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We have recently demonstrated CXCR4 overexpression in vestibular schwannomas

(VS). This study investigated the feasibility of CXCR4-directed positron emission

tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled

chemokine ligand [68Ga]Pentixafor.

Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were

enrolled. All subjects underwent [68Ga]Pentixafor PET/CT prior to surgical resection.

Images were analyzed visually and semi-quantitatively for CXCR4 expression including

calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as

standard of reference in three patients.

Results: [68Ga]Pentixafor PET/CT was visually positive in all cases. SUVmean and

SUVmax were 3.0 ± 0.3 and 3.8 ± 0.4 and TBRmean and TBRmax were 4.0 ± 1.4 and

5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors.

Conclusion: Non-invasive imaging of CXCR4 expression using [68Ga]Pentixafor

PET/CT of VS is feasible and could prove useful for in vivo assessment of

CXCR4 expression.
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INTRODUCTION

Vestibular schwannomas (VS) are benign nerve sheath tumors that arise from Schwann cells of
the vestibulocochlear nerve (1, 2). VS regularly cause hypoacusis, dizziness, and tinnitus. These
tumors usually arise sporadically, however in ∼5% of the cases they are associated with a rare
(1:33,000) genetic disorder, neurofibromatosis type 2 (NF2). In NF2, various types of tumors
including schwannomas, meningiomas, and ependymomas develop due to loss of the NF2 gene,
which encodes for Merlin, a tumor suppressor protein (3, 4).

VS are the hallmark tumors of this disease. In NF2, they usually appear bilaterally, and compared
to sporadic schwannomas, they grow faster and are much more adherent to the cranial nerves and

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00503
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00503&domain=pdf&date_stamp=2019-06-12
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:breun_m@ukw.de
mailto:lapa_c@ukw.de
https://doi.org/10.3389/fonc.2019.00503
https://www.frontiersin.org/articles/10.3389/fonc.2019.00503/full
http://loop.frontiersin.org/people/748777/overview
http://loop.frontiersin.org/people/637241/overview
http://loop.frontiersin.org/people/580717/overview
http://loop.frontiersin.org/people/172354/overview
http://loop.frontiersin.org/people/685973/overview


Breun et al. CXCR4-PET/CT in Schwannomas

the brainstem (5–7). Accordingly, NF2-associated vestibular
schwannomas are the more aggressive tumor entity. Surgery
is the standard treatment in sporadic schwannoma, but not a
long-lasting solution for NF2-related tumors since the disease
is often associated with persistent cranial nerve deficits and
high recurrence rates. Thus, efficacious systemic or non-invasive
therapies would be of value for these patients.

Chemokines are important regulators of the tumor
environment, which, in addition to Merlin loss in Schwann
cells, is essential for tumor development in VS. C-X-C motif
chemokine receptor 4 (CXCR4), a 40-kDa G protein-coupled
receptor of the chemokine receptor subfamily, was initially
found to regulate leukocyte trafficking (8–11). It plays an
important role in the process of homing and recruitment
of progenitor and immune cells, and it is integral to the
development of the nervous, hematopoietic, and cardiovascular
systems during embryogenesis (9, 10, 12). However, it is also
involved in diverse pathological processes, including infection,
autoimmune disease, and cancer (9, 13). CXCR4 overexpression
has been described in more than 30 different tumor entities
including breast, prostate, lung, and colon cancer, as well as in
neuroblastoma and peripheral nerve sheath tumors (10, 14).
Significant overexpression of CXCR4 in both sporadic as well
as neurofibromatosis-associated VS was recently demonstrated
(15, 16). Therefore, CXCR4 could serve as a new target for
systemic therapy with specific inhibitors (e.g., AMD3100)
(17, 18). CXCR4 inhibitors have already been approved for
leukemia therapy and are under investigation in trials for several
solid tumors (19–21).

The radiolabeled CXCR4-targeted ligand [68Ga]Pentixafor
was recently developed for PET imaging (22). CXCR4 expression
has been demonstrated in multiple types of cancer, including
adrenocortical carcinoma (23), SCLC, glioblastoma, and
hematologic malignancies (24–27). This manuscript is the first
report of non-invasive detection of CXCR4 expression in patients
with sporadic and NF2-associated VS.

MATERIALS AND METHODS

Patients
From June to December 2017, a total of four patients with either
newly diagnosed (n = 1) or pre-treated and observed VS (n =

3) underwent imaging with [68Ga]-Pentixafor-PET/CT. Routine
diagnosis before surgery included MRI and was available in
all patients. Six tumors were VS and one was a facial nerve
schwannoma. Patient characteristics regarding tumor extension
and clinical impairment are given in more detail in Table 1.
[68Ga]-Pentixafor was administered on a compassionate use
base in compliance with §37 of the Declaration of Helsinki
and the German Medicinal Products Act, AMG §13 2b, and
in accordance with the responsible regulatory body (Regierung
von Oberfranken). All patients gave written, informed consent
prior to imaging. Due to the retrospective nature of this
study, the local institutional review board (University Hospital
Würzburg, Würzburg, Germany) waived the requirement for
additional approval.

Imaging and Image Analysis
All PET scans were performed on a dedicated (PET/CT)
scanner (Siemens Biograph mCT 64; Siemens Medical Solutions,
Erlangen, Germany). [68Ga]Pentixafor PET was performed
on the day prior to surgery, 60min after i.v. injection of
88 to 163 MBq (mean: 135 ± 28 MBq) Low-dose CT scans
of the brain for attenuation correction were acquired (35
mAs, 120 keV, a 512 × 512 matrix, 5mm slice thickness,
increment of 30 mm/s, rotation time of 0.5 s, and pitch
of 0.8). All PET images were iteratively reconstructed (3
iterations, 24 subsets with resolution recovery; Gaussian
filtering: 2mm; matrix: 400 × 400) using corrections
for attenuation, dead-time, random events, and scatter.
Acquisition and data reconstruction were performed using
dedicated manufacturer software (syngo MI.PET/CT; Siemens
Healthineers, Erlangen, Germany).

Images were first inspected visually by a reader with expertise
in the interpretation of [68Ga]Pentixafor PET (C.L.). Then the
axial PET image slice displaying the maximum tumor uptake
was selected. Tumor regions of interest (ROIs) were defined
in 2 ways. First, a standardized 10-mm circular region was
placed over the area with the maximum activity. This first ROI
was used to derive maximum (SUVmax) and mean standardized
uptake values (SUVmean). A normal reference brain region was
defined by drawing a ROI (diameter of 25mm) involving the
contralateral cerebral hemisphere at the level of the centrum
semiovale to derive tumor-to-background ratios. Additionally,
another ROI (3D isocontour) was placed in the superior sagittal
sinus (at the tumor level) to derive an estimate of blood
pool activity (for respective tumor-to-blood pool ratios). The
radiotracer concentration in the ROIs was normalized to the
injected dose per kilogram of patient’s body weight to derive
the SUVs.

Immunohistochemistry
All tumors were histologically assessed and graded on formalin
fixed and paraffin embedded tissue sections by an experienced
neuropathologist (CMM) according to the 2016 criteria of the
World Health Organization (2). Schwann cell origin of the
tumor cells was confirmed by the positive reaction with S100
antiserum (1:200, Dako, Hamburg, Germany). To determine the
proliferative activity of tumor cells, the Ki-67 labeling index
was calculated after immunostaining (monoclonal, clone Ki-67,
1:50, Dako, Hamburg, Germany) by determining the number of
positive nuclei among 100 tumor cells per high power field (HPF)
(x400) in a total of 10 HPF per sample.

The VS sections (3µm) were cut from formalin-fixed
paraffin-embedded tissue blocks and stained with anti-CXCR4
antibody (Zytomed 503-18440, Berlin, Germany) using
a 1:50 dilution in dilution buffer (DCS, Jena, Germany).
CXCR4 protein expression was visualized using a poly-link
secondary antibody and a peroxidase kit (Dako; DCS Innovative
Diagnostic Systems, Jena, Germany). Positive signals resulted
in brown staining, and counterstaining was performed with
hematoxylin. All immunohistochemically stained slides were
analyzed using light microscopy (Leica, Wetzler, Germany).
Negative control experiments were performed by staining
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TABLE 1 | Tumor characteristics and imaging results.

No Tumor location Tumor extension Antoni type Ki 67 (%) CXCR4 IRS SUV max TBRmax TBlRmax

1 VS left T3A 16 × 8mm A/B 1 9 3.37 3.59 1.32

2 VS right T4B 30 × 35mm A 1–2 2–6 4.13 4.17 1.59

3 VS left T4A 23 × 23mm 3.78 6.87 1.71

VS right T3B 16x12mm None 4.05 7.36 1.83

4 VS left T4 26 × 32mm A/B 10–15 6 3.26 3.62 1.62

VS right T3A 3.99 4.43 1.99

IRS, immunoreactive score; SUV, standardized uptake value; TBlR, tumor to blood pool ratio; TBR, tumor to background ratio; VS, vestibular schwannoma.

low-grade astrocytomas, and positive control experiments were
performed by staining placenta sections with primary and
secondary antibodies.

The analysis of the stained sections was done semi-
quantitatively by light microscopy according to the
immunoreactive score (IRS) described by Remmele and
Stegner (28). The percentage of CXCR4 positive cells was scored
as follows: 0 (no positive cells), 1 (<10% positive cells), 2
(10–50% positive cells), 3 (>50–80% positive cells), 4 (>80%
positive cells). Additionally, the intensity of staining was graded:
0 (no color reaction), 1 (mild reaction), 2 (moderate reaction),
3 (intense reaction). Multiplication of both scores for a given
sample yielded the IRS classification: 0–1 (negative), 2–3 (mild),
4–8 (moderate), 9–12 (strongly) positive.

Statistical Analysis
Statistical analyses were performed using Graph Pad Prism 6
software (GraphPad Software, La Jolla, CA, USA). For descriptive
statistics, quantitative values were expressed as mean± standard
deviation or median and range as appropriate. Comparisons
of related metric measurements were performed using the
two-tailed t-test. A p < 0.05 was considered to indicate
statistical significance.

RESULTS

Clinical Data
Two patients (patients #3 and #4) had neurofibromatosis type
2 with bilateral VS which had been previously treated with
(radio-)surgery. In the remainder, VS were unilateral with a
subject with newly diagnosed (patients #2) and a single patient
with known but untreated tumors (patient #1).

Two of six tumors had been previously treated with
radiosurgery and one with surgery. The remaining three
tumors had no prior treatment. Three tumors were
progressive as described by consecutive MR imaging
with a growth rate higher than the average of 2mm
per year (29, 30), one tumor was newly diagnosed and
directly treated after diagnosis. Two tumors were stable
regarding their extension after radiosurgery, but caused
progressive hearing impairment necessitating further
treatment. Patients‘ characteristics are displayed in Table 1

and Supplemental Table 1.

Imaging Results and Analysis
All VS demonstrated enhanced [68Ga]Pentixafor uptake (7/7,
100.0%). All lesions were visually clearly delineated from
normal brain tissue and adjacent structures. Of note, the NF2
patients displayed radiotracer accumulation in all VS (Figure 1),
irrespective of prior treatment.

SUVmean and SUVmax were 3.0 ± 0.3 and 3.8 ± 0.4,
respectively. With background SUVmean of 0.8 ± 0.2, TBRmean

was 4.0 ± 1.4 and TBRmax was 5.0 ± 1.7. Blood pool
activity ranged between 2.0 and 2.6 (median, 2.4; mean,
2.3 ± 0.3) and was significantly lower than VS SUV (p <

0.05). Individual imaging results can be found in Table 1 and
Supplemental Table 2.

Immunohistochemistry Analysis
Immunohistological evaluation of CXCR4 expression for
comparison with imaging results was available for three patients.
In all samples, CXCR4 was detectable at the cell membrane and
in the cytoplasm.

Patient #1 (maximum tumor extension: 16 × 8mm)
demonstrated intense (Score: 3) membranous CXCR4 expression
in 52% of cells (Score: 3) which results in an IRS of 9. Patient
#2 (maximum tumor extension: 30 × 35mm) showed areas
with mild CXCR4 expression in 37.5% of schwannoma cells
and areas with moderate CXCR4 expression in 55.5% of tumor
cells. Accordingly, IRS of 2 for the low-expression and of 6
for the moderate-expression areas were calculated. Patient #4
(maximum tumor extension: 26 × 32mm) presented moderate
(Score: 2) cell surface CXCR4 expression in 57% of tumor cells
(Score: 3) resulting in an IRS of 6 (Figure 1).

In this limited cohort, there was no correlation of
immunohistochemistry to the Ki67 proliferation index or
[68Ga]Pentixafor PET uptake.

DISCUSSION

This is the first report of in vivo imaging of CXCR4
expression in humans with VS. A recent report from our
group evaluating samples of these tumors had demonstrated
higher chemokine receptor expression in VS as compared to
healthy vestibular nerves, with higher CXCR4 expression levels
trending to correlate with greater functional impairment (16).
In concordance with in vitro data, receptor expression on the
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FIGURE 1 | Example of increased CXCR4 expression in bilateral vestibular schwannoma in NFII (patient #4). Display of transaxial CXCR4-directed positron emission

tomography (PET), fused PET/computed tomography (CT), three-dimensional constructive interference in steady state (T2 CISS) magnetic resonance imaging (MRI;

insert) and fused MRI/PET slices (arrows), which show increased chemokine receptor expression of bilateral vestibular schwannomas (arrows). Immunohistochemistry

(IHC) of the left-sided tumor confirmed chemokine receptor expression [moderate (Score: 2) CXCR4 expression in 57% of tumor cells (Score: 3) resulting in an

immunoreactive score of 6].

cell surface was visualized by [68Ga]-Pentixafor PET/CT in our
cohort in all cases, even in VS as small as 8 mm.

Considering the high tumor recurrence rate and frequently
debilitating functional outcomes of patients after VS resection,

especially in NF2 cases, a new therapeutic approach would

be of tremendous value. Given that all tumor lesions in our
cohort demonstrated CXCR4-positivity, CXCR4 could be a
promising target for chemokine receptor-directed therapies. We
have found that treatment with CXCR4 antagonists reduces
schwannoma growth in cell culture experiments (unpublished
data). Given the commercial availability of specific chemokine
receptor inhibitors such as AMD3100, systemic blockage of
CXCR4 might be a promising approach to (NF2-associated)
VS treatment.

An important pre-requisite for receptor-targeted therapy
is robust expression of the target and the possibility of

in vivo imaging to select patients who are most appropriate

for the treatment. PET imaging with the radiolabeled CXCR4

ligand [68Ga]Pentixafor has already proven its value for
the non-invasive visualization of receptor expression in a
number of various tumor entities (25, 31). In this pilot
cohort, [68Ga]Pentixafor PET/CT was able to detect all
schwannomas with sufficient tumor-to-background and tumor-
to-blood pool ratios and matched with membranous CXCR4
expression as assessed by immunohistochemistry. Thus, CXCR4-
directed PET/CT might serve as a non-invasive, in vivo read-
out for identification of potential candidates for targeted
therapy. Future studies might also investigate the relationship
between CXCR4 and somatostatin receptors, which have
also been demonstrated to be expressed in peripheral nerve
sheath tumors and might therefore represent another suitable
option (32).

This pilot study has several limitations. First, only a

limited number of patients could be included in the study,

thus precluding any robust conclusions from this cohort.
Second, histological data for comparison with imaging findings
were available in only three cases and no correlation of

[68Ga]Pentixafor uptake with histological receptor expression

could reasonably be calculated because of the limited number of
cases. Autoradiography was not performed.

In the future, larger studies should be carried out to fully
explore the binding of [68Ga]Pentixafor to membranous CXCR4
and to assess whether CXCR4-directed therapy is a viable option
for patients with VS.

CONCLUSION

Our pilot data demonstrate the feasibility of non-invasive
imaging of CXCR4 expression in VS. [68Ga]Pentixafor PET/CT
could prove to be a useful tool for in vivo assessment of CXCR4
expression, especially in NF2-mutated patients. Further research
to elucidate the biologic implications and potential role of
[68Ga]Pentixafor PET in selecting patients for CXCR4-directed
therapy is warranted.
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