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Interleukin-17 (IL-17) has been shown to promote development of prostate, colon, skin,

lung, breast, and pancreatic cancer. The purpose of this study was to determine if IL-17

regulates MTA1 expression and its biological consequences. Human cervical cancer

HeLa and human prostate cancer DU-145 cell lines were used to test if IL-17 regulates

metastasis associated 1 (MTA1) mRNA and protein expression using quantitative reverse

transcription-polymerase chain reaction and Western blot analysis, respectively. Cell

migration and invasion were studied using wound healing assays and invasion chamber

assays. Thirty-four human cervical tissues were stained for IL-17 and MTA1 using

immunohistochemical staining. We found that IL-17 increased MTA1 mRNA and protein

expression in both cell lines. Cell migration was accelerated by IL-17, which was

abolished by knockdown of MTA1 expression with small interference RNA (siRNA).

Further, cell invasion was enhanced by IL-17, which was eliminated byMTA1 knockdown.

Human cervical intra-epithelial neoplasia (CIN) and cervical cancer tissues had increased

number of IL-17-positive cells andMTA1 expression compared to normal cervical tissues.

The number of IL-17-positive cells was positively correlated with MTA1 expression. These

findings demonstrate that IL-17 upregulates MTA1 mRNA and protein expression to

promote HeLa and DU-145 cell migration and invasion.
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INTRODUCTION

Yao et al. (1, 2) first identified interleukin-17 (IL-17, also named IL-17A) and its first receptor
IL-17 receptor A (IL-17RA) (3). IL-17 is produced by T helper 17 (TH17) cells, γδ T cells, and
other immune cells (4–6). Reddi’s lab subcloned IL-17 receptor C (IL-17RC) (7). IL-17RA and
IL-17RC form a heterodimer receptor complex for IL-17A and IL-17F (8–11). Steiner et al. (12)
reported that IL-17A and IL-17RA expression is increased in prostate cancer and Drake’s lab found
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increased TH17 cells in prostate cancer (13). Gupta’s lab found
IL-17-expressing macrophages and neutrophils in the lesions
of proliferative inflammatory atrophy (14)—a precursor to
prostatic intraepithelial neoplasia (PIN) and carcinoma (15).
Many independent research groups have shown that IL-17
promotes the development of colon (16–19), skin (20, 21), breast
(22), lung (23, 24), and pancreatic cancer (25). Our lab has
demonstrated that IL-17 promotes development of hormone-
naïve prostate cancer and castration-resistant prostate cancer
(CRPC) (26, 27).

IL-17 acts alone or synergizes with other stimuli to activate
expression of many genes, including cytokines [IL-6, IL-19, IL-
20, IL-24, tumor necrosis factor α (TNFα), and granulocyte-
colony stimulating factor (G-CSF)], chemokines [IL-8, C-X-C
motif ligand 1 (CXCL1), CXCL2, CXCL5, CXCL9, CXCL10,
C-C motif ligand 2 (CCL2), CCL7, and CCL20], matrix
metalloproteinase (MMP) 13, receptor activator of nuclear factor
kappa-B ligand (RANKL), and antimicrobial peptides (lipocalin
2, β-defensin-2, S100A7, and S100A8/9) (28). We previously
found that insulin and insulin-like growth factor 1 (IGF1)
enhanced IL-17-induced expression of Cxcl1, Ccl20, and Il-6
in mouse embryonic fibroblasts (29). Insulin and IGF1 also
acted with IL-17 to increase vascular cell adhesion molecule
1 (VCAM-1) expression in human umbilical vein endothelial
cells (HUVECs) (30). We have demonstrated elevated IL-17RC
expression in CRPC compared to androgen-dependent prostate
cancer and normal prostate (31–33). We found that in human
and rodent PIN lesions, IL-17RC levels are elevated to enhance
IL-17A-induced activation of nuclear factor- κB (NF-κB) and
extracellular signal-regulated kinase ½ (ERK1/2) pathways to
increase chemokine/cytokine expression (34). We showed that
insulin/IGF1 and IL-17 signaling pathways crosstalk via glycogen
synthase kinase 3 (GSK3), which can be blocked by melatonin
or pan-Akt inhibitor AZD5363 (29, 35). We revealed that GSK3
phosphorylates IL-17RA at T780 (36). We recently demonstrated
that IL-17 induces MMP7 to drive epithelial-to-mesenchymal
transition in the prostate (37). Most of these studies have been
focused on primary prostate cancer. Few studies have been
performed on the role of IL-17 in prostate cancer metastasis.
Using an allograft orthotopic mouse prostate cancer model, we
found that IL-17 treatment significantly increased metastasis rate
compared to the control group (38). Five of the 14 mice with
mouse prostate cancer cells co-injected with recombinant IL-17
presented metastases, whereas none of the 13 mice in the control
group without IL-17 treatment had any metastases. However, the
molecular mechanisms are not clear.

Metastasis-associated gene (MTA) refers to a family of cancer
progression-related genes, including MTA1, MTA1s, MTA-
ZG29P, MTA2, MTA3, and MTA3L (39). MTA1 is the first gene
found in this family, which has been shown to be over-expressed
in several human cancers, such as breast, stomach, and colorectal

Abbreviations: CIN, cervical intra-epithelial neoplasia; Ct, cycle threshold;

DMEM, Dulbecco’s Modified Eagle’s Medium; GAPDH, glyceraldehyde

3-phosphate dehydrogenase; IHC, immunohistochemical staining; IL-17,

Interleukin-17; IL-17A, Interleukin-17A; IL-17RC, Interleukin-17 receptor C;

MTA1, metastasis associated 1; siRNA, small interference RNA.

cancer (40). MTA1 gene has 21 exons spreading over a region
of about 51-kb in human genome. Alternative splicing from the
21 exons produces 20 transcripts, ranging from 416-base pairs to
2.9-kilobase pairs in length. However, open-reading frames are
present only in eight spliced transcripts that code six proteins and
two polypeptides and the remaining transcripts are non-coding
long RNAs some of which retain intron sequences (41). MTA1
protein interacts with histone deacetylase to form a nucleosome
remodeling histone deacetylase (NuRD) complex, which has
been shown to regulate oncogenesis (42, 43), angiogenesis
(44), and cancer progression of a variety of cancers (45–50).
MTA1 is considered as one of the most remarkable indicators
associated with cancer progression, aggressive phenotype, and
poor prognosis (49). A recent study found that MTA1 silencing
in human prostate cancer PC3M cells diminished formation of
bone metastases and impaired tumor growth in intracardiac and
subcutaneous prostate cancer xenografts, respectively (51). This
phenotype was attributed to reduced colony formation, invasion,
andmigration capabilities of MTA1 knockdown cells (51). MTA1
has been associated with the invasiveness of human prostate
cancer cells (52). We previously found that MTA1 expression
was decreased in Il-17rc-null mouse prostate tumors compared
to Il-17rc-expressing mouse prostate tumors (27). The purpose
of the present study was to determine if IL-17 regulates MTA1
expression and its biological consequences. We found that IL-17
promoted migration and invasion of human cancer cells through
upregulation of MTA1 expression.

MATERIALS AND METHODS

Cell Culture
Human prostate cancer cell line DU-145 and human cervical
cancer cell line HeLa were obtained from the American Type
Culture Collection (Manassas, VA, USA). DU-145 and HeLa
cell lines express IL-17RA and IL-17RC (31, 53). The cells
were routinely cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM; Caisson Laboratories, Inc., Smithfield, UT) in a
humidified 5% CO2 incubator at 37◦C. The medium contained
10% fetal bovine serum (FBS; Gemini Bio-Products, West
Sacramento, CA) without any antibiotics. For induction ofMTA1
expression, the cells were cultured in serum-free medium in
60-mm culture dishes and treated without or with 20 ng/ml
recombinant human IL-17A (Cat# 7955-IL-025/CF, Fisher
Scientific, Pittsburgh, PA) for 8, 16, 24, and 36 h. One group of
cells was treated with 10µg/ml cycloheximide (Fisher Scientific,
Pittsburgh, PA) after 24 h of IL-17A treatment and harvested at
36 h. In the siRNA knockdown experiments, the cells were first
transfected with 20 nM control siRNA (Cat# 4390844, Silencer R©

Select Negative Control siRNA, Fisher Scientific, Pittsburgh,
PA) or 20 nM siRNA targeting MTA1 (Cat# 4392422, Silencer R©

Select Pre-designed siRNA, Fisher Scientific, Pittsburgh, PA)
using Lipofectamine R© 2000 Transfection Reagent (Cat# 11668-
019, Invitrogen, Carlsbad, CA) according to the manufacturer’s
instructions. Twenty-four hours later, the cells were treated
without or with 20 ng/ml recombinant human IL-17A for 8, 16,
24, and 36 h.
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Western Blot Analysis
Proteins of the cells were extracted using
radioimmunoprecipitation assay (RIPA) lysis buffer and were
subjected to 10% sodium dodecyl sulfate -polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
fluoride (PVDF) membrane using TRANS-BLOT SD Semi-
dry Transfer Cell (Bio-Rad Laboratories, Hercules, CA). The
membrane was incubated in 5% non-fat dry milk diluted in 1 ×
Tris-buffered saline with 0.1% Tween 20 (TBS-T) buffer (25mM
Tris-HCl, 125mM sodium chloride, and 0.1% Tween 20) for 1 h
and probed with the indicated primary antibodies overnight.
Mouse anti-MTA1 monoclonal antibodies were purchased from
Santa Cruz Biotechnology, Inc. (Cat# sc-373765, Dallas, TX;
used at 1:100 dilution). Mouse anti-IκBα monoclonal antibodies
were obtained from Cell Signaling Technology, Inc. (Cat# 4814S,
Danvers, MA; used at 1:1,000 dilution). Rabbit anti-α/β-tubulin
monoclonal antibodies were also obtained from Cell Signaling
Technology (Cat# 2148; used at 1:1,000 dilution). Mouse
anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
monoclonal antibodies were purchased from Millipore (Cat#
2955484, Billerica, MA; used at 1:5,000 dilution). After washing
3 times with 1 × TBS-T buffer, the membrane was incubated
with IRDye 800CW or IRDye 680RD-conjugated secondary
antibodies at 1:5,000 dilution (goat anti-mouse antibodies, Cat#
c60107-06 or c40610-09; goat anti-rabbit antibodies, Cat# 41217-
03; both from LI-COR Biosciences, Inc., Lincoln, NE) at room
temperature for 1 h. The results were visualized and quantified
using an Odyssey Infrared Imager (LI-COR Biosciences, Inc.,
Lincoln, NE). For quantification, MTA1 signals were divided
by those of GAPDH to obtain the relative expression of MTA1
protein among the groups.

Quantitative Real-time Reverse
Transcription—Polymerase Chain Reaction
(qRT-PCR) Analysis
Total RNA was isolated from the cells treated without or with
20 ng/ml recombinant human IL-17A for 8, 16, 24, and 36 h,
using NucleoSpin RNA 250 preps Kit (MACHERY-NAGEL, Inc.,
Bethlehem, PA). First-strand cDNA synthesis was performed
using the PrimeScripttm RT reagent Kit (Cat# RR037A, Takara
Bio USA, Inc., Mountain View, CA). Quantitative real-time
PCR was performed on QuantStudio 3 instrument (Applied
Biosystems, Foster City, CA) using PowerUpTM SYBR Green
Master Mix kit (Applied Biosystems, Cat#A25741) following
the manufacturer’s instructions. The following reaction mixtures
were prepared in an optical plate (Cat# TCS0803, Bio-Rad
Laboratories, Inc.): 10 µl PowerUpTM SYBR Green Master Mix
(2X), 5µl forward and reverse primers (500 nM for each primer),
and 5 µl DNA template (approximately 10 ng) in nuclease-free
H2O. The plate was sealed with an optical adhesive cover (iCycler
iQ R© Optical tape, Cat#: 2239444, Bio-Rad Laboratories, Inc.) and
then centrifuged briefly to spin down the contents and eliminate
any air bubbles. The conditions for quantitative PCR reactions
were set up on QuantStudio 3 as following: one cycle of 50◦C for
2min, one cycle of 95◦C for 2min, and 40 cycles of 95◦C for 15 s
and 60◦C for 1min. At the end of the PCR reactions, the samples

were subjected to a melting analysis to confirm specificity of the
amplicons. The PCR primer sequences were: MTA1 forward: 5′-
GCAGCTGAAGCTGAGAGCAAGTTA-3′; MTA1 reverse: 5′-
CCTTGACGTTGTTGACGCTGA-3′; GAPDH forward: 5′-CCA
CTCCTCCACCTTTGAC-3′; GAPDH reverse: 5′-ACCCTGTTG
CTGTAGCCA-3′. The results were normalized by GAPDH levels
using the formula 1Ct (Cycle threshold) = Ct of target gene–Ct
of GAPDH. The fold change of mRNA level of each treatment
group was calculated as: 11Ct = 1Ct of target gene in the
treatment group–1Ct of target gene in the control group, and
fold change= 2−11Ct.

Wound Healing Assay
HeLa and DU-145 cells were cultured in DMEM supplemented
with 10% FBS in 60-mm tissue culture dishes until they reached
100% confluence as a monolayer. The monolayer was scratched
with a sterile 1,000-µl pipette tip across the center of each
dish. After scratching, the dishes were gently washed twice
with DMEM to remove the detached cells. The dishes were
replenished with serum-free medium. The control group was
treated with 0.1% bovine serum albumin (BSA) in phosphate-
buffered saline (PBS), while 20 ng/ml recombinant human IL-
17A (dissolved in 0.1% BSA in PBS) was added into the medium
of the treatment group. In siRNA knockdown experiments, the
cells were first transfected with 20 nM control siRNA or 20 nM
siRNA targeting MTA1 using Lipofectamine R© 2000 Transfection
Reagent as described above; 24 h later, the monolayer cells
were scratched and treated with 20 ng/ml recombinant human
IL-17A. Photomicrographs of the wounds were taken from
time zero and then every 24 h under an EVOS FL Auto
Microscope (Life Technologies Inc., Carlsbad, CA). Using ImageJ
software, horizontal gap distances at 5 points along each wound
were measured and averaged to represent the width of the
wound. Wound healing rate was calculated as (wound width
of time zero–that of each time point) ÷ wound width of time
zero× 100%.

Invasion Assay
Invasion assay was performed using Corning R© BioCoatTM

Matrigel R© Invasion Chambers (Corning Inc., Corning, NY)
following the manufacturer’s instructions. The cells were
first transfected with 20 nM control siRNA or 20 nM siRNA
targeting MTA1 using Lipofectamine R© 2000 Transfection
Reagent according to the manufacturer’s instructions; 24 h later,
approximately 2 × 105 cells were seeded in each upper chamber
in serum-free medium without or with 20 ng/ml recombinant
human IL-17A in triplicate wells per group, while the lower
chamber contained medium with 10% FBS. After 24 h, non-
invading cells were removed from the upper chamber with a
cotton swab; the cells invaded through the Matrigel R©-coated
porous membrane were fixed with methanol, stained with 0.5%
crystal violet, and counted under a microscope. For HeLa cells,
one picture per well under 100×magnification was taken, which
covered almost the entire porous membrane. For DU-145 cells,
pictures of 5 regions of interest (1 center and 4 corners) were
taken under 200 × magnification, because there were too many
cells to count on the whole membrane.

Frontiers in Oncology | www.frontiersin.org 3 June 2019 | Volume 9 | Article 546

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Guo et al. IL-17 Upregulates MTA1 in Cancer

FIGURE 1 | IL-17A induces MTA1 protein expression in human cancer cells. HeLa and DU-145 cells were treated with 20 ng/ml recombinant human IL-17A for the

indicated time points. (A,B) Representative Western blot analysis of MTA1 protein expression, using GAPDH levels as loading controls. (C,D) Relative expression of

MTA1 normalized by GAPDH levels; data represent mean ± standard deviation (SD, error bars) of 3 independent experiments; *p < 0.05 between the IL-17A-treated

group and the time zero (untreated control) group.

FIGURE 2 | IL-17A induces MTA1 mRNA expression in human cancer cells. HeLa and DU-145 cells were treated with 20 ng/ml recombinant human IL-17A for the

indicated time points. (A,B) qRT-PCR analysis of MTA1 mRNA expression; data represent mean ± standard deviation (SD, error bars) of 3 independent experiments;

*p < 0.05 between the IL-17A-treated group and the time zero (untreated control) group. (C,D) Representative Western blot analysis of protein expression; the cells

were treated with 20 ng/ml recombinant human IL-17A for 8–36 h; one group was treated with 10µg/ml cycloheximide (CHX) at 24 h and harvested at 36 h.

Immunohistochemical (IHC) Staining of
Human Cervical Tissues
The study was conducted in accordance with the Declaration of
Helsinki (revised in 2013). The use of archived and de-identified
human tissue specimens was approved by the Institutional

Review Board of Tulane University (Protocol #394164, approved
on November 25, 2015). Thirty-four human cervical tissue

specimens, including 5 cases of normal cervix, 5 cases of cervical

intra-epithelial neoplasia (CIN) I, 5 cases of CIN II, 5 cases of CIN
III, and 14 cases of cervical squamous carcinoma were previously
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FIGURE 3 | IL-17A promotes migration of human cancer cells. Confluent monolayer of HeLa and DU-145 cells was scratched to make a wound and then treated

without (control group) or with 20 ng/ml recombinant human IL-17A for the indicated time points. (A,C) Representative photomicrographs of the wounds; dotted lines

mark the front edges of migrating cells; scale bar, 400µm. (B,D) Wound healing rate was calculated as (wound width of time zero–that of each time point) ÷ wound

width of time zero × 100%; data represent mean ± standard deviation (SD, error bars) of 3 independent experiments; *p < 0.05 between the IL-17A-treated group

and the untreated control group.

collected during 2017 to 2018 and archived at Guangyuan First
People’s Hospital, Guangyuan, Sichuan Province, China. The 5
normal cervical tissues were obtained from patients (age 48–
52 years) undertaking hysterectomy due to uterine myomas;
15 CIN specimens were obtained from patients (age 34–49
years) who received cervical biopsies or conization therapies;
and 14 cervical cancer specimens were obtained from patients
(age 44–55 years) who received radical hysterectomy due to
cervical squamous carcinoma (stage Ib-IIa). Inclusion criteria
were: (1) patients with clear pathological diagnosis of the cervical
lesions; and (2) patients had signed informed consent prior to
the surgical procedures. Exclusion criteria were: (1) patients
with concurrent autoimmune disease, active or chronic infection,
cardiovascular disease, or connective tissue disease; or (2)
patients with a history of other malignant tumors; or (3) patients
who received immunosuppressive treatment, radiotherapy, or
chemotherapy prior to the surgical procedures. The specimens
were fixed with 10% formalin, embedded in paraffin blocks,
and cut into 4-µm thick tissue sections. All specimens had
been de-identified prior to being provided to the investigators.
IHC staining followed our previously published protocol (26,
36, 37). The primary antibodies used were: goat anti-human
IL-17/IL-17A polyclonal antibodies (1:40 dilution, Cat# AF-317-
NA, R&D systems, Inc., Minneapolis, MN) and mouse anti-
MTA1 monoclonal antibodies (1:25 dilution, Cat# sc-373765,
Santa Cruz Biotechnology, Inc., Dallas, TX). VECTASTAIN ABC
Kits and DAB Peroxidase Substrate Kit (Vector laboratories,

Inc., Burlingame, CA) were used according to the manufacturer’s
instructions. For IL-17 staining, 5 regions were randomly selected
and the number of IL-17-positive cells were counted in 5 high-
power (400x) fields under a microscope. For MTA1 staining, a
total score (proportion score + intensity score, range 0–8) was
graded according to the Allred scoring system (32, 54).

Statistical Analyses
Quantitative data are presented as the mean ± standard
deviation and compared using one-way analysis of variance
(ANOVA) followed by Student’s t-test. Correlation of IL-17-
positive cell number and MTA1 staining score was analyzed
with Pearson correlation analysis. Differences between the groups
were considered statistically significant when p < 0.05.

RESULTS

IL-17 Induces Expression of MTA1 at
mRNA and Protein Levels
We previously found that MTA1 expression was decreased in Il-
17rc-null mouse prostate tumors compared to Il-17rc-expressing
mouse prostate tumors (27). Therefore, we hypothesized that
MTA1 might be an IL-17-downstream target gene. To test this
hypothesis, we used two human cancer cell lines HeLa (human
cervical cancer cell line) and DU-145 (human prostate cancer
cell line). HeLa and DU-145 cells were treated with 20 ng/ml
recombinant human IL-17A for 8, 16, 24, and 36 h.MTA1 protein

Frontiers in Oncology | www.frontiersin.org 5 June 2019 | Volume 9 | Article 546

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Guo et al. IL-17 Upregulates MTA1 in Cancer

FIGURE 4 | IL-17A acts through MTA1 to promote migration of human cancer cells. HeLa and DU-145 cells were transfected with either control siRNA or siRNA

targeting MTA1. Confluent monolayer of both control siRNA and MTA1 siRNA groups was scratched to make a wound and then treated with 20 ng/ml recombinant

human IL-17A for the indicated time points. (A,C) Representative photomicrographs of the wounds; dotted lines mark the front edges of migrating cells; scale bar,

400µm. (B,D) Wound healing rate was calculated as (wound width of time zero–that of each time point) ÷ wound width of time zero × 100%; data represent mean ±

standard deviation (SD, error bars) of 3 independent experiments; *p < 0.05 between the MTA1 siRNA group and the control siRNA group.

levels were assessed with Western blot, using GAPDH as loading
control.We found that IL-17A inducedMTA1 protein expression
starting at 8 h through 36 h in HeLa cells (Figure 1A). Similarly,
we found that IL-17A induced MTA1 protein expression in DU-
145 cells, though at lower amplitudes from 8 to 24 h (Figure 1B).
After normalization based on GAPDH levels, we found that IL-
17A significantly induced MTA1 protein expression at 36 h in
both HeLa and DU-145 cells (Figures 1C,D).

To check if IL-17A induces MTA1 mRNA expression,
we similarly treated HeLa and DU-145 cells and performed
quantitative real-time reverse transcription—polymerase chain
reaction (qRT-PCR) analysis of MTA1 mRNA expression. We
found that IL-17A induced MTA1 mRNA expression in both
HeLa and DU-145 cells (Figures 2A,B). However, we observed
that the peak levels of MTA1 mRNA expression were at 16 h
after IL-17A treatment, whereas the peak levels of MTA1 protein
expression were at 36 h (Figures 1A,B). We speculated that this
difference might be caused by the fact that MTA1 protein is
relatively stable. To confirm our speculation, we added a group
of cells that were treated with 10µg/ml cycloheximide (CHX, an
inhibitor of protein translation) at 24 h after IL-17A treatment.
We found that CHX-treated group showed MTA1 protein levels
similar to the CHX-untreated group at 36 h in both HeLa and
DU-145 cells (Figures 2C,D). Similar findings were found with
GAPDH and tubulin proteins, two well-known stable proteins.

Yet, 10µg/ml CHX was able to reduce the levels of IκBα protein,
a well-known short-lived protein (Figures 2C,D), suggesting that
the CHX dosage was effective.

IL-17 Promotes Migration of Human
Cancer Cells
Since MTA1 has originally been found to be associated with
cancer metastasis, we investigated if IL-17 could promote cancer
cell migration using wound healing assays. HeLa and DU-145
cells were grown to complete confluence in 60-mm culture
dishes and a wound was made by scratching the monolayer
cells with a sterile pipette tip. The cells were either untreated
(control group) or treated with 20 ng/ml recombinant human
IL-17A. Photomicrographs were taken every 24 h up to 96 h.
We found that IL-17A treatment significantly accelerated the
wound healing of HeLa monolayer cells at 72 h, compared to
the control group (Figures 3A,B). Similarly, we found that IL-
17A treatment significantly accelerated the wound healing of
DU-145 monolayer cells at 96 h, compared to the control group
(Figures 3C,D).

To check if MTA1 plays any role in cancer cell migration,
we transfected the cells with either siRNA targeting MTA1 or
negative control siRNA and performed wound healing assays.
We found that MTA1 siRNA-transfection significantly inhibited
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FIGURE 5 | IL-17A acts through MTA1 to promote invasion of human cancer cells. HeLa and DU-145 cells were transfected with either control siRNA or siRNA

targeting MTA1. Invasion assays were performed using Matrigel®-coated invasion chambers. Approximately 2 x105 cells were seeded in each upper chamber in

serum-free medium without or with 20 ng/ml recombinant human IL-17A in triplicate wells per group, while the lower chamber contained medium with 10% FBS. After

24 h, non-invading cells were removed from the upper chamber; the cells invaded through the Matrigel®-coated porous membrane were fixed with methanol, stained

with 0.5% crystal violet, and counted under a microscope. (A) Western blot analyses of MTA1 expression in HeLa and DU-145 cells transfected with control siRNA

and MTA1 siRNA, with 20 ng/ml recombinant human IL-17A treatment for the indicated time. (B,D) Representative photomicrographs of the porous membrane with

stained cells; for HeLa cells, one picture per well under 100 × magnification (scale bar, 400µm) was taken, which covered almost the entire porous membrane, and

the inserted frame showed the stained cells under 200 × magnification; for DU-145 cells, one representative of 5 regions taken under 200 × magnification (scale bar,

200µm) was shown. (C,E) Number of the cells invaded through the porous membrane; data represent mean ± standard deviation (SD, error bars) of 3 independent

experiments; a, p < 0.01 between the control siRNA + IL-17A group and the control siRNA group; b, p < 0.01 between the MTA1 siRNA + IL-17A group and the

control siRNA + IL-17A group; there was no significant difference between the MTA1 siRNA + IL-17A group and the MTA1 siRNA group (p > 0.05).

IL-17A-inducedmigration of HeLa cells (Figures 4A,B) and DU-
145 cells (Figures 4C,D).

IL-17 Promotes Invasion of Human
Cancer Cells
Next, we checked if MTA1 plays any role in cancer cell invasion
using Corning R© BioCoatTM Matrigel R© Invasion Chambers.
HeLa and DU-145 cells were first transfected with either siRNA

targeting MTA1 or negative control siRNA. To confirm that
MTA1 expression was knocked down with the siRNA, we
performed Western blot analysis. We found that IL-17A induced
MTA1 expression in both HeLa and DU-145 cells transfected
with the control siRNA, however, transfection withMTA1 siRNA
reduced both the basal levels of and IL-17A-induced MTA1
expression (Figure 5A). Then, the cells were plated in the
upper chamber in serum-free medium with or without 20 ng/ml
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FIGURE 6 | Immunohistochemical staining of IL-17 and MTA1 protein in human cervical tissues. (A) Representative photomicrographs of MTA1 staining; scale bar,

200µm for 200 × magnification and 100µm for 400 × magnification. (B) Representative photomicrographs of IL-17 staining; scale bar, 200µm for 200 ×

magnification and 100µm for 400 × magnification. (C) Quantification of MTA1 staining using the Allred scoring system; data represent mean ± standard deviation

(SD, error bars); **p < 0.01 between CIN/cancer group and normal cervix group; a, p < 0.05 between cervical cancer group and CIN III group; (D) Quantification of

IL-17 staining by counting the number of IL-17-positive cells; data represent mean ± standard deviation (SD, error bars); **p < 0.01 between CIN/cancer group and

normal cervix group; b, p < 0.05 between cervical cancer group and CIN III group; (E) Correlation analysis of the number of IL-17-positive cells and MTA1 score; the

number of IL-17-positive cells was counted in the areas of 5 high-power (400x) fields and the average number represents each sample.
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recombinant human IL-17A, while the lower chamber contained
medium with 10% fetal bovine serum (FBS). Twenty-four hours
later, the cells invaded through the Matrigel R©-coated porous
membrane were stained with 0.5% crystal violet and counted. We
found that IL-17A increased invasion of HeLa cells transfected
with control siRNA, whereas IL-17A failed to increase invasion of
HeLa cells transfected withMTA1 siRNA (Figures 5B,C). Similar
findings were obtained in DU-145 cells (Figures 5D,E).

IL-17A-Positive Cell Number Correlates
With MTA1 Expression in Human
Cervical Tissues
To check if our in vitro findings might have any relevance in
human diseases, we examined IL-17A and MTA1 expression in
human cervical tissue specimens, including 5 cases of normal
cervix, 5 cases of cervical intra-epithelial neoplasia (CIN) I, 5
cases of CIN II, 5 cases of CIN III, and 14 cases of cervical
squamous carcinoma. Immunohistochemical staining (IHC) was
performed. We found little MTA1 staining and few IL-17A-
positive cells in normal cervical tissues, however, MTA1 staining
and number of IL-17A-positive cells were increased in CIN
and cervical cancer tissues (Figures 6A,B). MTA1 staining was
quantified using the Allred scoring system (54). We found that
MTA1 staining was significantly increased in CIN and cancer
tissues compared to normal cervical tissues (Figure 6C). There
was no significant difference among CIN I to III, but MTA1
staining in cervical cancer was significantly increased compared
to CIN I to III (Figure 6C). Likewise, we found that the number
of IL-17A-positive cells was significantly increased in CIN and
cancer tissues compared to normal cervical tissues (Figure 6D).
There was no significant difference among CIN I to III, but
the number of IL-17A-positive cells in cervical cancer was
significantly increased compared to CIN I to III (Figure 6D).
Given the similarity of the patterns of expression between IL-
17A and MTA1, we did correlation analysis and found that the
number of IL-17A-positive cells was positively correlated with
MTA1 staining (Figure 6E).

DISCUSSION

In the present study, we found that IL-17 induced mRNA and
protein expression of MTA1 in human HeLa and DU-145 cancer
cells. To the best of our knowledge, this is the first time that
MTA1 has been found to be an IL-17 target gene. We also
found that MTA1 was responsible for IL-17-induced migration
and invasion of HeLa and DU-145 cells, as MTA1 knockdown
abolished IL-17-induced migration and invasion of the cancer
cells. Our findings are in consistence with the previous report in
regard to MTA1’s role in cell migration and invasion. Of note,
our wound healing assays were performed in a time-frame of 24–
96 h, thus it is reasonable to suspect that cell proliferation might
be a factor in the wound closure. However, we and others have
shown that IL-17 does not directly affect cell proliferation in vitro
(34, 55), thus the rates of cell proliferation in the control group
and IL-17-treated group are comparable. Other studies have
shown that MTA1 expression is correlated with prostate cancer

progression (56), angiogenesis (52), and metastasis (57). Given
that we have previously shown that IL-17 promotes development
of prostate cancer (26), we reason that IL-17 may at least partially
act through upregulating MTA1 to promote prostate cancer
formation based on the findings from the present study.

A previous study has found that IL-17 was expressed by
neutrophils, mast cells, innate lymphoid cells, and TH17 cells
in human cervical cancer (58). Another study found that IL-17
levels in cervical tissue homogenates of CIN and cervical cancer
were significantly higher than that in normal cervical tissue
homogenate (59). MTA1 expression level has been associated
with migration and invasion of cervical cancer cells (60). In
the present study, we found that IL-17-induced migration and
invasion of HeLa cells was dependent on MTA1 expression
as MTA1 knockdown abolished IL-17-induced migration and
invasion. In the human cervical specimens, we found that the
number of IL-17-positive cells was positively correlated with
MTA1 expression, suggesting that increased IL-17 expression
in CIN and cervical cancer tissues may upregulate MTA1
expression, which facilitates neoplastic cell migration and
invasion. A limitation of the present study is that the identity
of the IL-17-positive cells requires further experiments. Double
staining of IL-17 and MTA-1 was not performed because it is
believed that IL-17 was expressed by immune cells whereasMTA-
1 was expressed by epithelial cells. Another limitation of the
present study is that other MTA family members are not tested,
thus it is unknown if IL-17’s effect is unique toMTA1, which shall
be examined in future studies.

In conclusion, the present study shows that IL-17 upregulates
MTA1 mRNA and protein expression to promote HeLa and
DU-145 cell migration and invasion. This new function of
IL-17 may play a role in development of invasive cervical
cancer and prostate cancer. Future studies shall explore whether
IL-17 promotes cancer metastasis through upregulation of
MTA1 expression.
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