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Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of non-Hodgkin’s

lymphoma that is associated with a poor outcome. Non-coding RNAs (ncRNAs), which

account for 98% of human RNAs, lack the function of encoding proteins but instead have

the important function of regulating gene expression, including transcription, translation,

RNA splicing, editing, and turnover. However, the roles and mechanisms of aberrantly

expressed ncRNAs in NKTCL are not fully clear. Aberrant expressions of microRNA

(miRNAs) affect the PI3K/AKT signaling pathways (miRNA-21, miRNA-155, miRNA-150,

miRNA-142, miRNA-494), NF-κB (miRNA-146a, miRNA-155) and cell cycle signaling

pathways to regulate cell function. Moreover, Epstein-Barr virus (EBV) encoded miRNAs

and EBV oncoprotein LMP-1 regulated the expression of cellular genes that induce

invasion, metastasis, cell cycle progression and cellular transformation. In addition,

NKTCL-associated Long non-coding RNA (lncRNA) ZFAS1 regulated certain pathways

and lncRNA MALAT1 acted as a predictive marker. This review article provides an

overview of ncRNAs associated with NKTCL, summarizes the function of significantly

differentially expressed hotspot non-coding RNAs that contribute to the pathogenesis,

diagnoses, treatment and prognosis of NKTCL and discusses the relevance of these

ncRNAs to clinical practice.

Keywords: non-coding RNAs, microRNAs, EBV-encoded miRNAs, lncRNAs, natural killer/T-cell lymphoma

(NKTCL)

INTRODUCTION

Non-Hodgkin’s lymphoma (NHL) originates from B-lymphocytes, T-lymphocytes and natural
killer (NK) lymphocytes and ranges from the indolent to the very aggressive (1). Each subtype
could be further classified according to its origin, genetic signature or clinical features (2). Natural
killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of NHL that has a high incidence
in East Asia and Latin America and that is associated with a poor outcome (3, 4). Extranodal
NKTCL can be further classified into nasal NKTCL, which primarily affects the nasal cavity,
nasopharynx and the upper aerodigestive tract, and non-nasal NKTCL, which involves the outside
of the nasopharyngeal region, such as the skin, gastrointestinal tract and testis (5).

Deletion of chromosome 6q and down-regulation of tumor suppressor genes located on 6q21
regions, including PRDM1 (6), FOXO3 (7), PTPRK, HACE1, ATG5, and AIM1 (8) were observed
through oligo-array comparative genomic hybridization (CGH) and gene-expression profiling.
High mutation frequencies of FAS (9), TP53 and DDX3X (10) had a trend toward advanced
stage and poor prognosis in NKTCL. Recurrent gene mutations in the JAK-STAT pathway were
demonstrated, including high expression of phosphorylated-JAK3 and phosphorylated-STAT3
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(11). Moreover, the expression of Epstein-Barr virus (EBV)-
encoded RNA (EBER) was specific for diagnosis in clinical
practice (12).

Non-coding RNAs (ncRNAs), which account for 98% of
all human RNAs, lack a protein-coding function, but rather,
they have the important function of regulating gene expression,
including transcription, translation, RNA splicing, editing, and
turnover (13). NcRNAs include microRNAs (miRNAs), small
nuclear RNAs, PIWI-interacting RNAs, long non-coding RNAs
(lncRNA), and circular RNAs. With the development of next-
generation sequencing and bioinformatics approaches, ncRNAs
show great biological importance in cancers. However, the roles
and mechanisms of aberrantly expressed non-coding RNAs in
NKTCL have not been fully clarified. This review article provides
an overview of the recent advancements of ncRNAs associated
with NKTCL and discusses their relevance to clinical practice.

MiRNAs

MiRNAs are 18–24-nucleotide-long single-stranded ncRNAs
that can regulate translation via binding to 3′-untranslated
regions (3′-UTRs) of target mRNAs in order to affect cell
function (14, 15).

MiRNA-21

MiRNA-21 regulates various genes and signaling pathways
involved in cancer pathogenesis, progression and metastasis
(16). MiRNA-21 is overexpressed in various solid tumor
types including breast, colon, lung, pancreas, prostate, and
stomach (17) tumors and is also upregulated in hematological
malignancies such as chronic lymphocytic leukemia (18),
acute and chronic myeloid leukemia (19), diffuse large B-cell
lymphoma (20), cutaneous T-cell lymphoma (21) and Hodgkin
lymphoma (22). The expression of miRNA-21 was found to
be higher in NK-cell lymphoma-derived cell lines and in
samples of primary NKTCL compared with normal natural
killer cells (23, 24). MiRNA-21 regulated apoptosis of NK-cell
lymphoma cell lines via the PTEN/AKT signaling pathway,
and the downregulation of miRNA-21 led to the upregulation
of phosphatase and tensin homolog (PTEN), programmed cell
death 4 (PDCD4) and the downregulation of pAKT. PTEN,
served as a multi-functional tumor suppressor, commonly
lost in human cancer and negatively regulating AKT/PKB
signaling pathway (25, 26). PDCD4, a tumor suppresser, inhibited

Abbreviations: NHL, Non-Hodgkin’s lymphoma; EBER, EBV-encoded RNA;

NKTCL, Natural killer/T-cell lymphoma; EBV, Epstein-Barr virus; ncRNAs, non-

coding RNAs; CGH, comparative genomic hybridization; miRNAs, microRNAs;

3′-UTRs, 3′ - untranslated regions; IL-6, immune cytokines interleukin 6; IL6ST,

interleukin 6 signal transducer; TLR2, toll-like receptor 2; PGE2, prostaglandin

E receptor 2; TNF, tumor necrosis factor; OS, overall survival; WTS, whole

transcriptome sequencing; PTEN, phosphatase and tensin homolog; PDCD4,

programmed cell death 4; SHIP1, Src homology-2 domain-containing inositol

5-phosphatase 1; PI3K, phosphoinositide 3-kinase; PRDM1, Positive regulatory

domain containing I; S1PR1, sphingosin-1-phosphate receptor 1; ZFAS1, ZNFX1

antisense RNA 1;MALAT1,metastasis-associated lung adenocarcinoma transcript

1; NEAT2, nuclear-enriched transcript 2.

neoplastic transformation and invasion (27–29). In addition, the
proapoptotic protein Bim was found to be increased (23, 30).
The role of miRNA-21 in the pathogenesis of NKTCL suggests
that miRNA-21 can serve as a new biomarker or target in the
treatment of NKTCL.

MiRNA-155

MiRNA-155 is overexpressed in various hematological and solid
malignancies (16). MiRNA-155 regulates inflammation, immune
cells, and the differentiation and maturation of tumor cells
(31). The expressions of miRNA-155 were higher in NK-cell
lymphoma cell lines and primary NKTCL specimens than in
normal NK cells (23, 24). Among various NK-cell lymphoma
cell lines, the expression of miRNA-155 was reported to be
highest in SNK-6 cells (32). MiRNA-155 regulated apoptosis
via the PTEN/AKT and NF-κB signaling pathways in NK-
cell lymphoma cell lines. MiRNA-155 directly down regulated
Src homology-2 domain-containing inositol 5-phosphatase 1
(SHIP1), which inhibited signaling in the phosphoinositide 3-
kinase (PI3K)-AKT pathway and further inhibited p21 and
p27 (23). Moreover, the expression of miRNA-155 was related
to several inflammatory factors, such as interleukin 6 (IL-
6), interleukin 13 (IL-13), and tumor necrosis factor (TNF),
in NKTCL (33). In addition, whole DNA hypomethylation
was observed to occur with locus-specific hypermethylation,
especially on promoter-associated CpG islands, which resulted
in the silencing of downstream genes and ncRNAs (34,
35). In NKTCL patients, the prevalence of miRNA-155-3p
methylation has been discovered to occur distinctively with the
overexpression of LT-β (35). MiRNA-155 is a potential molecular
marker of NKTCL (33).

MiRNA-142

MiRNA-142 has two different forms (miRNA-142-3p
and miRNA-412-5p) that participate in the regulation
of hematopoietic differentiation and immune response
(36). MiRNA-142 upregulates various proteins such as
the IL-6, interleukin 6 signal transducer (IL6ST), toll-like
receptor 2 (TLR2), prostaglandin E receptor 2 (PGE2), and
TNF (37). The miRNA-142-5p and miRNA-142-3p were
under-expression in NKTCL compared with EBV-negative
lymphomas (38). MiR-142-3p down regulated RICTOR,
one of components of the mTOR complex, and further
affected pAKT in YT cell line (39). In addition, the down-
regulation of miR-142-3p led to the upregulation of IL1A
in NKTCL (38). MiRNA-142-3p is a potential target of
therapy (39).

MiRNA-494

As a tumor suppressor miRNA, miRNA-494 played a role
in various tumors (40, 41). MiRNA-494 induced PTEN
downregulation in cervical cancer cells (42) and myeloid cells
(43). In addition, TGF-β1 was a tumor-derived factor that was
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associated with the upregulation of miRNA-494 in MDSCs and
MMPs, which led to tumor cell invasion and metastasis (43).
In an NK-cell lymphoma cell line NK92, miRNA-494-3p was
also found to down-regulate PTEN, which activated AKT in
accordance with previous reports (39). Moreover, miRNA-494-
3p worked in coordination with the EBV-encoded miRNA-
BART20-5p, which inhibited the T-bet-PTEN pathway, with
subsequent upregulation of AKT and suppression of TP53 (39).
Antagomir to miRNA-494-3p may serve as a potential target of
therapy of NKTCL (39).

MiRNA-150

MiRNA-150 as a key regulator of the differentiation and
activation (44) of immune cells, such as B-, T-, and NK-
lymphocytes (45), abnormally expressed in solid (46) and
hematological malignancies (44). MiRNA-150 was found to be
apparently lower in lymphoma cell lines and primary lymphoma
specimens compared with normal NK cells, while no significant
difference was found between resting and activated NK cells (24).
Furthermore, miRNA-150 down regulated PIK3AP1 and AKT2,
which were part of the PI3K-AKT pathway and upregulated
Bim and p53. MiRNA-150 led to cancer cell anti-apoptosis
and immortality, as pAKTser473/4 acted on telomerase via
phosphorylation of hTERT (24). In addition, miRNA-150 down
regulated DKC1, which functioned in regulating pseudouridine
in RNA and the telomerase RNA subunit hTR in NKTCL cells
(24, 47). MiRNA-150 provides novel strategy upstream of AKT
in the treatment of NKTCL (24).

MiRNA-223

MiRNA-223 is strongly expressed in the bone marrow and
bone marrow cells but is absent in B- and T-lymphocytes
(48). In resting NK cells, miRNA-223 downregulated in the
case of cytokine activation and controls GzmB translation in
restingNK cells (49). Overexpression ofmiRNA-223 can decrease
cancer cell proliferation (50, 51). For instance, miRNA-223
expression was reported to be lower in CD19+ lymphocytes
in patients with mantle cell lymphoma compared with healthy
donors (50). In NKTCL cells, overexpression of miRNA-223
is associated with cell differentiation (52). Positive regulatory
domain containing I (PRDM1), a tumor suppressor gene in
NK cell, was directly downregulated by miRNA-223 in NKTCL
patient samples and NKTCL cell lines (53). All miRNA-223-
positive samples from patients with NKTCL showed EBV
infection, which implied that EBV infection may be responsible
for miRNA-223 overexpression (53).

MiRNA-16

Members of the miRNA-16 family function as tumor suppressors
in a number of cancers via the regulation of the cell apoptosis
pathway (54) and the cell cycle (55). In NK-cell lymphoma
cell lines and primary tissue, miRNA-16 was found to be
under expressed (56). MiRNA-16 and SAHA shared common

TABLE 1 | Summary of miRNAs and their target genes in NKTCL.

miRNA Targets References

Upregulation Downregulation

Overexpression of miRNAs in NKTCL

miRNA-21 PTEN, PDCD4 (23)

miRNA-155 FOXO3 SHIP1 (23, 33)

miRNA-223 PRDM1 (53)

miRNA-494 PTEN (39)

Under-expression of miRNAs in NKTCL

miRNA-150 BIM, TP53 PIK3AP1 (24)

miRNA-142 RICTOR (39)

miRNA-30b PRDM1 (57)

miRNA-15a MYB (58)

miRNA-148a CUL5 (59)

miRNA-16 CDKN1A (56)

MiRNA-146a TRAF6 (60)

therapeutic targets and induce senescence and apoptosis in
NKTCL. However, in Kitadate’s study, NK-cell lymphoma cell
lines with non-functional p53 (KHYG1) did not show senescence
caused by miRNA-16 or by SAHA. It has been confirmed that
miRNA-16 or SAHA induces apoptosis, downregulates survivin
and upregulates cleaved caspase-3 and CDKN1A (also known as
p21) (56). This finding suggests that miRNA-16 has the potential
to serve as a novel target in NKTCL treatment.

The miRNAs and their identified target genes are listed
in Table 1.

EBV-Encoded MiRNAs

Since NKTCL is an EBV associated lymphoma, researchers
illustrated that EBV infection promoted the progression from
a lesion into NKTCL (33, 61, 62) via the regulation of 44
microRNAs (59). The most common outcome of EBV infection
was viral latency, including type I, II and III (63). Latency
I was reported to only express characterized EBNA-1, while
latency II expressed EBNA-1 as well as LMP-1 and 2. Moreover,
latency III with B cell infection expressed all EBNAs and LMPs
(64). Furthermore, latency patterns were distinct in different
malignant subtypes due to the expression of subsets of the latent
genes (65, 66).

LMP-1, encoded by the BNLF-1 gene, is the principal EBV
oncoprotein and regulates the expression of cellular genes
that induce invasion, metastasis, cell cycle progression and
cellular transformation (63, 67, 68). LMP-1 mediates NF-κB and
PI3K/AKT activation in EBV-positive NKTCL cell lines and
inhibits cell apoptosis by promoting survivin expression (69–71).
In addition, LMP1 also regulates cell function through regulation
of the expression of other miRNAs; for instance, LMP1 inhibits
the cell cycle via the downregulation of miRNA-15a, which
inhibits MYB and cyclin D1 in NKTCL cells (58). In addition,
EBV-miRNA-BART9 upregulates LMP1 (72).

Various studies have attempted to determine the clinical
significance of miRNA-BARTs. In one study, the higher
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FIGURE 1 | The PI3K/AKT and cell cycle signaling pathway model of NKTCL. MiRNAs can influence almost every cellular behavior from transcription to translation by

diverse mechanisms including the cell cycle and the PI3K/AKT pathways, among others. All the miRNAs in this figure are upregulated in NKTCL sample, except

miRNA-150. This figure adapted from Chen et al. (39) and the appropriate copyright permissions has been obtained from the copyright holder of this work.

expression of miRNA-BART2-5p, miRNA-BART7-3p and
miRNA-BART13-3p led to a poorer prognosis in patients
with NKTCL (73). MiRNA-BART20-5p and miRNA-BART8
led to cell apoptosis via the inhibition of the IFN-γ-STAT1
pathway and the downregulation of miRNA-let7 in NKTCLs
(65). Additionally, miRNA-BART20-5p inhibited TP53 via
T-bet (74, 75), a member of the T-box family that involved
in tumor development (76). MiR-BART16 down-regulated
the sphingosin-1-phosphate receptor 1 (S1PR1), which
expressed in cells of lymphoid origin and named as CD363
antigen (59).

These studies have implications in the mechanisms
of lymphomagenesis, and future experiments should
be directed at the investigation of the role of EBV
miRNAs and their regulation of cellular targets. The
EBV-encoded miRNAs and their identified target
genes are listed in Table 2 and associations are shown
in Figure 2.

Other MiRNAs

In NK-cell lymphoma cell lines, various miRNAs function
in the regulation of tumor development (77), including

miRNA-101, miRNA-26a, miRNA-26b, miRNA-28-5, and
miRNA-363 (57).

MiRNA-20, miRNA-26a, miRNA-92, miRNA-103, and
miRNA-181 were shown to be overexpressed in patients of
NKTCL (23). Moreover, miRNA-424 (38) and miRNA-16
(56) were shown to be under-expressed in NK-cell lymphoma
cell lines and tumor tissue. The expression of miRNA-221
in the serum of NKTCL patients might be a prognostic
factor since high expression leads to a poorer overall survival
(OS) (78).

Furthermore, miRNAs regulate gene expression. For example,
the expression of PRDM1was directly downregulated bymiRNA-
30b in NKTCL (57). In addition, CUL5 is a target of deregulated
miRNA-148a in NKTCL (59).

MiRNA-15a was reported to inhibit the cell
cycle by blocking G1/S progression in NK-cell

lymphoma cell lines (58). Specifically, miRNA-
15a upregulated MYB and cyclin D1 which were
essential for the proliferation of NK-cell lymphoma
cells (58).

As a tumor suppressor, miRNA-34a (79) was found to be
hypermethylated in both myeloma and lymphoma cell lines
(80). Furthermore, in lymphoma primary patient samples,
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TABLE 2 | Summary of EBV-encoded miRNAs and their targets in NKTCL.

MiRNA Targets Targets function References

Upregulation Downregulation

miRNA-BART-20 T-bet Terminal maturation of NK cell (65)

miRNA-BART-8 STAT1 Induce apoptosis (65)

miRNA-BART-16 S1PR1 Induce cell-cell adhesion (59)

miRNA-BART-9 BNLF-1 (protein LMP-1) Induce cell proliferation in

NKTCL

(72)

FIGURE 2 | The association between EBV-miRNAs and targets in NKTCL. This figure adapted from Huang and Lin (65) and the appropriate copyright permission has

been obtained.

methylation of miRNA-34a was found to be more frequently in
NKTCL than in B- or T-cell lymphoma (80).

MiRNA-146a also exhibited hypermethylation in

NKTCL, and down-regulated its target gene TRAF6
and NF-κB signaling pathway (60). In clinical study,

low miRNA-146a expression was an independent poor
prognostic factor.

In summary, we found that dysregulation ofmiRNAsmight be
a key feature of the pathogenesis of NKTCL. Aberrant expression
of miRNAs might affect the AKT, NF-κB and cell cycle signaling
pathways to regulate cell function. The signaling pathway
model has been integrated in Figure 1. Hypermethylation
is another way by which cell function is regulated. These
findings provide new thought about the pathogenesis
of NKTCL.

LncRNAs

LncRNAs are a group of RNAs >200 nucleotides in

length that regulate gene expression by transcriptional
and posttranscriptional destabilization (81, 82). LncRNAs

have great potential value in the pathogenesis, diagnosis,

treatment and prognosis of malignant tumors
(83, 84).

Baytak et al. (85) conducted whole transcriptome sequencing

(WTS) analysis on NKTCL cases, normal NK-cells and NK-cell
lymphoma cell lines. They revealed 166 lncRNAs with more than

1.5-fold overexpression, such as RAB30-AS1, ARAP-AS1 and
PRMT5-AS1 which may have biological function on cell growth.

LncRNA ZNFX1 antisense RNA 1 (ZFAS1) transcribed
from the antisense gene ZNFX1 (86), was overexpressed in
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mammary gland while under-expressed in breast tumors (87).
However, ZFAS1 functioned as oncogene in various tumors,
such as glioma (88), colorectal cancer (89), Gastric cancer
(90), hepatocellular carcinoma (91) and ovarian cancer (92)
for the high expression in tumor tissues. Moreover, ZFAS1
also showed high expression in AML cell lines (93). LncRNA
ZFAS1 was observed to be upregulated in NKTCL and
further demonstrated 483 relevant genes (70 genes with strong
positive correlation, while 413 genes with strong negative
correlation). Overall, ZFAS1-correlated genes associated with
the upregulation of certain pathways, including non-sense-
mediated mRNA decay, NF-κB signaling, β-catenin independent
WNT signaling and p53-dependent apoptosis and the cell cycle
pathways (Figure 2) (85). In addition, lncRNA ZFAS1 regulates
p53 via invasion and metastasis related genes MDM2, and
p53 can further regulate the NF-κB, WNT, and NOTCH1
pathways (85).

LncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1), also known as nuclear-enriched
transcript 2 (NEAT2), is discovered as a predictive marker for
metastasis and survival in early-stage, non-small cell lung cancer
(94). The high expression of MALAT1 have been found in
various cancer types (95, 96) and predicted metastasis or poor
prognosis (97, 98). LncRNA MALAT1 was highly expressed
in NKTCL, but in the absence of expression, inferior OS is
observed. MALAT1 was important in sustaining PRC2-induced
H3K27me3, which led to the subsequent activation of BMI1
which predicted the clinically aggressive behaviors in NKTCL
(99, 100).

The functions and regulations of lncRNAs were not
isolated. Positive regulatory domain containing I (PRDM1),
which acted as a tumor suppressor gene, was silenced in
NKTCL as previously mentioned (7). PRDM1α regulated
212 lncRNAs (169 upregulation and 103 downregulation).
Among them, MIRNA-155HG and TERC may be an indirect
target of PRDM1 in NK-cell lymphoma cells. However,
biological functions of most lncRNAs regulated by PRDM1 in

NKTCL remained unknown, and further studies should involve
functional characterization (85).

CONCLUSION

With the development of next-generation sequencing and
bioinformatics, non-coding RNAs have shown promising value
in tumor research in recent years. However, the focus on B-cell
and T-cell lymphoma encompasses much more than NKTCL.
This article summarizes the function of significantly differentially
expressed hotspot non-coding RNAs that contribute to the
pathogenesis, diagnoses, treatment and prognosis of NKTCL.
The detailed mechanisms and the function of the non-
coding RNAs mentioned above still remain to be clarified.
Further connections among these non-coding RNAs can be
supplemented. Moreover, research on novel non-coding RNAs
such as piwi RNAs, circular RNAs and tiRNAs that are associated
with NKTCL is needed. Clinical research of thoroughly studied
non-coding RNAs could be performed and lead to the early

diagnoses of NKTCL and could be useful in drug resistance or
targeted therapy.
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