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Background: Treatment effectiveness and overall prognosis for glioma patients depend

heavily on the genetic and epigenetic factors in each individual tumor. However,

intra-tumoral genetic heterogeneity is known to exist and needs to be managed.

Currently, evidence for genetic changes varying spatially within the tumor is qualitative,

and quantitative data is lacking. We hypothesized that a greater genetic diversity or

“genetic distance” would be observed for distinct tumor samples taken with larger

physical distances between them.

Methods: Stereotactic biopsies were obtained from untreated primary glioma patients

as part of a clinical trial between 2011 and 2016, with at least one biopsy pair collected in

each case. The physical (Euclidean) distance between biopsy sites was determined using

coordinates from imaging studies. The tissue samples underwent whole exome DNA

sequencing and epigenetic methylation profiling and genomic distances were defined in

three separate ways derived from differences in number of genes, copy number variations

(CNV), and methylation profiles.

Results: Of the 31 patients recruited to the trial, 23 were included in DNA methylation

analysis, for a total of 71 tissue samples (14 female, 9 male patients, age range 21–80).

Samples from an 8 patient subset of the 23 evaluated patients were further included

in whole exome and copy number variation analysis. Physical and genomic distances

were found to be independently and positively correlated for each of the three genomic

distance measures. The correlation coefficients were 0.63, 0.65, and 0.35, respectively

for (a) gene level mutations, (b) copy number variation, and (c) methylation status. We

also derived quantitative linear relationships between physical and genomic distances.
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Conclusion: Primary brain tumors are genetically heterogeneous, and the physical

distance within a given glioma correlates to genomic distance using multiple orthogonal

genomic assessments. These data should be helpful in the clinical diagnostic and

therapeutic management of glioma, for example by: managing sampling error, and

estimating genetic heterogeneity using simple imaging inputs.

Keywords: glioma, genomics, epigenetics, stereotactic biopsy, medical image analysis, radiomics, imaging

genomics, radiologic-pathologic correlation

INTRODUCTION

Gliomas are thought to be genetically heterogeneous within
a single specimen, as manifested by spatial morphological
diversity observed on imaging. Genetic analyses are increasingly
important in the delineation of glioma subgroups with distinct
clinical behavior, as evidenced by the strong influence of genomic
classifiers in the WHO 2016 grading system (1). Previous work
has shown that biopsies taken from non-representative regions of
tumor can produce errors in histopathological grading (2), and
while modern image guidance may improve histopathological
accuracy (3, 4), there are strong suggestions from the literature
that genetic heterogeneity may also be underrepresented by
standard surgical sampling (5, 6). Additionally, we know
from work in other tumors that genomic signatures can vary
depending on regional sampling (7).

If, therefore, molecular heterogeneity varies as a function of
location in space, then it is reasonable to hypothesize that such
variability might correlate with physical (Euclidean) distance
between biopsy sites. A formal relationship between Euclidean
and molecular distance per se has not (to our knowledge) been
described for glioma. In this study, we seek to address this
gap in knowledge, both qualitatively and with a quantitative
statistical assessment.

To do so, we obtained multiple sets of stereotactic biopsies
in previously untreated glioma patients, carefully noted the
physical coordinates of each sample, and calculated the Euclidean
distances between each pair of samples within a single tumor.
Multidimensional genomic analysis was then performed on each
sample, and distinct measures of genomic distance were derived
from: (1) mutation number, (2) copy number variation, and (3)
the extent of CpG island methylation. We found that in each
case, meaningful and positive correlations were present between
Euclidean and genetic distance.

METHODS

Biopsy Collection
Our study retrospectively analyzed glioma tissue samples
collected as part of an IRB approved, HIPAA-compliant clinical
trial protocol (NCT03458676). All subjects gave written informed
consent in accordance with the Declaration of Helsinki. Biopsies
were collected from previously untreated adult (>18 years
old) patients with primary glioma immediately prior to tumor
resection. Each patient underwent pre-surgical MRI within
3 days prior to craniotomy. During surgery, two or more
image-guided biopsies were collected from each patient. The

biopsy locations were chosen based on one or more findings
in pre-operative MRI including contrast enhancement, reduced
diffusivity, or increased cerebral blood flow. This approach
mimics clinical workflow and targets areas likely to harbor
malignant tumor tissue. Samples were collected using either a
side-cutting, Nashold-type, image-guided biopsy needle (0.9mm
width and 10mm side port) or by image-registered surgical
biopsy forceps based on surgeon preference and patient anatomy.
Samples were collected before tumor resection in order to
minimize brain shift and we estimate the variance in the distance
measurements based on the recorded image coordinates to be
<2mm. Tissue samples were immediately placed on ice for
transport to a pathology lab where the tissue was frozen in OCT
until analysis.

Biopsy Euclidean Distance
At the time of the biopsy collection, we recorded the image
coordinates of the instruments using the surgical navigation
software. The distance between separate biopsy sites i and j
is calculated by the Euclidean distance of the captured 3D

coordinates (x, y, z): dij =

√

(

xi − xj
)2

+
(

yi − yj
)2

+
(

zi − zj
)2

(Figure 2). When possible for needle biopsies, the “shallow”
and “deep” ends of the cylindrical specimens were divided.
These specimens were analyzed separately with a distance of
5mm assigned to the two parts of the divide sample, based
on the needle geometry. The exact geometry is illustrated in
Supplementary Figure S2.

DNA Extraction
Using light microscopy, each sample was microscopically
confirmed to be comprised of tumor before DNA extraction.
Percent wise quantification was not attempted due to the small
amount of tissue in each sample. DNA was extracted from frozen
biopsies and matched normal white blood cells (WBCs) using
QIAamp DNAMini Kit (Qiagen), and DNA concentrations were
measured with Qubit fluorometer (Thermo Fisher Scientific).

Whole-Exome Sequencing
Between 200 and 1,000 ng of DNAwere used for enrichment of all
exonic fragments with SureSelect Human All Exon V6 (Agilent
Technologies), followed by massively parallel sequencing on
HiSeq4000 platform (Illumina) using 75-bp paired-end option.
For the validation of somatic mutations identified by the HiSeq
platform, custom PCR primer panels corresponding to the
mutations were made with Ion AmpliSeq Designer. The libraries
were prepared with Ion AmpliSeq Library Kit Plus (Thermo
Fisher Scientific) according to the manufacture’s protocol, and
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then subjected to Ion Proton sequencing (Thermo Fisher
Scientific). Where available, we estimated tumor cellularity and
ploidy using the whole-exome data and the sequenza (8). This
confirmed the tumor content identified microscopically.

Mutation Count Genetic Distance
With the whole-exome sequencing (WES) fastq files, we used
the BWA-MEM (9) software for read mapping. With the bam
files, we used MuTect2 (10) software to call genetic variations
between tumor samples and blood control samples and used
ANNOVAR (11) to annotate the specific mutations (pseudocode
provided on Github).1 We then filtered the resulting mutations
based on the five following criteria: (1) mutations must be located
in exonic regions; (2) mutation function must be frameshift
deletion, frameshift insertion, non-synonymous SNV, stopgain or
stoploss; (3) reference read count, the read having same base call
as reference, must be ≥10; (4) alterative read count, the reads
detected as mutations, must be ≥8; and (5) the alternative read
frequency must be ≥0.1. These filters ensure the mutations are
real, not statistical artifacts, and that they likely lead to molecular
tumor changes such as reduced expression levels, truncated
proteins, or errors in DNA transcription and translation. The
mutation count genetic difference between samples from the
same tumor in one patient was measured using the Jaccard
distance (12).

dJaccard =

∑

(Pi − Qi)
2

∑

P2i +
∑

Q2
i −

∑

(Pi∗Qi)

Where Pi and Qi are the alternative allele frequency for the ith
mutation. The mutation count genetic distance between samples
is small when the gene mutations are present in both samples
and maximum when the sets of mutations are disjoint. Pearson
correlation coefficients were calculated between the number of
genes/mutation genetic distance and the Euclidean distance for
all available biopsy pairs.

Copy Number Variation Genetic Distance
Copy number variations (CNV) for paired biopsies were
obtained usingWES data with CNVKit (13), which has high CNV
calling accuracy (14) and can infer information in uncovered
intron regions. With the segmentation information for each
biopsy, we combined all break points available from all biopsies,
created a list of CNV events, and assigned the corresponding log2
ratio value to each event and each biopsy. The CNV distance was
calculated using the Canberra distance

dCanberra =
∑ |Pi − Qi|

Pi + Qi

Where Pi and Qi are the log ratio values of the first and
second samples at event i (12) between paired biopsies from
the same patients. The Canberra distance is effectively the L1
distance but scaled at each value by the average signal of the
samples. This normalizes the differences so that samples with

1https://github.com/JieYang031/WGS-analysis

larger relative absolute difference will be a greater distance apart
under this metric. So, CNV distance is a measure of the total
amount of DNA variation between samples. Also note that the
distance between a sample and itself is zero. Pearson correlation
coefficients were calculated between the CNV distance and the
Euclidean distance for each biopsy pair.

Methylation Distance
DNA was subjected to bisulfite conversion with EZ DNA
Methylation-Gold Kit (Zymo Research), and analyzed for
methylation profiling using Infinium Methylation EPIC
Beadchip and iScan (Illumina). We evaluated differences in
DNA methylation as a way to quantify the epigenetic distance
between samples and investigate correlation with physical
distance. Raw DNA methylation data were processed with
default pre-processing steps in UniD (15) as implemented in
R. Samples with more than 10% of values missing and probes
with more than 3 missing values were excluded. The isocitrate
dehydrogenase (IDH) mutation status for each sample was
predicted using UniD predictive models (15). The methylation
level was represented as a β value [methylated signal divided
by the sum of methylated and unmethylated signal (16)]. We
first applied unsupervised clustering and t-distributed stochastic
neighbor embedding (t-SNE) (17) analysis with the top 200
and 500 probes with the highest median absolute deviation
(MAD) values across all samples. Then, using only the most
variant probes, we removed probes that are likely uninformative
and only reduce statistical power (18). In order to calculate
the methylation distance between biopsies pairs from the same
patients, we used the top 500 probes with highest variance within
each patient to calculate the L1 distance:

dL1 =
∑

i

|Pi − Qi|

Where Pi is the ith beta value of the first sample in the pair and
Qi is the beta value of the second sample in the pair (12). The
L1 distance metric measures the total variation in methylation
values and identical profiles have zero distance. Since the beta
values are already normalized as the sum of methylated and
unmethylated signal, we used the standard L1 distance metric
rather than the Canberra distance used for CNV genetic distance.
The correlation between the methylation distance and Euclidean
distance was measured with the Pearson correlation coefficient.

RESULTS

In total, 31 patients were recruited between 2013 and 2016.
Patients with no tissue harvest due to surgical complexity, cardiac
issues, or technical difficulties or patients with insufficient tissue
for downstreammolecular analysis were excluded from our study
cohort (n= 8) (Figure 1A) leaving 23 patients with 71 biopsies.

After exclusions (4 samples) for ambiguous imaging
coordinates, 67 samples from 23 patients were subjected to
global methylation array-based profiling (Figure 1C). Seventeen
of these samples from 8 patients were processed for WES
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FIGURE 1 | Patient and samples cohort processing flowchart. (A) 31 patients were recruited between 2013 and 2016. Five patients had no tissue harvest due to

surgical complexity (n = 3), cardiac issues, or technical difficulties and three patients had no sufficient tissue. In total, eight patients were excluded from the cohort. (B)

Among the remaining patients, only eight patients had normal blood samples available for whole-exome sequencing and one of those patients only had a single

sample sequenced. Based on the mutation calls, one patient was excluded due to abnormally high mutation burden (TMB). The remaining 13 biopsies from 6 patients

constitute 8 biopsy pairs for mutation genetic distance. (C) After excluding samples without image coordinates, we have 67 samples from 23 patients for methylation

profiling. One sample was excluded from methylation analysis due to poor data quality: 12.85% of available probes returned missing values. In summary, 66 samples

from 42 unique image guided biopsy sites in 23 patients were available for methylation data analysis, comprising 77 unique biopsy pairs. The specific patients

included in each analysis is available in Table 1.

(Figure 1B). These patients were selected because patient-
matched blood samples were retrospectively available for
somatic DNA assessment thanks to an institutional tumor
banking initiative. A summary of the patient demographic
information is given in Table 1. Of the 67 total samples in the
final analysis, 46 samples were shallow/deep pairs from needle
biopsy, 4 were single samples from needle biopsy, 15 were single
samples from forceps biopsy, and 2 were a shallow/deep pair
collected from the same spatial location using forceps.

Genomic and physical distances were only calculated on an
intra-tumor basis, meaning samples were not compared between
patients, but only to other samples in the same patient/tumor.

Mutation Count Genetic Distance
WES was performed to identify gene mutations in the biopsy
tissue samples. The mean coverage was 117 and 103 for tumor
tissues and WBCs, respectively. We used the MuTect2 (10) and
ANNOVAR (11) for somatic mutation calling and annotation.
After filtering mutations, we identified a total of 257 single
nucleotide variants (SNVs) and 19 insertions/deletions (indels)
in our final 14 tissue samples analyzed.

In further examining the profiles of three biopsies (P12S1,
P12S2, and P12S3) from one patient (patient 12), we found
significantly higher mutation calls than in the other patients.
Even after applying mutation filters, we found patient 12
had on average 2438 mutations per biopsy while all other
patients/samples averaged 22 mutations per biopsy. In published
literature (19), the median mutation rate per million base (Mb)
is <1 for lower grade gliomas. So, the median mutation number
for the whole exome (about 30Mb) is <30. Therefore, we believe
these three biopsies show hypermutation. We eliminated the
possibility of a mismatched blood sample by comparing the non-
conserved long insertion sequence between the blood and tumor
samples, which were found to be consistent. Further review of
this case revealed a prominent history of cancer in the patient’s
family, suggesting a fundamentally distinct mechanism of tumor
evolution from those utilized in the remaining cohort. For these
reasons, we excluded these samples from mutation count genetic
distance analysis (Figure 1B), leaving 14 biopsies in 7 patients
for analysis.

A total of 74 somatic mutations identified in our
initial WES were then validated by focused Ion Proton
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TABLE 1 | Patient demographic information.

Patient information Clinical information Test applied

Pt # # biopsy

samples

# blood

samples

# sample

pairs

Age Sex Primary

diagnosis

WHO 1p/19q

status

IDH1 EPIC WES

1 3 1 3 36 F OA II Codel WT Yes Yes

2 2 0 1 25 F Anaplastic Diffuse Glioma III Codel Mut Yes No

3 2 0 1 21 F Anaplastic Diffuse Mixed OA III Codel Mut Yes No

4 6 0 10 26 F GB IV Neg Mut Yes No

5 4 0 6 75 F Diffuse Astrocytoma II Neg WT Yes No

6 2 0 1 56 F Diffuse Glioma II Neg Mut Yes No

7 4 0 6 54 F GB IV Neg WT Yes No

8 4 0 6 45 M Anaplastic Astrocytoma III Neg WT Yes No

9 4 0 6 28 M OD II Codel Mut Yes No

10 3 0 3 30 F Anaplastic Astrocytoma III Neg Mut Yes No

11 2 0 1 62 M GB IV Neg WT Yes No

12 3 1 3 80 M GB IV Neg WT Yes Yes

13 2 0 1 44 M Anaplastic Astrocytoma III Neg Mut Yes No

14 6 0 15 55 F OD II Codel Mut Yes No

15 2 1 1* 67 M GB IV Neg WT Yes Yes*

16 2 1 1 32 M OD III Codel Mut Yes Yes

17 2 1 1 66 M Diffuse Astrocytoma, GB IV Neg Mut Yes Yes

18 2 0 1 41 F Anaplastic OD III Codel Mut Yes No

19 2 0 1 58 F Diffuse Astrocytoma, GB IV Neg WT Yes No

20 2 1 1 35 F OD II Codel Mut Yes Yes

21 2 1 1 49 F GB IV Neg WT Yes Yes

22 2 1 1 32 M Anaplastic Astrocytoma III Neg Mut Yes Yes

23 4 0 6 39 F Diffuse Astrocytoma II Neg Mut Yes No

List of each patient included in the final analysis. EPIC indicates DNA methylation EPIC array was performed on that patient’s samples (for methylation genetic distance) and WES

indicated whole-exome sequencing (for mutation and copy number variation genetic distance). Sample pairs refers to the number of biopsy sample pairs that were available to calculate

spatial and genetic distance. Patient age, sex, primary diagnosis, WHO grade, 1p/19q, and IDH mutation status are listed for reference. GB, Glioblastoma; OD, oligodendroglioma; OA,

oligoastrocytoma. *WES only applied to one of two samples due to insufficient tumor content in one sample. EPIC methylation assay was performed on both samples.

sequencing, yielding a concordance rate of 100% (74/74
mutations, Supplementary Table S1 with primer sequences
in Supplementary Table S2). Confident in the quality of our
sequencing data, we proceeded to determine the genetic distance
as measured by mutation count between patient-matched
samples for our remaining pairs as a function of number of
distinct mutations. Similar approaches have been applied in
recent work (20). We then correlated mutation count genetic
distance to Euclidean distance and found a strong correlation
(Pearson correlation coefficient = 0.63, p = 0.091) (Figure 2),
supporting the notion that as the physical distance between
biopsy samples increases, so too does the number of mutated
genes. Indeed, some of the most closely clustered samples
(Patient 1) by Euclidean distance (5mm) exhibited only one
distinct mutation whereas two samples biopsied 21mm apart
(Patient 22) had 36 distinct mutations between them. On average
a one unit increase in mutation count genetic distance unit
was equivalent to an increased Euclidean distance of 0.6mm,
and 10mm of additional Euclidean distance was equivalent
to 17 additional mutation counts. The equation of the best
fit regression line was: Genetic count distance = −11.6 + 1.7·
Euclidean distance in mm.

Using the three samples from patient 1 as unique samples
for further exploration, the hierarchical structure between
biopsies was investigated (Figure 2). By comparing mutation
calls among biopsies, we found that all three samples shared 10
common mutations, while P1S1 or P1S3 each had one additional
distinct mutation (Figure 2). Finally, the allele frequency of
mutation calls (Figure 2) were generally higher for the shared
mutations between the three samples than for the private
mutations, suggestive of sub-clonality within independently
evolving tumor clones.

Copy Number Variation Genetic Distance
Copy number variation (CNV) for each biopsy was derived
from WES data using CNVkit and visualized with Integrative
Genomics Viewer (IGV, version 2.4.8) (21, 22) (Figure 3A).
We obtained 255 CNV events after combining all break
points available. WES data also estimated cellularity to
be >50% for a majority of samples used in CNV analysis
(Supplementary Table S3). Reassuringly, we found that our
data recapitulated well-known glioma-associated patterns
such as 1p/19q co-deletion and co-incident 7-gain/10-loss,
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FIGURE 2 | Mutation count genetic distance. (A) Scatter plot shows a high correlation between Euclidean distance and the Jaccard distance between biopsy pairs

(Pearson r = 0.63). (B) The pairs of biopsy points whose distances are graphed in (A). The samples are listed by patient number (P) and sample number (S) so for

example pair 1 consists of sample 2 from patient 1 (P1S2) and sample 3 from patient 1 (P1S3). (C) Physical distance illustration. On this magnetic resonance image, a

biopsy pair in patient 1 (samples P1S1, P1S2) are indicated by circles. The Euclidean distance between the sample sites is shown. (D) The phylogenetic tree of three

biopsies from the same patient (P1). N represents normal brain (no mutations), and S1-3 are the three biopsy sites sampled. The detected mutations events are

shown in the annotations, the segment length is proportional to the number of mutations. (E) The tumor alternative allele fraction for all mutation events were

compared between biopsies shown in (D). The shared mutations between all samples generally show a higher alternative allele frequency.

characteristic of IDH-mutant oligodendroglioma and IDH-wild
type glioblastoma, respectively (Table 1).

Using the log2 ratio value as input, CNV distance was
calculated between each biopsy pair. Since the algorithm
inferring CNV using WES data relies on the read counts
instead of mutation calls, we included the hypermutated case of
patient 12 in our CNV analysis (Figure 3C). We compared CNV
distance with Euclidean distance for each paired set of biopsy
specimens and once again obtained a strong correlation (Pearson
correlation coefficient = 0.65, p = 0.04, Figure 3B). Moreover,
linear regression between CNV distance and Euclidean distance
(slope constant was approximately 6.8 log2 CNV per mm)
showed the same trend as was seen between mutation count
genetic distance and Euclidean distance. IDH mutant and wild-
type samples both demonstrated the same general relationship
between CNV distance and Euclidean distance. On average
10mm additional distance increased the CNV distance by
68.4 units. Each unit of CNV distance corresponded to about
0.15mm Euclidean distance. The equation of the best fit
regression line is: CNV distance = − 93.8 + 6.9· Euclidean
distance in mm.

Methylation Genetic Distance
After data pre-processing with the UniD algorithm (see materials
and methods), one sample was excluded due to high probe
fail percentage (>10%) (Figure 1). Unsupervised hierarchical
clustering of the remaining 500 probes and 66 samples delineated
two subgroups within the cohort as evidenced by a heatmap
(Figure 4, Supplementary Figure S1). The strong separation of
the two clusters was further illustrated by t-SNE analysis and
visualization (Figure 4). The composition of the two clusters
showed a well-established concordance to IDH mutational status
(23) (Supplementary Table S4).

Methylation distance was then independently calculated
between all possible biopsy pairs from each patient using the
L1 distance between the values of the top 500 most variant
methylation probes. Comparing these findings with Euclidean
distance once again revealed a significant correlation (Pearson
correlation coefficient 0.35, p= 0.002) (Figure 4). The abundance
of sample pairs at a Euclidean distance of 5mm is due to
the shallow and deep portions of the same biopsy specimen,
separated from each other by 5mm, being analyzed separately
(Supplementary Figure S2). The methylation distance between
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FIGURE 3 | Whole Exome Sequencing (WES) derived copy number variations (CNV) distance. (A) CNV shown in Integrative Genomics Viewer (IGV). Chromosomes

are labeled at the top of the panel and sorted in order from chromosome 1 to chromosome Y. Each row represents one sample identified by patient number (P) and

sample number (S). The color blocks show the CNV log2 ratio value: blue indicated loss of copies while red indicated amplification. For regions with the same CNV

across samples (solid column of blue marked with red arrows) there is no information across all samples. (B) CNV distance showed high correlation with the Euclidean

distance between biopsy pairs from the same patient (Pearson r = 0.65). Pairs were drawn with color indicating IDH mutation status. (C) The paired sample details

based on the label in (B). Each sample is labeled by patient number (P) and sample number (S).

these shallow/deep pairs spanned the entire dynamic range, a
finding not seen for other measures of molecular distance (see
above). This discrepancy may be due to greater fluctuation
in the DNA methylation profile between samples compared
to mutational or copy number variation or may be due to
the increased number of samples available for methylation
analysis. Regardless, there is a significant correlation (correlation
coefficient = 0.35, p = 0.002) between methylation distance
and Euclidean distance and the minimum methylation distance
between samples increased substantially with a Euclidean
distance above about 2 cm. Based on the best-fit regression line
we estimate an increase in the methylation distance of about 1.8
per 10mm Euclidean distance, with each unit of methylation
genetic distance corresponding to about 5.6mm of Euclidean
distance. The best-fit regression line equation was: Methylation
genetic distance = 5.27 + 0.18. Euclidean distance in mm. The
relation between methylation genetic distance and Euclidean
distance is fairly consistent between samples from IDH wild-
type and IDH mutant tumors as seen visually in Figure 4.
The correlation remains statistically significant even when only
samples with similar IDH mutation or 1p/19q co-deletion
status are considered. See the Supplementary Figures S3, S4

for details.

DISCUSSION

Many recent studies have documented the heterogeneity

characterizing malignant glioma (24–26). Delineating the

molecular mechanisms driving this heterogeneity remains an

active area of investigation, as does the optimization of

techniques for its non-invasive assessment. In this study, we
aimed to establish informative and quantitative links between
heterogeneity and spatial distance in a small glioma patient
cohort. Among the most basic measures of spatial variability
is simple Euclidean distance, and we found strong correlations
between this metric and multiple assessments of molecular
distance for distinct genomic/epigenomic variables. Two of these
“molecular distances” were based on some form of total variation,
or L1 distance, an additional similarity, and the third (mutation
count genetic distance) used a sum-of-squared distances. Future
work may incorporate image data to develop a more complex
measure of “radiographic distance” to complement physical
distance. Our findings confirm prior work showing that gliomas
exhibit spatial variability in their genomic signatures dependent
on precise biopsy site location (5, 6, 24, 27). Moreover, they
establish, for our limited patient population, a set of correlation
constants for the various measures of molecular distance and
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FIGURE 4 | DNA methylation L1 distance vs. Euclidean distance. (A) The L1 distance measures total variability in the methylation profile. This measure shows

moderate correlation with Euclidean distance (Pearson r = 0.35, p = 0.002). Shallow/deep pairs from the same biopsy sample are assumed to be 5mm distant. (B)

Heatmap of hierarchical clustering with the top 500 probes with highest median absolute deviation (MAD) values. Each row represents one sample and each column

one probe. (C) t-SNE plot of the top 500 probes with highest MAD values (probes with missing values were removed). The marker color indicates IDH mutation status.

A natural clustering into IDH mutated and wild type tumors is evident in both the heatmap and t-SNE plot.

position in Euclidean space. The fact that three distinct molecular
features, (1) somatic mutations, (2) CNVs, and (3) global
methylation profiles, tracked similarly with Euclidean distance
is notable.

Similar work includes a study conducted recently by Lee
et al. (5), where the authors calculated Nei’s genetic distance in
multisector samples of glioblastomas and found that this metric
was greater for samples that were farther apart in space (i.e.,
distant vs. local recurrence). Note: the Nei’s distance analyzes
genetic variability within populations which is not applicable to
our sample size, hence why we used other distance measures in
our analysis. Additional work by Sottoriva et al. analyzed copy
number and gene expression data from multiple samplings of
glioblastomas to illustrate how tumor phylogeny can be related
to the approximate spatial position (24). Our study is consistent
with these earlier reports. In addition, we measure the actual
physical distance between samples and demonstrate a significant
linear relationship between spatial and molecular distance in
glioma. This correlation suggests that the processes of molecular
and spatial evolution in tumor cells may be fundamentally linked.

A proposed mechanism for tumor heterogeneity is that distinct
molecular characteristics become apparent in cancer cell clones
as they distribute themselves across a given tumor mass over
time (28, 29). While our present study does not investigate
this mechanism directly, it is one potential explanation for
the correlation between spatial and genetic distance. Whether
acquired molecular alterations actively drive cellular motility as
a rule, however, remains less certain. Recent literature suggests
that branching mutational profiles of multiple tumor samples
are due in part to differences in selective pressures (6, 7,
29), from environmental factors such as hypoxia (30). Such
constraints could fundamentally drive molecular evolution as
a means to escape suboptimal microenvironments. However,
simple expansion of a tumor mass would also be expected
to passively drive clones apart that, over time, would acquire
increasing molecular distinctiveness.

This proposedmechanism does not account for hypermutated
cases such as the patient we discussed previously. Given that
the patients in our study were previously untreated, we can
exclude the possibility of these mutations being caused by
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alkylating chemotherapeutic agents. In the absence of prior
treatment the hypermutation status suggests an underlying germ
line mutation, although our analysis precludes certainty. This
is further supported by the patient’s strong family history of
cancer (31, 32).

Although our results show substantial differences in
the number of mutations between samples from the same
patient (Supplementary Table S5), we found that some root-
level carcinogenic mutations like IDH1 were consistently
present or absent in all samples from a given patient
(Supplementary Table S4). Genomic findings thus support
a branched evolution pattern, where some genetic events, in
particular IDH1 mutations, are fundamental, required for
tumorigenesis and are thus present in all samples. Accordingly,
these alterations are truncal, with more unusual mutations
relegated to sub-clonal events in selected populations (5, 6).
These early, required mutations, tend to be diagnostically
important, as reflected by the inclusion of IDH1 in the WHO
grading criteria (1). These findings also reflect multiple published
reports on clonal evolution within malignant glioma (5, 27).

As the classification and prognosis of gliomas is substantially
influenced by genomic features, we suspect that the specific
relationship between spatial and molecular distance might
depend on the grade and type of the glioma. Within
our sample set, additional subgroupings could be made
based on established and prognostically relevant molecular
stratifiers such as IDH mutation status and MGMT promotor
methylation. However, our patient population is not large
enough to examine distinctions within these smaller subgroups
with sufficient statistical power. Nevertheless, our results
using a combined glioma population across grades and
subtypes suggests the positive and linear relationship between
spatial and genetic distance is a characteristic of gliomas
in general.

The concept of genetic heterogeneity is not novel,
but our work is the first attempt (to our knowledge) to
formally quantitate the relationship between spatial and
genetic distances. We chose to use the simplest measure
of correlation between spatial and genetic distance (i.e.,
linear) as the initial avenue of investigation. More complex
methods of quantitating this relationship in the future
may provide better correlation or interpretability. We also
look to future investigations to elucidate the undoubtedly
complex relationships between glioma subtypes, grades, and
diverse genomic selectors, and the spatial distribution of
genomic heterogeneity.

We propose that the further exploration of such genomic-
spatial relationships in clinical trials similar to the current study,
is justified. Establishing first the fundamental, and later on, more
sophisticated imaging-genomic correlates, will put the field of

imaging genomics on a firm scientific footing, and develop it into
something that could be made useful for patient care.

CONCLUSION

The genetic heterogeneity of gliomas is correlated to physical
distance within individual tumors, as confirmed by quantitative
relationships using multiple independent methods. These
findings likely support a diverging clonal evolutionary model of
glioma expansion.
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