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Background: In this study, publicly datasets with organs at risk (OAR) structures were

used as reference data to compare the differences of several observers. Convolutional

neural network (CNN)-based auto-contouring was also used in the analysis. We

evaluated the variations among observers and the effect of CNN-based auto-contouring

in clinical applications.

Materials and methods: A total of 60 publicly available lung cancer CT with

structures were used; 48 cases were used for training, and the other 12 cases were

used for testing. The structures of the datasets were used as reference data. Three

observers and a CNN-based program performed contouring for 12 testing cases, and

the 3D dice similarity coefficient (DSC) and mean surface distance (MSD) were used to

evaluate differences from the reference data. The three observers edited the CNN-based

contours, and the results were compared to those of manual contouring. A value of

P<0.05 was considered statistically significant.

Results: Compared to the reference data, no statistically significant differences were

observed for the DSCs and MSDs among the manual contouring performed by the three

observers at the same institution for the heart, esophagus, spinal cord, and left and right

lungs. The 95% confidence interval (CI) and P-values of the CNN-based auto-contouring

results comparing to the manual results for the heart, esophagus, spinal cord, and left

and right lungs were as follows: the DSCs were CNN vs. A: 0.914∼0.939(P = 0.004),

0.746∼0.808(P = 0.002), 0.866∼0.887(P = 0.136), 0.952∼0.966(P = 0.158) and

0.960∼0.972 (P = 0.136); CNN vs. B: 0.913∼0.936 (P = 0.002), 0.745∼0.807

(P = 0.005), 0.864∼0.894 (P = 0.239), 0.952∼0.964 (P = 0.308), and 0.959∼0.971

(P = 0.272); and CNN vs. C: 0.912∼0.933 (P = 0.004), 0.748∼0.804(P = 0.002),

0.867∼0.890 (P = 0.530), 0.952∼0.964 (P = 0.308), and 0.958∼0.970 (P = 0.480),

respectively. The P-values of MSDs are similar to DSCs. The P-values of heart and

esophagus is smaller than 0.05. No significant differences were found between the edited

CNN-based auto-contouring results and the manual results.
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Conclusion: For the spinal cord, both lungs, no statistically significant differences

were found between CNN-based auto-contouring and manual contouring. Further

modifications to contouring of the heart and esophagus are necessary. Overall,

editing based on CNN-based auto-contouring can effectively shorten the contouring

time without affecting the results. CNNs have considerable potential for automatic

contouring applications.

Keywords: contour variation, deep convolutional neural network, organs at risk, auto-contouring, lung cancer

INTRODUCTION

The correct contouring of organs at risk (OARs) and target
volumes is important for ensuring radiation quality during
radiation treatment planning (RTP). Studies have shown that
the dosimetric impact of the variation in the contouring of
targets and OARs can be significant depending on the degree
of variation and the plan dose gradient (1, 2). Differences in
structure delineation impact DVH calculation, tumor control
probability (TCP), and normal tissue complication probability
(NTCP). The accuracy of primary gross tumor contouring
could have a positive impact on tumor control and patient
survival (3–5). Interobserver variation in the delineation of OARs
primarily originates from various subjective interpretations of
organ boundaries and objective contouring variation (6, 7).
Reproducibility in the delineation of tumor and normal tissues
is crucial for optimal treatment quality and outcomes (8).
Variations in contouring have a direct impact on the quality
and evaluation of RTP, especially for dose distribution of OARs
(2). Intensity-modulated radiotherapy (IMRT) is a key treatment
for lung cancer, particularly for patients with advanced stages
(III and IV) (9). Cui Y et al. reported that the planned target
volume (PTV) showed large variation among institutions. The
PTV coverage of institutions dramatically decreased when re-
evaluated using the consensus PTV contour (10). E.M. Gore et al.
evaluated five thoracic radiation oncologists who collectively
contoured cardiac structures for each available case, guided by
a common atlas. The defined anatomic structures were the
pericardium (P), ventricles (V), atria (A) and coronary spaces
(CS). Large variation was found among observers, creating
uncertainty regarding the dose delivered to OARs (11).

Standardized guidelines and anatomic atlases have been used
to reduce interobserver variation and subjective diversity in
clinical practice. The use of knowledge-based auto-contouring
software, including atlas-based methods, has gained popularity
because it is clinically acceptable, saves time and improves the
consistency of contours created by various observers (1, 12–14).
Rapid development has recently occurred for deep-learning
methods, especially high-accuracy deep convolutional neural
networks (CNNs), which can be used for computer vision, image
recognition, and feature extraction (15–17). Neural networks are
starting to be used for auxiliary diagnosis of medical images
and contouring based on CT images (18, 19). Nevertheless, few
studies have focused on the examination and comparison of the
clinical use of neural networks regarding multiple OARs in CT
images of lung cancer in RTP, particularly with respect to the

following three questions: 1) Is there any difference between the
results of CNN-based contouring and observer contouring? If so,
which organs are different? 2) In clinical use, can interobserver
variation and contouring time be reduced by editing the CNN-
based auto-contouring results? 3) Based on these data, can CNN-
based auto-contouring for OARs achieve an acceptable level for
clinical use?

Datasets provided by the American Association of Physicists
in Medicine (AAPM) in the thoracic auto-segmentation
challenge were used as reference data. Variations among
observers and the CNN and the clinical impact of editing based
on CNN auto-contouring were evaluated.

MATERIALS AND METHODS

Datasets
Publicly available lung cancer datasets were provided by AAPM
for the thoracic auto-segmentation challenge in 2017 (20–22).
The datasets were provided by three institutions: MD Anderson
Cancer Center (MDACC), Memorial Sloan-Kettering Cancer
Center (MSKCC) and the MAASTRO clinic. Each case had a
CT volume and a reference contour. The contours were checked
for quality and edited to adhere to the RTOG 1106 contouring
guidelines (20). The OARs included heart, esophagus, spinal
cord, left lung and right lung. Each image had 512 × 512 pixels
and a layer thickness of 1.25–3mm. There were 115–214 slices
per case. The contours provided by the public datasets were
used as the standards in the following analysis and the labeled
data. A total of 60 cases were divided randomly into two groups,
including a group of 48 cases for CNN training and a group of 12
cases for testing and evaluation.

CNN-Based Auto-Contouring
A CNN is a specific type of multilevel perceptron architecture
that can make predictions regarding an image. The largest
difference between image contouring and image classification is
that, in image contouring, the category of an object present in
the image has to be identified, and the boundary of the object
has to be depicted pixel by pixel (23, 24). The U–net architecture
was first designed for biomedical image segmentation (25). The
encoder gradually reduces the number of spatial dimensions and
identifies the features of the image, while the decoder gradually
modifies the details and spatial dimensions of the object and
determines its boundary on a pixel-by-pixel basis. By considering
that the volumes of the OARs are different in the thoracic region,
DeepLabv3+ architecture combines the advantages of spatial
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pyramid pooling modules and encode-decoder structures. It uses
atrous convolutions and atrous spatial pyramid pooling (ASPP)
as the encoder for the segmentation of objects at multiple scales,
and it uses a bilinear upsampling decoder module to refine the
segmentation results, especially along the object boundaries (26).
In the last layer, a 1 × 1 convolution with a softmax activation
function reduces the number of feature maps to the number
of labels.

Image Preprocessing and CNN Training
To effectively increase the number of training samples, the
training data were shuffled, and the following random processing
tasks were performed during training: 1) each CT image was
randomly cropped to regions of interest (ROIs) of 256 × 256
(columns × rows) pixels; the randomly cropped ROIs could
overlap, but there was at least one labeled pixel in each ROI; and
2) the HU value was randomly shifted by± 40 HU for each pixel.

To highlight soft tissue, bone, and spinal cord tissue, a
window-level transformation was applied in which each original
slice was transformed using a soft-tissue window (window width:
350; window level: 40), a bone window (window width: 1000;
window level: 400), and a brain window (window width: 100;
window level: 50) to generate three new images, and then, these
images were integrated with the original image as an additional
channel. The input size of the CNN was 256× 256× 4 (columns
× rows× channels).

The training process requires automatic segmentation to
be performed simultaneously for multiple organs that vary in
size. Therefore, during the training process, the convergence
rates vary. The class rebalancing properties of the generalized
dice overlap, which is a recognized metric for segmentation
assessment and a robust and accurate deep-learning loss function
for unbalanced tasks (27). Adam optimizers were used to train
the CNN, and the learning rate was 0.001. The following default
values provided in the original paper were used for the other
parameters: beta_1 = 0.9, beta_2 = 0.999, and epsilon = 1e−8
(28). The training batch size was 2, and the models were trained
for 16 epochs.

Interobserver Comparison of Contouring
To compare the differences among observers, 12 test cases were
manually contoured by three observers. Observer A and observer
B were experienced senior radiation oncologists specializing in
the thoracic region with more than 10 years of work experience.
Observer C was a dosimetrist with 6 years of work experience.
The original structures of the test cases were deleted, and the
three observers independently contoured the CT images using
RTOG 1106 OAR contouring guidelines. Manual contouring
was performed using Monaco (Elekta AB, Stockholm, Sweden).
The observers were not shown the contours produced by the
other observers.

Additionally, to evaluate whether the errors of the auto-
contouring based on CNN lie into the variability of the experts,
CNN-based auto-contouring was used as observer D and
compared with the results of the three other observers.

Using the original structure of the test case as the reference
data, the four contouring results (three manual and one

automatic) were compared and analyzed in terms of the
significant differences among the observers.

Edited CNN-Based Contouring
The original structures of the test cases were deleted, and auto-
contouring was performed on the test cases by the CNN. To
minimize recall bias, the three observers independently reviewed
and edited the final multisubject auto-contouring results of the
OARs using consensus guidelines at a minimum of 1 month after
manual contouring. The edited results were compared with the
reference data for analysis.

Quantitative and Statistical Analyses
Two indicators were used as evaluation criteria in the 3D
region: the dice similarity coefficient (DSC) and the mean surface
distance (MSD).

The DSC is commonly used to assess the degree of overlap
between two structures in medical images (29). A higher level of
overlap between two structures is reflected by a greater DSC. The
DSC (0 ≤ DSC ≤ 1) is defined as follows:

DSC =
2 (V1 ∩ V2)

V1 + V2
(1)

where V1 is the volume of the reference structure and V2 is the
volume of the comparison structure.

The formula for the MSD is:

dH,avg (V1,V2) =
EdH,avg (V1,V2) + EdH,avg (V2,V1)

2
(2)

where EdH,avg (V1,V2) = 1
|V1|

∑

x∈V1

min
y∈V2

d
(

x, y
)

, EdH,avg (V2,V1) =

1
|V2|

∑

y∈V2

min
x∈V1

d
(

y, x
)

, and x and y are points belonging to

different structures. d(x,y) is the distance between x and y.
Statistical analysis was performed on the contouring results of

the observers using the ranked Wilcoxon test. All analyses were
performed using SPSS version 24.0 (SPSS, Chicago, IL, USA). A
value of P < 0.05 was considered statistically significant.

RESULTS

Comparison of Contouring Between
Observers
Table 1 lists the 95% confidence interval (CI) and P-values for
the statistical analysis of the DSCs for the OARs using pairwise
comparisons among the observers. Except for the heart and
esophagus, which were significantly different between observer
D and observers A, B, and C (P < 0.05), no significant differences
were found among observers for the other OARs. Table 2 lists
the 95% CI and P-values for statistical analysis of the MSDs
for OARs for pairwise comparisons among observers. Similar to
the DSC results, significant differences were observed between
observer D and observers A, B, and C only for the heart and
esophagus (P < 0.05). The mean DSCs of the observers for the
heart, esophagus, spinal cord, and left and right lungs met the
commonly accepted threshold value for the DSC (DSC ≥ 0.7)
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TABLE 1 | 95% CI and P-value of Wilcoxon signed rank test comparing the DSC results generated by the individual observers.

Heart Esophagus Spinal cord Lung_L Lung_R

95% CI P 95% CI P 95% CI P 95% CI P 95% CI P

A vs. B 0.937∼0.947 0.937 0.794∼0.843 0.754 0.858∼0.890 0.937 0.954∼0.968 0.814 0.965∼0.974 0.239

A vs. C 0.934∼0.946 0.530 0.798∼0.838 0.695 0.861∼0.888 0.814 0.953∼0.968 0.308 0.964∼0.974 0.117

B vs. C 0.933∼0.946 0.388 0.797∼0.838 0.754 0.860∼0.892 0.638 0.953∼0.967 0.754 0.963∼0.973 0.530

A vs. D 0.914-0.939 0.004 0.746-0.808 0.002 0.866-0.887 0.136 0.952-0.966 0.158 0.960-0.972 0.136

B vs. D 0.913-0.936 0.002 0.745-0.807 0.005 0.864-0.894 0.239 0.952-0.964 0.308 0.959-0.971 0.272

C vs. D 0.912-0.933 0.004 0.748-0.804 0.002 0.867-0.890 0.530 0.952∼0.964 0.308 0.958-0.970 0.480

A, B, and C are the three observers, D is the CNN-based auto-contouring.

TABLE 2 | 95% CI and P-value of Wilcoxon signed rank test comparing the MSD results generated by individual observers.

Heart Esophagus Spinal cord Lung_L Lung_R

95% CI P 95% CI P 95% CI P 95% CI P 95% CI P

A vs. B 1.41∼1.75 0.937 0.85∼1.64 0.480 0.67∼0.85 0.638 0.95∼1.52 0.754 0.98∼1.52 0.754

A vs. C 1.50∼1.93 0.182 0.91∼1.55 0.480 0.72∼0.87 0.433 0.99∼1.55 0.480 1.02∼1.50 0.209

B vs. C 1.52∼1.96 0.158 0.91∼1.56 0.272 0.68∼0.88 0.530 1.03∼1.53 0.308 1.02∼1.50 0.480

A vs. D 1.78-2.79 0.003 1.19-1.88 0.034 0.72-0.85 0.530 1.02-1.79 0.071 1.07-1.73 0.158

B vs. D 1.81-2.81 0.002 1.19-1.89 0.034 0.68-0.86 0.937 1.06-1.78 0.433 1.08-1.73 0.272

C vs. D 1.96-2.93 0.010 1.26-1.79 0.019 0.73-0.88 0.583 1.10-1.81 0.875 1.10-1.71 0.272

A, B and C are the three observers, D is the CNN-based auto-contouring.

(13, 14). The mean ± deviation of the DSC and MSD values for
all observers compared to the reference data for the 12 test cases
is listed in the Supplementary Material.

Observer Editing of CNN-Based
Contouring
Tables 3, 4 provide the 95% CI and P-values for the statistical
analysis of the differences among manual contouring by the
three observers and the edited contouring based on contours
generated by the CNN. No statistically significant differences
were found between independent manual contouring and the
edited contouring for each OAR. However, the time required
to edit the contours was reduced from 40–50min to 15–20min,
effectively shortening the contouring time. Themean± deviation
of DSCs and MSDs for the CNN-based structures edited by
the three observers with the reference data is listed in the
Supplementary Material.

DISCUSSION

In this study, based on publicly available lung cancer datasets
provided by AAPM, CNN-based auto-contouring was used as
an observer (observer D) and compared to manual contouring
performed by three separate observers. The differences among
observers were analyzed for structures in publicly available
datasets, which were used as the reference data. We found that,
if the clinically acceptable level (DSC ≥ 0.7) was used as the
standard (13, 14), the average DSCs of the heart, esophagus,

spinal cord, and left and right lungs for the observers (including
CNN auto-contouring) met the standard. However, for RTP,
attention is focused on the difference in dosimetry parameters
for various structures. Yunfeng Cui et al. (10) reported that, for
non-small-cell lung cancer (NSCLC), the dosimetric impact of
the variation of contouring OARs is dependent on the proximity
of the OAR to the target and the dose gradient in the OAR region.
OAR dosimetry was not highly affected by contouring in the
observed variation range in their report.

For the spinal cord and left and right lungs, in the
comparison with the reference data, the DSCs and MSDs
were not significantly different between the results of CNN
auto-contouring and the manual contouring of other observers
because these three OARs have high contrast differences on CT,
and their boundaries can be clearly identified. For the heart, most
of the regional boundaries were clear on CT, and the average
DSCs obtained by the four observers were >0.9. However, the
boundaries of the starting and ending positions of the heart are
not clear. The superior aspect begins at the level of the inferior
aspect of the pulmonary artery. The HU value of the end position
of the heart is close to those of the mediastinum and liver.
Therefore, a significant difference was observed between CNN-
based auto-contouring and manual contouring. Compared to
those of manual contouring, the average DSC was reduced by
0.04 and the MSD was increased by 2.0mm in CNN-based auto-
contouring. Due to the poor soft-tissue contrast on CT images,
the indistinct boundary of the esophagus due to surrounding soft
tissues, and its irregular shape, both the DSCs andMSDs of CNN-
based auto-contouring were significantly different from those
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TABLE 3 | 95% CI and P-value of Wilcoxon signed rank test comparing the DSCs generated by the manual method to those of the edited method for the individual

observers.

Heart Esophagus Spinal cord Lung_L Lung_R

95% CI P 95% CI P 95% CI P 95% CI P 95% CI P

A 0.937∼0.948 0.695 0.797∼0.838 0.347 0.862∼0.886 0.638 0.953∼0.968 0.754 0.965∼0.974 0.754

B 0.936∼0.947 0.815 0.795∼0.8374 0.638 0.865∼0.8973 0.347 0.954∼0.967 0.695 0.961∼0.971 0.239

C 0.931∼0.945 0.754 0.801∼0.831 0.136 0.867∼0.890 0.594 0.953∼0.967 0.875 0.962∼0.972 0.875

TABLE 4 | 95% CI and P-value of Wilcoxon signed rank test comparing the MSDs generated by the manual method to those of the edited method for the individual

observers.

Heart Esophagus Spinal cord Lung_L Lung_R

95% CI P 95% CI P 95% CI P 95% CI P 95% CI P

A 1.44∼1.83 0.530 0.92∼1.59 0.239 0.73∼0.87 0.583 0.95∼1.60 0.209 1.02∼1.46 0.695

B 1.47∼1.82 0.754 0.93∼1.61 0.239 0.66∼0.86 0.814 1.00∼1.50 0.480 1.04∼1.57 0.182

C 1.62∼2.11 0.638 0.95∼1.42 0.272 0.71∼0.860 0.314 1.01∼1.55 0.530 1.07∼1.46 0.695

of manual contouring. The average DSC was reduced by 0.08,
and the MSD was increased by 0.59mm. It is possible that the
48 cases used for training did not include patients with various
esophageal shape changes and density variations. Therefore, the
use of more uniform standard structures as training data may
improve the results.

For the heart, esophagus, spinal cord, and left and right lungs,
using the same standardized guidelines, no statistically significant
differences were observed between the reference data and the
three observers for the DSCs and MSDs. Dawn C. (30) reported
that the magnitude of the discrepancies did not appear to be
correlated with the experience of the dosimetrist for the heart,
esophagus and spinal cord.

In the study, we found that using CNN-based contouring
as a first pass for manual segmentation can increase the work
efficiency. For RTP, precise delineation of OARs is a time-
consuming process, especially because some OARs are difficult
to differentiate from the other structures. On some CT slices,
even experts have difficulties reliably defining boundaries (such
as the esophagus), which leads to a tedious interpretation of
CT findings and makes the process time-consuming and highly
prone to interobserver variability. Some studies have shown
that user editing of contours autogenerated by software is a
viable strategy for reducing the contouring time of OARs while
conforming to local clinical standards (18, 31). In this study,
when editing CNN-based contours, the time could be reduced
to 15–20min on average. More importantly, no significant
differences were found in the results of manual contouring
and edited contouring. Therefore, adjustment of the results
generated by a CNN can save the time required for OAR
contouring while maintaining the accuracy and consistency
of the contours. Nevertheless, the results presented in this
study did not show that interobserver variation was reduced
by editing CNN-based auto-contouring results. Unlike multi-
institutional comparisons, the results presented in this study
were generated by observers at the same institution who

follow the same clinical contouring practices and have similar
subjective interpretations of organ boundaries. Yunfeng Cui
et al. (10) reported that a segmentation atlas improved the
contour agreement for the esophagus and heart in a multi-
institutional preclinical trial planning study. In a future study,
multi-institutional observers should be included to determine the
areas of agreement. Further investigation is needed to determine
whether auto-contouring methods as described in this study
could potentially reduce the interinstitutional observer variability
for OARs.

This study is a preliminary clinical study on the examination
and comparison of the clinical use of neural networks regarding
multiple OARs in CT images of lung cancer in RTP. The total
size of the data was limited to 60 cases, which were split for
training and testing. The training data size would limit the CNN
performance. However, assembling a large well-labeled dataset
with consistent standards is very difficult. We hope to have
higher quality data in the future. To effectively increase the
number of training samples, the training data were shuffled, and
random processing tasks were performed during training. These
image generator preprocessing tasks can reduce the training
difficulty caused by having too few samples, reduce model
overfitting and increase the stability of the model. The results are
statistically significant.

CONCLUSIONS

In this study, publicly available lung cancer datasets were used
as reference data. We compared and analyzed the differences
between manual contouring by several observers and CNN-
based auto-contouring for OARs. For the spinal cord and
left and right lungs, no statistically significant differences
were found between CNN-based auto-contouring and manual
contouring. Further modifications to the heart and esophagus
were necessary. Overall, editing CNN-based auto-contouring
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results can effectively shorten the contouring time while ensuring
contouring quality.
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