine Serum Albumin (BSA). The cells were
incubated with primary antibody overnight at 4◦C. Following
washing three times with PBS, the cells were incubated with
secondary antibody in PBS containing 3% BSA at room
temperature for 1 h with secondary antibodies. Nuclei were
stained with DAPI (5µg/mL) in PBS. Using a confocal laser
microscope (Leica TCS SP5) with a ×60 oil objective to obtain
Images. Images from each experiment were acquired using the
same exposure time during the same imaging session. The
slides were analyzed using the open source Image J (64 Bit for
Windows) imaging platform.

Animal Experiments
BALB/c nude mice (female, 6 weeks old) were obtained from
Beijing Vital River Laboratory Animal Technology Co., Ltd. A375
and C8161 cells were subcutaneously inoculated into the flank to
induce tumor formation. When tumors reached 100 mm3 (after
30 days), tumor-bearing mice were intratumorally inoculated
with NDV/FMW. Mice were randomly divided into three groups
and five mice were included in each treatment group: (a) vehicle
treatment, (b) intratumoral injection with concentrated cell-free
supernatants from NDV/FMW-infected cells (the supernatants
were ultraviolet-irradiated for 60min at intensity of 0.15 mW
cm−2) every 3 days, (c) intratumoral injection with NDV/FMW
(1 × 107 TCID50 per dose) every 3 days. Tumor growth
and survival were measured every 5 days by digital calipers.
Tumor volume was calculated as [(greatest diameter)× (smallest
diameter)2/2]. The experiments were scheduled to last for 90
days from the day of tumor implant. Any animal whose weight
decreased more than 30% from the weight on the first day
of treatment, ulcerated or sloughed off, or was moribund was
euthanized prior to study termination. At the bottom line of the
study, the surviving mice were sacrificed under anesthesia. All
procedures involving animals and their care complied with the
China National Institutes of Healthy Guidelines for the Care and
Use of Laboratory Animals. Ethical approval for the study was
granted by the Ethics Committee of Dalian Medical University.

Statistical Analysis
Statistical analyses were performed using the Student’s t-
test with Microsoft Excel (Microsoft, Redmond, WA, USA).
Results were expressed as the Mean ± SD of at least three
independent experiments and p < 0.05 were considered as
statistically significant.

RESULTS

Oncolytic NDV Induces CRT Exposure,
Release of HMGB1 and HSP70/90 as Well
as Secretion of ATP in Melanoma Cells
To explore whether NDV/FMW could elicit ICD in melanoma
cells, we first examine whether NDV/FMW could replicate

and trigger cell death in melanoma cells. In line with our
previous work in lung and thyroid cancer cells (46, 48),
NDV/FMW robustly replicated in human melanoma A375
and C8161 cells as evidenced by elevated virus titers and
the expression of NDV hemagglutinin-neuraminidase protein
(HN) (Supplementary Figures 1A,B). We also observed growth
inhibition of NDV/FMW-infected melanoma cells, which was
accompanied by cleaved poly (ADP-ribose) polymerase (PARP,
apoptosis marker), reduced p62 (autophagy flux indicator)
and increased phosphorylation of eIF2α (ER stress marker)
(Supplementary Figure 1B and data not shown), indicating that
multiple modes of cell death might be involved in NDV/FMW-
mediated growth inhibition of melanoma cells.

Given that oncolytic NDV triggered ICD in glioma and
lung cancer cells as demonstrated by our previous work
and others (44–46), we hypothesized that NDV/FMW would
induce ICD in melanoma cells. To test this hypothesis, we
measured the ICD markers ATP, HMGB1, and HSP70/90 in
supernatants after viral infection and checked the cell surface
of infected melanoma cells for CRT expression (ecto-CRT).
Treatment with mitoxantrine (MTX) was chosen as a positive
control, because MTX was previously described as a legitimate
ICD inducer (49). As shown in Figure 1A, confocal imaging
of NDV/FMW-infected A375 and C8161 cells revealed an
increased exposure of CRT (red) on the cell surface at 24 and
48 post infection (hpi) compared to mock-infected cells. As
expected, MTX treatment induced strong exposure of CRT in
both melanoma cell lines. We also observed that the NDV
envelope protein, HN, was evidently stained with an anti-HN
antibody in NDV/FMW-infected cells but not in mock-infected
or MTX-treated cells (Supplementary Figure 1C). In addition,
NDV/FMW infection-induced CRT exposure in A375 and
C8161 cells were further confirmed by flow cytometry analysis
(Figure 1B). To detect the secreted DAMPs in NDV/FMW-
infected melanoma cells, the cell culture media was collected
and concentrated at 24 and 48 hpi. Both ATP secretion and
HMGB1 release were determined by ELISA while other released
DAMPs were assayed by immunoblotting. As illustrated in
Figures 1C,E, NDV/FMW infection of both A375 and C8161
cell lines at 24 or 48 h resulted in an increase of extracellular
ATP and HMGB1, respectively, as determined by ELISA assay. In
addition, dramatically increased protein levels of both HMGB1
and HSP70/90 were detected in concentrated supernatants
of A375 and C8161 cell lines infected with NDV/FMW at
48 hpi (Figure 1D).

Pharmacological Inhibition of Apoptosis,
Autophagy, Necroptosis, and ER Stress
Suppresses NDV/FMW-Induced Release of
HMGB1 and HSP70/90 in Melanoma Cells
The incidence of ICD is generally acknowledged to be
tightly connected with apoptosis, autophagy, necroptosis or
ER stress (24, 50–54). Our previous study showed that
autophagy but not apoptosis or necroptosis contributes to
NDV-mediated induction of ICD in lung cancer cells (45).
To test whether apoptosis, autophagy, necroptosis or ER
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FIGURE 1 | NDV/FMW induces immunogenic cell death in melanoma cancer cells. (A) A375 and C8161 cells were infected with or without NDV/FMW (MOI = 1) for

48 h, to assess the translocation of calreticulin (CRT), A375 and C8161 cells were stained with an anti-CRT antibody (Red) and anti-β-catenin antibody (Green), and

assessed by confocal imaging at 48 hpi of NDV/FMW (MOI = 1). β-catenin was used as a membrane marker. Mitoxantrine (MTX) was used as a positive control. DAPI

(Continued)
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FIGURE 1 | was used for nuclear staining (blue). ImageJ software was used to calculate the percentage of CRT positive area (**p < 0.01). Imaging data has been

quantified. Images are representative of three independent experiments. (B) A375 and C8161 cells were infected as the same in (A), the expression of CRT on the cell

membrane were analyzed by flow cytometry to detect CRT in viable, PI-negative cells (*p < 0.05, ***p < 0.001). Representative dot plots (left panel) and quantification

data (right panel) are shown. Data are shown for three independent replicates. (C) A375 and C8161 cells were infected with or without NDV/FMW (MOI = 1) for 24

and 48 h, release of HMGB1 in NDV/FMW-infected or mock-infected cell supernatants were detected by enzyme-linked immunosorbent (ELISA) (***p < 0.001). Data

shown are representative of three independent experiments. (D) A375 and C8161 cells were infected as the same in (C), then cell lysates and the concentrated

cell-free supernatants were collected. HMGB1 and HSP70/90 expression were measured by immunoblot (IB) analysis. β-actin was used as a loading control.

(E) A375 and C8161 cells were infected as the same in (C), extracellular ATP was determined by ELISA (*p < 0.05). Data shown are representative of three

independent experiments (n.s, not significant).

FIGURE 2 | Pharmacological inhibition of apoptosis, autophagy, necroptosis, and ER stress suppresses NDV/FMW-induced immunogenic cell death in melanoma

cells. (A,C) A375 and C8161 cells were pre-treated with either Z-VAD-FMK (Z-VAD, 100µM), chloroquine(CQ, 20µM), Necrostain-1 (15µM), GSK2606414 (GSK,

0.1µM) or mock-treated for 1 h, following infection of NDV/FMW for 24 and 48 h, then cell lysates and cell-free supernatants (concentrated) were collected. HMGB1

and HSP70/90 were measured by IB analysis. β-actin was used as a loading control. (B,D) A375 and C8161 cells were infected as the same in (A,C). The cell death

rate of A375 and C8161 cells were obtained by trypan blue staining. Data shown are representative of three independent experiments (***p < 0.001).

stress would play a role in NDV/FMW-triggered ICD in
melanoma cells, we pretreated the cells with the pan-caspase
inhibitor Z-VAD-FMK (Z-VAD), the autophagy inhibitor
chloroquine (CQ), the necroptosis inhibitor Necrostain-1 (Nec-
1), and ER stress inhibitor GSK2606414 (GSK), respectively.
The effective concentrations of these inhibitors were selected
by a dose–response assay for each compound to prevent
cytotoxicity (data not shown). Figure 2A shows that the

tested four inhibitors all effectively blunted the release of
HMGB1 and HSP70/90 in A375 cells exposure to NDV/FMW
compared to cells treated with virus alone. Similar results were
obtained in C8161 cells treated as in A375 cells (Figure 2C).
In addition, to assess the effect of apoptosis, autophagy,
necroptosis or ER stress inhibitors on NDV/FMW-induced cell
death, Figures 2B,D showing cell death rate by trypan blue
assay (Figures 2B,D).
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FIGURE 3 | Effects of pharmacological modulation of STAT3 on NDV/FMW-induced apoptosis. (A) A375 and C8161 cells were infected with or without NDV/FMW

(MOI = 1) for 12, 24, and 48 h. The relative expression of p-STAT3 (Y705), STAT3, Mcl-1, and Bcl-xl was measured by IB analysis. β-actin was used as a loading

control. The relative quantity of protein was assessed by Image Lab software. Data shown are representative of three independent experiments. (B) A375 and C8161

cells were pre-treated with C188-9 (STAT3 inhibitor) or mock-treated for 1 h, following infection with or without NDV/FMW for 24 and 48 h. The relative expression of

cleaved-PARP, p62, p-eIF2α, and HN was determined by IB analysis. β-actin was used as a loading control. The relative quantity of protein was assessed by Image

Lab software. Data shown are representative of three independent experiments.

Pharmacological Inhibition of STAT3
Attenuates NDV/FMW Replication and
Oncolytic Cell Death in Melanoma Cells
The JAK-STAT3 signaling plays a key role in anticancer
immunotherapy and in cytokines such as interleukin-6 (IL-6)-
mediated effects in cancer progression (55–58). Our previous
work showed that targeting STAT3 can inhibit tumor VEGF
expression and angiogenesis in melanoma cells (59). A recent
study showed that deletion of STAT3 stimulates one of the
hallmarks of ICD in fibrosarcoma cells (58, 60). We thus
hypothesized that STAT3 might play a role in NDV/FMW-
induced ICD in melanoma cells. To test this, we first examined

the activation of STAT3 (tyrosine phosphorylation of STAT3
at Y705) in melanoma cells in response to NDV/FMW
infection. As shown in Figure 3A, NDV/FMW infection of
A375 and C8161 cells resulted in a pronounced decrease in
pSTAT3 (Y705) at 48 hpi. Consistently, Mcl-1 and Bcl-xl,
two known STAT3 target genes, were downregulated in the
infected cells (Figure 3A). We next investigated the effects of
STAT3 inhibition on NDV/FMW replication and cell death
in melanoma cells. To achieve this, C188-9, a specific STAT3
inhibitor which has been evaluated in early phase clinical
trials for advanced-stage cancers (NCT03195699) (61–63), was
used through our experiments and its efficacy was validated
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FIGURE 4 | STAT3 inhibition exerts effects on NDV/FMW-induced immunogenic cell death. (A–E) A375 and C8161 cells were pre-treated with C188-9 (0.9µM) and

IL-6 (30 ng/mL) and then cells were infected or mock-infected with NDV/FMW (MOI = 1) for 48 h. (A) Translocation of CRT (red) was assessed by

immunofluorescence staining. β-catenin was used as a membrane marker (green). MTX was used as a positive control. DAPI was used for nuclear staining (blue).

(Continued)
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FIGURE 4 | Images were obtained using confocal microscopy. ImageJ software was used to calculate the percentage of CRT positive area (**p < 0.01). Images are

representative of three independent experiments. (B) The cells were stained for the detection of CRT in viable, PI-negative cells by flow cytometry. Quantification data

are shown for three independent experimental replicates (*p < 0.05, ***p < 0.001, n.s = not significant). (C) Cell lysates and cell-free supernatants (concentrated)

were collected for IB analysis. β-actin was used as a loading control. Images are representative of three independent experiments. (D) Extracellular HMGB1 was

assessed by ELISA in the culture supernatants (***p < 0.001, n.s = not significant). (E) Extracellular ATP was measured by ELISA in the culture supernatants (**p <

0.05, ***p < 0.01, n.s = not significant). Data shown are representative of three independent experiments. (F) A375 and C8161 cells were pre-treated with C188-9

(0.9µM) and IL-6 (30 ng/mL) and subsequently infected with NDV/FMW (MOI = 0.01), virus yield was examined at the indicated times. Representative images are

shown for three independent experiments. Data are presented as the mean±SD for triplicate assays (*p < 0.05, **p < 0.01).

by the reduction of phosphorylated levels of STAT3 (data not
shown). We observed that pretreatment with C188-9 obviously
antagonized NDV/FMW infection-induced PARP cleavage, p62
reduction and eIF2α phosphorylation in A375 and C8161 cells
at 48 hpi (Figure 3B). Notably, C188-9 treatment reduced the
protein levels of NDV protein HN in infected melanoma cells
(Figure 3B), indicating that STAT3 inhibition might decrease
NDV/FMW replication in melanoma cells.

STAT3 Inhibition Suppresses
NDV/FMW-Induced ICD Markers in
Melanoma Cells
Having shown that pharmacological inhibition of STAT3 affects
NDV/FMW-mediated cell death in melanoma cells, we asked
whether STAT3 inhibition could exert effects on NDV/FMW-
induced ICD markers. As depicted in Figures 4A,B, and
Supplementary Figure 2A pretreatment with C188-9 reduced
NDV/FMW infection-elicited CRT exposure, in both A375
and C8161 cells as determined by confocal imaging and
flow cytometry, respectively. In addition, exposure to C188-9
decreased ATP secretion and release of HMGB1, HSP70, and
HSP90 in A375 and C8161 cells upon NDV infection as assayed
by immunoblotting and ELISA respectively, (Figures 4C–E).
Of interest, pretreatment with IL-6 enhanced the release of
HSP90 in NDV/FMW-treated A375 cells while in NDV/FMW-
infected C8161 cells (Figure 4C). In addition, C188-9 treatment
decreased virus yield in NDV/FMW-infected cells compared
to virus infection alone whereas IL-6 treatment increased
virus titers in A375 cells at 48 hpi and in C8161 cells at
24 hpi (Figure 4F).

Depletion of STAT3 Blunts the Induction of
ICD Markers in Melanoma Cells Upon
NDV/FMW Infection
To exclude the possible off-target effects by C188-9, we stably
knockdown STAT3 with lentivirus-mediated shRNA targeting
STAT3 in both A375 and C8161 cells. The knockdown efficiency
was confirmed by immunoblot assay (Figure 5A). Consistent
with the effects by C188-9 on NDV/FMW-mediated cell death
in melanoma cells, STAT3 depletion also decreased NDV/FMW-
triggered PARP cleavage and eIF2α phosphorylation (Figure 5B).
Notably, the induction of ICD markers including CRT exposure,
ATP secretion, and HMGB1 as well as HSP70/90 release upon
NDV infection was severely attenuated in STAT3-depleted
A375 cells compared with that in control shRNA-treated A375
cells (Figures 5C–F, left panels and Supplementary Figure 3A,

upper panel). Similar results were obtained in C8161 cells
(Figures 5C–F, right panels and Supplementary Figure 3A,
lower panel).

Supernatants Derived From
NDV/FMW-infected Melanoma Cells
Reduce Tumor Growth in Mice
We previously showed that the supernatants from NDV/FMW-
infected lung cancer cells suppress tumor growth in vivo (45).
To investigate whether the supernatants from NDV/FMW-
infected melanoma cells could inhibit melanoma growth in
vivo, the conditioned medium was collected, concentrated
and irradiated with UV to inactivate the infectious virus.
Mice bearing A375-derived tumors were intratumorally
injected with NDV/FMW, the concentrated supernatants or
vehicle. As shown in Figure 6A, the supernatants significantly
reduced melanoma growth compared to vehicle-treated
tumors. As expected, NDV/FMW injection significantly
decreased tumor growth (Figure 6A). In addition, intratumoral
administration of the concentrated supernatants evidently
prolonged the survival of mice bearing A375-derived
tumors compared to mice intratumorally injected with
PBS (Figure 6B).

DISCUSSION

Our study declared and evidenced that oncolytic NDV/FMV
provoked the expression and release of ICD imprints in
melanoma cells. Besides this, we also validate the diverse
fashion of cell death which further contributes to NDV/FMV-
induced release of ICD markers to a major extent. Of note, the
transcription factor STAT3 plays a critical role in the induction
of ICD in melanoma cells exposed to NDV/FMW.

It has been shown that multiple modes of cell death such
as apoptosis, are involved in either natural or recombinant
oncolytic NDV-mediated cytolytic activities in melanoma (64–
68). However, whether oncolytic NDV elicits ICD in melanoma
has not been investigated. In the current investigation, we found
that oncolytic NDV/FMW elicits the induction of several known
ICDmarkers, such as CRT exposure, ATP secretion, andHMGB1
as well as HSP70/90 release in melanoma cells. Furthermore,
the anti-melanoma effects by oncolytic NDV-induced ICD were
attested in a xenograft model. Therefore, our data strongly
suggest that oncolytic NDV can be a potent ICD inducer in
melanoma cells. This observation is generally in line with our
previous work in lung cancer cells and others in glioma (44,
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FIGURE 5 | Effects of depletion of STAT3 on NDV/FMW-triggered immunogenic cell death. (A) A375 and C8161 cells with a stable knockdown of STAT3 (shSTAT3)

and control cells (shCON) were tested by IB analysis. β-actin was used as a loading control. (B–E) STAT3-depleted cells and control cells were infected or

(Continued)
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FIGURE 5 | mock-infected with NDV/FMW (MOI = 1). (B) After 24 and 48 h, the expression of cleaved-PARP, p-eIF2α and HN was determined by IB analysis. β-actin

was used as a loading control. Data shown are representative of three independent experiments. (C) After 48 h, CRT exposure (red) was tested by confocal

microscopy. MTX was used as a positive control. β-catenin was used as a membrane marker (green). DAPI was used for nuclear staining (blue). ImageJ software was

used to calculate the percentage of CRT positive area (*p < 0.05, **p < 0.01). Images were obtained using confocal microscopy. Representative images are shown

for three independent experiments. (D) After 24 and 48 h, the expression of HMGB1 and HSP70/90 in whole cell lysates and concentrated supernatants were

measured by IB analysis. β-actin was used as a loading control. Data are representative of two independent experiments. (E)After 48 h, the release of HMGB1 in cell

supernatants was detected by ELISA (***p < 0.001). Data shown are representative of three independent experiments. (F) After 24 and 48 h, extracellular ATP was

measured by ELISA (*p < 0.05, **p < 0.01, n.s = not significant). Data are representative of three independent experiments.

FIGURE 6 | Effects of supernatants derived from NDV/FMW-infected melanoma cells on tumor growth in mice. (A) A375 and C8161 cells were

subcutaneously inoculated into the flank. When tumors reached 100 mm3, tumor-bearing mice were intratumorally inoculated with either PBS, the concentrated

cell-free supernatants of NDV/FMW (50 µl), or NDV/FMW every 3 days. Tumor volumes were measured at 5 day intervals for 40 days after injections and expressed as

the Mean ± SD (n = 5) and represented as tumor volume-time curves. (B) Kaplan-Meier analysis of survival rates of each group was checked to last for 90 days from

the day of tumor implant (*p < 0.05, **p < 0.01, ***p < 0.001).

45), indicating that oncolytic NDV could elicit ICD in diverse
types of cancers. In addition, we observed that pharmacological
inhibition of apoptosis, autophagy, necroptosis and ER stress
suppresses NDV/FMW-induced release of several ICD markers
in melanoma cells, suggesting that diverse forms of cell death
might contribute to the induction of ICD in melanoma cells
upon oncolytic NDV infection. Of interest, work by Koks et al.
indicated that necroptosis but not caspase signaling contributes
to oncolytic NDV-triggered ICD in glioma while our previous
work in lung cancer cells showed that the induction of ICD
by oncolytic NDV relies on autophagy other than apoptosis
or necroptosis (44, 45). These differences may reflect some
complexity in the regulation of the induction of ICD by NDV

in cancers. Therefore, to fine modulate NDV-induced ICD,
these differences should be taken into consideration for the
combination usage of NDV with other agents.

The transcription factor STAT3 is often hyperactivated in
melanoma and is a potential target for melanoma therapy
(59, 63, 69, 70). One of the important findings of the
present study is that targeting STAT3 by either pharmacological
inhibition with STAT3 inhibitor C188-9 or shRNA-mediated
depletion suppresses oncolytic NDV-primed expression and
release of ICD markers in melanoma cells. It should be
pointed out that our data are somewhat not consistent to a
recent study showing that deletion of STAT3 stimulates one
of the hallmarks of ICD, namely the production of type 1
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interferons, but not other ICD markers in fibrosarcoma cells
(58, 60). Nevertheless, these studies reinforce that targeting
STAT3 as a potential strategy for modulating anticancer
immunotherapy. Given that targeting STAT3 by the STAT3
inhibitors such as C188-9 has been evaluated in early phase
clinical trials for advanced-stage cancers (NCT03195699) (61–
63), it should be taken into caution for the rational design of
combinatorial approaches using chemotherapy to boost oncolytic
NDV-induced ICD.

Of great importance, oncolytic NDV has been demonstrated
to elicit an antitumor immune response in melanoma
(37, 39, 67, 71, 72). Furthermore, recent studies revealed that
oncolytic NDV-based virotherapy overcomes systemic tumor
resistance to immune checkpoint blockade in melanoma
(42, 43), underscoring the potential role of oncolytic
NDV in cancer immunotherapy. In this regard, our data
highlight the importance of understanding the mechanism(s)
underlying the antitumor immune response induced by
oncolytic NDV.
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