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Mammographic breast density is a strong independent risk factor for breast cancer

(BC), but the molecular mechanisms behind this risk is yet undetermined and prevention

strategies for these women are lacking. The anti-estrogen tamoxifen may reduce the risk

of BC but this treatment is associated with severe side effects. Thus, other means for

BC prevention, such as diet interventions, need to be developed. Osteopontin (OPN) is

a major mediator of inflammation which is key in carcinogenesis. OPN may be cleaved

by proteases in the tissue and cleaved OPN may in turn induce an inflammatory cascade

in the extracellular microenvironment. We aimed to determine if extracellular OPN was

altered in BC and in normal breast tissue with different densities and if tamoxifen or a diet

of flaxseed could modify OPN levels. The study comprised 103 women; 13 diagnosed

with BC, 42 healthy post-menopausal women with different breast densities at their

mammography screen, and 34 post-menopausal women who added 25g of ground

flaxseed/day or were treated with tamoxifen 20 mg/day and were investigated before and

after 6 weeks of exposure. Additionally, 10 premenopausal women who added flaxseed

for one menstrual cycle and four who were investigated in two unexposed consecutive

luteal phases of the menstrual cycle. Microdialysis was used to sample extracellular

proteins in vivo in breast tissue and proteins were quantified using a multiplex proximity

extension assay. We found that, similar to BC, extracellular in vivo OPN levels were

significantly increased in dense breast tissue. Additionally, significant correlations were

found between OPN and chemokine (C-X-C motif) ligand (CXCL)-1, −8, −9, −10, and

−11, interleukin-6, vascular endothelial growth factor, matrix metalloproteinase (MMP)-1,

−2, −3, 7, and −12 and urokinase-type plasminogen activator whereas no correlations

were found with MMP-9, chemokine (C-C motif) ligand (CCL)-2, and −5. Estradiol did

not affect OPN levels in breast tissue. None of the interventions altered OPN levels. The

pro-tumorigenic protein OPN may indeed be a molecular target for BC prevention in

women with increased breast density but other means than tamoxifen or flaxseed i.e.,

more potent anti-inflammatory approaches, need to be evaluated for this purpose.
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INTRODUCTION

Osteopontin (OPN), is an extracellular secreted protein produced
by many different cell types in the body (1). OPN was
initially identified as extracellular matrix protein in bone,
bone sialprotein 1, and thereafter as a secreted protein from
several cancer cells culture (2, 3). In normal tissues, OPN is
involved in several pathophysiological functions such as vascular
and bone remodeling, wound repair, and inflammation (4).
OPN is an intergrin-binding protein, key in the inflammatory
response, and thus up-regulated in inflammatory conditions
as well as in several cancer forms including breast cancer
(4–7). Immunohistochemistry studies have also suggested an
association between a spliced isoform of OPN, and increased
risk of invasiveness in premalignant breast lesions (8). However,
in breast cancer patients, no correlations between circulating
plasma levels of OPN and staining intensity of cellular OPN in
breast cancers have been determined (9). It has been suggested
that it is the secreted OPN, locally in the tissue, that is
necessary for indolent cancer cells to develop metastases (10).
The biological activity of OPN can be modulated by proteolytic
cleavage in the microenvironment and has been shown to
be a substrate for several matrix metalloproteinases (MMPs)
including MMP-2, −3, −7, and −9 (11–13). This cleaved OPN
may enhance invasion and metastases formation of cancer cells
(11–13). Indeed, this emphasizes the need of local sampling of
OPN, within the target organ, for elucidations of its role in
pathophysiological processes.

OPN acts as a chemoattractant to macrophages, and may
also affect the phenotypically skewing of these cells (14).
Furthermore, OPN may act as a chemotactic for neutrophils,
dendritic cells, NK-cell, and polarize T-cells by interacting
with CD44 (15). In experimental models, OPN expression
increased the pro-inflammatory cytokine IL-6 and these findings
has been corroborated in humans (16–18). Additionally, an
interconnection and correlation has been determined between
these two proteins, and increased levels have been associated
with increased metastatic spread and poor prognosis in cancer
patients (18, 19). Several other cytokines and chemokines
important for the immune response and chemotaxis of
inflammatory cells such as chemokine (C-C motif) ligands
(CCLs) and chemokine (C-X-C motif) ligands (CXCLs) have
also been associated with OPN both in cancer and inflammatory
conditions (20–22). OPN may also play an important role in
regulating angiogenesis by autocrine and paracrine regulation
of vascular endothelial growth factor (VEGF) in several
experimental cancer forms including breast cancer (23–25).

Mammographic density i.e., the amount of radiological
opaque tissue as compared to fat tissue in the breast, is a major
independent risk factor for breast cancer and represents at least
a 4-fold increased risk (26, 27). The sensitivity of detecting
breast cancers in dense breast tissue may be compromised but
it has been shown that the increased risk cannot be explained
by this “masking” effect (28). Less than 10% of normal breast
tissue comprise epithelial cells and conflicting data regarding
the amount and proliferation rate of these cells in dense vs.
non-dense normal breast has been reported (29–33). The major

difference of these two tissue types is the stroma; dense breast
tissue contains higher amounts of stroma, including collagen, and
non-dense breasts contain higher amounts of fat tissue (31, 32).
However, the biological mechanisms underlying the increased
risk of breast cancer in dense breasts are poorly understood.
Exposure sex steroids including estrogens is an established
risk factor for breast cancer (34, 35) but an associations
between circulating estrogen levels and breast density is
lacking (26).

Active biological pathways in dense breast tissue need to be
unraveled in order to develop effective preventive therapeutics
against breast cancer for this group of women. The role of
OPN in breast tissue at high risk of developing breast cancer
is unexplored.

Here, we investigated levels of OPN and its interconnection
in vivo with inflammatory and angiogenic proteins and MMPs
in human breast cancer, normal human breast tissue, and after
interventions with the anti-estrogen tamoxifen or diet addition
of flaxseed. We show that the extracellular in vivo levels of OPN
were significantly increased in breast cancers and dense breast
tissue as compared to their normal counterparts. In normal
breast tissue, strong correlations were found between OPN and
several pro-inflammatory mediators. Our data did not support
an estrogen dependent regulation of OPN and no effects of
tamoxifen or addition of dietary flaxseed on OPN levels in
normal breast tissue were detected. Our data suggest that OPN
may indeed be a therapeutic target for prevention in women with
dense breast tissue but other means than tamoxifen and flaxseed
need to be developed.

MATERIALS AND METHODS

Subjects
The Regional Ethical Review Board of Linköping, Sweden,
approved the study, which was carried out in accordance with
the Declaration of Helsinki. All subjects gave written informed
consent. A total of 103 women were included in the study.
Thirteen post-menopausal women who were diagnosed with
breast cancer were investigated before surgery. Forty-two
healthy post-menopausal women were consecutively recruited
from the mammography screening program at Linköping
University Hospital. Their regular screening mammograms were
categorized as either entirely fatty non-dense or extremely dense
according to the Breast Imaging Reporting and Data System
(BI-RADS) density scale; women with BI-RADS A (non-dense)
or BI-RADS D (dense) were selected (36). Post-menopausal
women with previous ER-positive early breast cancer that had
been surgically removed and were advised tamoxifen 20 mg/day
as adjuvant therapy were investigated before (n= 21) and after 6
weeks of treatment (n = 19), two women were omitted from the
second microdialysis investigation because of non-compliance.
Additionally, 27 healthy volunteers were included for the diet
intervention; 13 post-menopausal women added 25 g of ground
flaxseed/day were investigated before start, and after 6 weeks of
diet addition, 14 women were premenopausal and investigated
in two consecutive luteal phases out of which 10 added flaxseed,
as described above, for one menstrual cycle and as a control four
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were investigated in two unexposed consecutive luteal phases. All
of the premenopausal women had a history of regular menstrual
cycles (cycle length, 27–34 d). None of the healthy women had a
history of previous breast cancer. In addition, none of the women
were currently using (or had used within the previous 3 months)
hormone replacement therapy (HRT), sex steroid-containing
contraceptives, anti-estrogen therapies, including selective
estrogen receptor modulators or degraders or antibiotics within
past 3 months.

Microdialysis Procedure
Prior insertion, 0.5ml lidocain [10 mg/mL] was administrated
intracutaneously. Microdialysis catheters (71/M Dialysis AB,
Stockholm, Sweden), which consists of a tubular dialysis
membrane (diameter 0.52mm, 100,000 atomic mass cut-off)
glued to the end of a double-lumen tube were inserted
via a splitable introducer (M Dialysis AB), connected to a
microinfusion pump (M Dialysis AB) and perfused with NaCl
154 mmol/L and hydroxyethyl starch 60 g/L (Voluven R©,
Fresenius Kabi, Uppsala, Sweden), at 0.5 µL/min. The women
with ongoing breast cancer were investigated with a 10mm
membrane before surgery; one catheter was inserted within
the cancer and the other in normal adjacent breast tissue. All
other women were investigated with a 20mm long microdialysis
membrane; in healthy volunteer women the microdialysis
catheter was placed in the upper lateral quadrant of the
left breast directed toward the nipple and in the women
with previous breast cancer the catheter was inserted in the
upper lateral quadrant of the unaffected breast as previously
described (37–47).

After a 60-min equilibration period, the outgoing perfusate
was stored at−80◦C for subsequent analysis.

The recovery of compounds from the extracellular space
over the microdialysis membrane is dependent on the surface
area of the membrane. Therefore, quantitative comparisons can
only be performed on data retrieved from membranes of equal
sizes; breast cancer vs. normal adjacent breast tissue (10mm
membrane), or normal breast tissue from all other groups
(20 mmmembrane).

Protein Quantifications
The microdialysis samples were analyzed by using a multiplex
proximity extension assay (PEA, Olink Bioscience, Uppsala
Sweden). In brief, 1 µL sample was incubated in the presence of
proximity antibody pairs tagged with DNA reporter molecules.
Once the pair of antibodies is bound to their corresponding
antigens, the respective DNA tails form an amplicon by proximity
extension, which was quantified by high-throughput real-time

PCR (BioMark
TM

HD System, Fluidigm Corporation). The
generated fluorescent signal directly correlates with protein
abundance. The output from the Proseek Multiplex protocol is
in quantitation cycles (Cq) produced by the BioMark’s Real-Time
PCR Software. To minimize variation within and between runs,
the data are normalized using both an internal control (extension
control) and an interplate control, and then transformed using a
pre-determined correction factor. The pre-processed data were
provided in the arbitrary unit normalized protein expression

(NPX) on a log2 scale, which were then linearized by using the
formula 2NPX. A high NPX value corresponds to a high protein
concentration. Values represent a relative quantificationmeaning
that no comparison of absolute levels between different proteins
can be made.

Estradiol and Enterolactone
Determinations
Serum was analyzed with immunoassay kits based on the
principle of competitive binding. The kits were used according
to the manufacturer’s instructions. For estradiol an ELISA
immunoassay kit (Calbiotech Spring Valley, CA) was used
and for enterolactone using time-resolved fluoroimmunoassay
(Labmaster TR-FIA, Turku, Finland). This method has been
shown to have a significant linear relationship with other
techniques such as GC-MS and LC-MS (48, 49).

Statistical Analyses
Statistical analyses were performed using non-parametric
Wilcoxon matched-pairs signed rank test or unpaired Mann-
Whitney U-test. The data was non-normally distributed and
therefore Pearson’s correlations coefficient was computed on
ranked data. All tests were two-sided. A p < 0.05 was considered
as statistically significant. Statistics were performed with Prism
7.0 (GraphPad software).

RESULTS

In Table 1, routine determinations of tumor histology,
size, immunohistochemistry for estrogen receptor (ER) and
progesterone receptor (PR), HER-2 receptor, and Nottingham
histological grade (NHG) according to the Elston Ellis scoring
system are shown. There were no subsequent complications after
the microdialysis investigations. Eleven of the 13 patients were

TABLE 1 | Characteristics of patients subjected to intratumoral microdialysis.

Patient Age Tumor

size

Grade

(NHG)

ER

(%)

PR

(%)

HER-2

1 70 22 2 >50 >50 Neg

2 68 24 2 >50 >50 Neg

3 52 25 3 >50 10–50 Neg

4 78 28 2 >50 >50 Neg

5 62 25 2 >50 >50 Neg

6 63 19 2 >50 >50 Neg

7 55 40 3 0 0 Neg

8 61 25 2 >50 >50 Neg

9 48 30 2 >50 >50 Neg

10 73 30 2 >50 <5 Neg

11 51 27 1 >50 >50 Neg

12 66 60 2 >50 >50 Neg

13 80 50 ND 0 0 Pos

ER, estrogen receptor, PR=progesterone receptor; NHG, Nottingham histological grade;

HER-2, human epidermal growth factor receptor 2; ND, not determined.
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ER+ with an ER score >50%. The breast density of the women
with ongoing breast cancer was not known.

BMI of the 103 women was within the normal range 21–30
except for one woman in the tamoxifen group (BMI 36), one
women in post-menopausal flax group (BMI 32), and one woman
in the non-dense group (BMI of 32).

Extracellular OPN Was Significantly
Increased in Breast Cancer and Dense
Breast Tissue
In line with previous data of circulating OPN in blood from
breast cancer patients, the extracellular in situ levels of OPN in
breast cancers compared with normal adjacent breast tissue were
significantly increased (Figure 1A).

Of the 42 women recruited from themammography screening
program 21 were initially categorized as having dense breasts
and 21 with non-dense breasts. After re-evaluation of the
mammograms one woman in each group had to be excluded
because of miss-categorization. In dense breast tissue (n = 20),
as compared to non-dense breast tissue (n = 20), OPN exhibited
significantly increased levels (Figure 1B).

Tamoxifen Treatment and Addition of
Dietary Flaxseed Did Not Alter OPN Levels
OPN has previously been shown to be an estrogen regulated
gene in rodents (50, 51). Additionally, phytoestrogens have
also reported to affect OPN levels in murine prostate cancer
(52, 53). Therefore, we wanted to explore if tamoxifen treatment
or a diet addition of flaxseed, which is converted to the
phytoestrogen enterolactone by the gut microbiota, affected
the local levels of OPN in breast tissue. Contrary to the
experimental data the anti-estrogen tamoxifen did not did
not alter the levels of OPN in normal breast tissue in post-
menopausal women (Figure 1C). Similarly, a diet addition with
flaxseed had no effect on OPN levels in the breast in post-
menopausal women (Figure 1D). As there may be a difference
in the response to dietary flaxseed between pre- and post-
menopausal women this was also tested in a premenopausal
cohort. However, diet addition of flaxseed to premenopausal
women did not affect the OPN levels in breast tissue (Figure 1E).
No correlation between estradiol levels and OPN in normal
breast tissue was found supporting the lack of effects by
the different anti-estrogen approaches, n = 94, r = 0.11,
p= 0.28 (Figure 1F).

Extracellular in vivo OPN and Extracellular
in vivo MMP-1, −2, −3, −7, and −12 and
uPA in Normal Breast Tissue Correlated
Significantly
All data from unexposed normal breast tissue i.e., including
data from the tamoxifen and flaxseed cohorts before start
of treatments, were included in the correlation analyses,
n = 94. A significant positive correlation was found between
local extracellular in vivo levels in normal breast tissue
between OPN and MMP-1, −2, −3, −7, and −12, and

uPA whereas no correlation was detected between OPN and
MMP-9 (Figure 2).

Subgroup analyses are included in Table 2. However, because
of the limited sample size in each subgroup these data should be
interpreted with caution.

Extracellular in vivo OPN and Extracellular
in vivo IL-6, CXCL-1, −8, −9, −10, −11, and
VEGF in Normal Breast Tissue Correlated
Significantly
As OPN is a potent regulator of inflammation and angiogenesis
we also determined correlations with key potent proteins of these
events, n = 94. OPN exhibited a significant positive correlation
with IL-6, CXCL-1, −8, −9, −10, −11, and VEGF as shown
in Figure 3. CXCL-9, −10, and VEGF exhibited higher r values
in the relationship with OPN compared to all other proteins
(Figure 3). No correlations were found between OPN and CCL-2
or CCL-5 (Figure 3).

Subgroup analyses are included in Table 2. However, because
of the limited sample size in each subgroup these data should be
interpreted with caution.

Extracellular in vivo OPN and Correlations
in Breast Cancers
Next, we investigated if there were any correlations between OPN
and extracellular proteins in breast cancers. As the 13 breast
cancers included in the study had a diverse biology, correlations
may be difficult to detect because of the sample size and data
should be interpreted with caution. Yet, significantly positive
correlations were found between OPN and MMP-1 r = 0.78, p
< 0.01, MMP-2, r = 0.55, p < 0.05, MMP-3, r = 0.62, p < 0.05,
and MMP-12, r = 0.87, p < 0.0001 whereas no correlations
were found with MMP-7 and −9 or uPA. OPN also correlated
significantly with CXCL-9, r = 0.89, p < 0.001 whereas no
correlations were found with IL-6, CXCL-1, −8. 10, and −11 or
CCL-2,−5, and VEGF.

DISCUSSION

Findings herein demonstrate significantly increased extracellular
in vivo levels of OPN in breast cancers of women. Our data
also revealed that, similar to breast cancers, normal dense breast
tissue, with an intrinsically very high risk of developing breast
cancer, exhibited significantly increased OPN levels as compared
to low risk non-dense breast tissue.

In normal breast tissue OPN levels correlated significantly
with MMP-1, −2, −3, −7, and −12 and uPA but not with
MMP-9. OPN also correlated with VEGF, IL-6, CXCL-1, −8,
−9, −10, and −11 but not with CCL-2 and CCL-5. Therapeutic
interventions with tamoxifen or dietary addition of flaxseed
to pre- and post-menopausal women did not alter the OPN
levels in normal breast tissue. No correlation between estradiol
and OPN was detected supporting the results of the anti-
estrogen interventions.

More than 50% of the body weight consists of body fluid
and approximately one third of this fluid can be found outside
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FIGURE 1 | Extracellular levels of Osteopontin (OPN) in breast tissue in vivo. Microdialysis was used to sample in vivo extracellular molecules from breast tissue of

women. Proteins were quantified using a multiplex proximity extension assay as described in the materials and methods section. (A) OPN in breast cancer. Thirteen

breast cancer patients underwent microdialysis before surgery. One catheter was inserted into the breast cancer and another into adjacent normal breast tissue. (B)

OPN in breast tissue of post-menopausal women with various mammographic density. Forty post-menopausal healthy volunteer women, attending the regular

mammography-screening program and were categorized as either having dense (n = 20) or non-dense (n = 20) breasts underwent microdialysis of their left breast.

Boxplots with median and 10–90 percentile are depicted. (C) OPN in normal breast tissue before and after tamoxifen treatment. Nineteen post-menopausal women

were investigated in their unaffected normal breast before and after 6 weeks of adjuvant tamoxifen therapy 20 mg/day. (D) OPN in normal breast tissue after flaxseed

ingestions in post-menopausal women. Thirteen post-menopausal healthy volunteer women were investigated in their left breast before and after 6 weeks of a diet

addition of 25mg ground flaxseed/day. The open symbols represent the two women that did not convert the flaxseed into entereolactone. (E) OPN in normal breast

tissue after flaxseed ingestions in premenopausal women. Ten premenopausal healthy volunteer women were investigated in their left breast before and after a diet

addition of 25mg ground flaxseed/day for one menstrual cycle. All participants converted flaxseed into entereolactone. In (A–E); Wilcoxon matched-pairs signed rank

test was used for paired data and Mann-Whitney U-test for unpaired data. **P < 0.01 and ***P < 0.001. (F) No correlation between OPN in breast tissue and estradiol

(E2) levels. Microdialysis was used to sample in vivo extracellular molecules from breast tissue of women. Proteins were quantified using a multiplex proximity

extension assay and estradiol with a competitive ELISA as described in the materials and methods section. A total of 94 microdialysis investigations of normal breast

tissue unexposed to any treatment is depicted; 42 post-menopausal healthy volunteer women, attending the regular mammography-screening program; 21

post-menopausal women treated for early breast cancer investigated in their unaffected normal breast before the start of adjuvant tamoxifen therapy; 13

post-menopausal healthy volunteer women before the start of dietary flaxseed addition; 10 premenopausal healthy volunteer women before the start of dietary

flaxseed addition and four premenopausal women in two consecutive luteal phases of the menstrual cycle. Statistics were calculated using Pearson’s correlations

coefficient on ranked data.

the cells in tissues. This interstitial or extracellular fluid contain
a reservoir of molecules released by the different cell types
in the tissue, controlling pathophysiological processes in the

microenvironment. This major component in the body is,
however, still relatively unexplored and needs to be characterized
in order to understand pathophysiology. Paracrine signaling, and
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FIGURE 2 | Extracellular breast Osteopontin (OPN) levels in vivo and its correlations with extracellular protease levels in vivo in normal human breast tissue.

Microdialysis was used to sample in vivo extracellular molecules from breast tissue of women. Proteins were quantified using a multiplex proximity extension assay as

described in the materials and methods section. A total of 94 microdialysis investigations of normal breast tissue unexposed to any treatment is depicted; 42

post-menopausal healthy volunteer women, attending the regular mammography-screening program; 21 post-menopausal women treated for early breast cancer

investigated in their unaffected normal breast before the start of adjuvant tamoxifen therapy; 13 post-menopausal healthy volunteer women before the start of dietary

flaxseed addition; 10 premenopausal healthy volunteer women before the start of dietary flaxseed addition; and four premenopausal women in two consecutive luteal

phases of the menstrual cycle. Statistics were calculated using Pearson’s correlations coefficient on ranked data.

thus the homeostasis of the microenvironment, is regulated by
soluble factors in the interstitial fluid and one major difficulty in
studying this, is retrieval of molecules from this compartment.
Onemajor strength of this study is therefore our in vivo approach
for sampling of extracellular molecules using microdialysis
directly in live tissue in situ. This allows for determinations of
previously unrecognized metabolic events.

To the best or our knowledge, extracellular OPN in vivo
has previously not been determined in human breast tissues
including breast cancer before. We found increased extracellular
OPN levels in breast cancers, which is in keeping with previous
studies that have shown increased plasma levels of OPN in
metastatic breast cancer patients (54, 55). OPN levels have also
been associated with tumor burden, lymph node metastases,
and poor survival (9, 54–56). In the adjuvant setting, however,
OPN measured in plasma has not been shown to be prognostic

in multivariate analyses (9). Plasma OPN do not necessarily
reflect breast tissue levels as all cells in the body contribute
to these plasma levels. Our data of increased levels of OPN
at its bioactive site, directly in the cancerous tissue indeed
confirms that extracellular OPN may play a key role in breast
cancer biology.

OPN plays a significant role in tumor progression by shaping
the cancer microenvironment (6, 11–16, 19, 21). Our data,
with increased levels in dense breast tissue, clearly suggests that
local OPN may also be up-regulated in non-cancerous tissues.
Additionally, OPN exhibited significant positive correlations
with several proteases in normal breast tissue. Proteases mediate
a continuous remodeling of the extracellular matrix and have
been shown to have a broad range of substrates including several
cytokines. Protease expression has been implicated to be essential
in cancer progression. However, clinical trials of broad-spectrum
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TABLE 2 | Subgroup analysis of the correlations between osteopontin and MMPs

(matrix metalloproteinases), uPA (urokinase-type plasminogen activator),

interleukin (IL), CXCL (chemokine (C-X-C motif) ligand), and CCL (Chemokine (C-C

motif) ligand) in normal human breast tissue in vivo.

Dense

n = 20

Non-dense

n = 20

Before

tamoxifen

n = 21

Post-

menopausal

before flax

n = 13

Premenopausal

before flax

n = 18

MMP-1 0.49 0.67 0.54 0.71 0.25

MMP-2 0.52 0.40 0.69 0.59 0.42

MMP-3 0.46 0.52 0.68 0.67 0.01

MMP-7 0.40 0.13 0.73 0.70 0.56

MMP-9 −0.25 0.09 −0.24 0.00 −0.22

MMP-12 0.56 0.62 0.56 0.80 0.01

uPA 0.42 0.53 0.62 0.69 −0.01

IL-6 0.21 0.34 0.19 0.42 0.46

CXCL1 0.27 0.58 0.20 −0.15 0.04

CXCL8 0.15 0.53 −0.04 −0.53 0.02

CXCL9 0.54 0.37 0.72 0.83 0.56

CXCL10 0.49 0.33 0.67 0.42 0.66

CXCL11 0.13 0.50 0.18 0.65 0.41

CCL2 0.18 0.37 0.09 −0.14 −0.02

CCL5 −0.05 0.19 0.20 0.29 −0.42

VEGF 0.69 0.66 0.20 0.87 −0.14

Spearman’s correlation r. Significant values in bold p < 0.05.

MMP inhibitors have failed and even shown an increased risk of
tumor progression (57–59). Clearly, some MMPs may have anti-
tumor effects and possible future interventions against MMPs
must be more selective (59). Interestingly, MMP-9, which failed
to show any correlation with OPN in our data-set, has been
shown to be anti-tumorigenic in experimental cancer models by
affecting levels of anti-angiogenic fragments and inflammation
(60–62). Additionally, in human breast cancers no increased
levels of extracellular MMP-9 has been detected (63). Our present
data of an interconnections between OPN and other proteases
such as MMP-1, −2, −3, −7, −12, and uPA, in normal human
breast tissue are in line with previous studies of several cancer
forms (11–13).

We also found that OPN exhibited significant correlations
with several inflammatory and angiogenic proteins in normal
breast tissue. Some of these correlations corroborate previous
findings from cancerous tissues such as IL-6 and VEGF
whereas others do not, including CCL-2 and −5. Nevertheless,
several of these alternations seems to be unfavorable
regarding carcinogenesis.

OPN may mediate its effect through several different
mechanisms though some need yet to be elucidated
(15). However, it has been shown that OPN activates the
phosphatidylinositol 3-kinases/Protein kinase B/nuclear factor
kappa B (PI3K/AKT/NFKB) pathway inducing uPA secretion
and MMP-2 activation in breast cancer cells (64). It has also
been shown that both the PI3K/AKT and extracellular signal–
regulated kinases 1 and 2 (ERK 1/2) pathways are involved in the
OPN induced secretion of VEGF in endothelial cells (65).

The OPN gene has been suggested to be under the control
of estrogens, at least in rodent models (50, 51). In our data-
set estradiol failed to relate to OPN levels. One strength
of our data is that both premenopausal women with high
levels of estradiol as well as post-menopausal women with
considerably lower estradiol levels were included. Despite this
we were not able to find any evidence that estradiol affects
OPN in normal human breast tissue. Moreover, OPN levels
were unaffected by treatment with the anti-estrogen tamoxifen
as well as by a diet addition of flaxseed. Together, these
data strongly suggest that OPN in normal human breast
tissue is under the control of other pathways than that
of estrogen.

Non-toxic potent breast cancer prevention would obviously be
themost effective strategy for decreasingmortality andmorbidity
of breast cancer. Today, such prevention is not available. The
anti-estrogen tamoxifen is registered in some countries as a
breast cancer prevention therapy. Tamoxifen and aromatase
inhibitors to women at high risk of developing breast cancer
has been shown to reduce the risk of breast cancer by 30–50%
(66–68). This treatment is associated with severe side-effects
such as thromboembolism, endometrial cancer, osteoporosis,
and low quality of life leading to a very low compliance to
the therapy (66, 67). Thus, other efficient non-toxic breast
cancer prevention therapeutics, possible to comply to for a long
period of time, are needed. Diet may be one such intervention
as epidemiological and migrant studies indicate that Asian
population have decreased risk of breast cancer depending
on life style factors (69). Exposure to phytoestrogens such as
genistein and enterolactone may be one explanation and in
mice the genistein has been shown to affect OPN in prostate
cancer (52, 53). InWestern diets, lignans including enterolactone
is the major ingested phytoestrogen. Flaxseed is one major
source of enterolignans and we have shown that dietary flaxseed
decreases pro-angiogenic proteins in vivo (37, 70). Flaxseed may
be converted by the gut microbiota into enterolactone but not
all individuals have this capacity (71). Two women that added
flaxseed to the diet in our present study did not increase their
enterolactone levels. However, our data, with or without these
two women, and both in pre- and post-menopausal women did
not indicate any change of OPN in breast tissue by the flaxseed
diet. Clearly, other therapeutics need to be used for targeting
OPN in the breast.

In conclusion, we demonstrate that extracellular OPN was
increased in human breast cancers in vivo. Similar to breast
cancer, normal dense breast tissue in post-menopausal women
exhibited significantly higher levels of OPN than non-dense
breast tissue. In normal breast tissue OPN was associated
with several pro-tumorigenic proteins, which may enhance a
cancer-permissive microenvironment. As OPN, irrespective of
its source, is a pro-tumorigenic protein it seems desirable to target
this molecule in prevention strategies. However, OPN levels in
normal breast tissue was not modifiable with tamoxifen or a
diet addition of flaxseed and estradiol did not affect the levels.
Thus, other therapeutics targeting OPN may be more feasible to
include in breast cancer preventions trials of women with dense
breast tissue.
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FIGURE 3 | Extracellular breast Osteopontin (OPN) levels in vivo and its correlations with extracellular inflammatory- and angiogenic proteins in vivo in normal human

breast tissue. Microdialysis was used to sample in vivo extracellular molecules from breast tissue of women. Proteins were quantified using a multiplex proximity

extension assay as described in the materials and methods section. A total of 94 microdialysis investigations of normal breast tissue unexposed to any treatment is

depicted; 42 post-menopausal healthy volunteer women, attending the regular mammography-screening program; 21 post-menopausal women treated for early

breast cancer investigated in their unaffected normal breast before the start of adjuvant tamoxifen therapy; 13 post-menopausal healthy volunteer women before the

start of dietary flaxseed addition; 10 premenopausal healthy volunteer women before the start of dietary flaxseed addition and four premenopausal women in two

consecutive luteal phases of the menstrual cycle. Statistics were calculated using Pearson’s correlations coefficient on ranked data.
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