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Human glioblastoma is the most aggressive type of primary malignant brain tumors.

Standard treatment includes surgical resection followed by radiation and chemotherapy

but it only provides short-term benefits and the prognosis of these brain tumors is still very

poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal

ability, which are partly responsible for the tumor resistance to therapy and for the tumor

recurrence after treatment. The human adult subventricular zone contains astrocyte-like

neural stem cells (NSCs) that are probably reminiscent of the radial glia present in

embryonic brain development. There are numerous molecules involved in the biology

of subventricular zone NSCs that are also instrumental in glioblastoma development.

These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription

factors, and growth factors. Interestingly, genes encoding these molecules are frequently

mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the

subventricular zone are a potential cell of origin that contains the driver mutations of

human glioblastoma. In this review we will describe common features between GSCs

and subventricular zone NSCs, and we will discuss the relevance of this important finding

in terms of possible future therapeutic strategies.

Keywords: glioblastoma stem cells, tumor microenvironment, adult neurogenesis, neural stem cells,

subventricular zone, driver mutations

BACKGROUND

Glioblastoma (GBM) is the most malignant primary brain tumor in humans. The World Health
Organization classified this tumor as Grade IV glioblastoma, and consists of poorly differentiated
cells with vascular proliferation and pseudopalisading necrosis. Glioblastomas are characterized by
rapid cell infiltration and invasion, frequent relapses and poor prognosis, and survival rates (1). Like
other cancers, GBMs show a high degree of heterogeneity in a wide range of genomic, phenotypic,
and functional features (2–4). For that reason, patients with GBM exhibit a high variety of genetic
abnormalities and clinical characteristics with subsequent variability in survival times and response
to treatments.

Glioblastomas (GBMs) contain a small subpopulation of cancer cells with stem cell
characteristics including self-renewal ability, proliferation, multilineage potency, and migration
capacity, that are referred to as glioma stem cells (GSCs) (5–7). Compelling evidence from the
last decade suggests that GSCs may arise from neural stem cells (NSCs) residing in the adult
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subventricular zone (SVZ) (8, 9). A recent article by Lee et al.
(10) has provided molecular genetic confirmation of this issue
showing that NSCs in the SVZ could be the cell of origin that
encloses the driver mutations of human GBM. This important
finding will allow the development of treatments targeting SVZ-
derived NSCs harboring driver mutations.

In this review, we will focus on the existing link between NSCs
in the SVZ and the initiation and development of the GBM, and
we will discuss possible therapeutic interventions in the SVZ.

Neural Stem Cells of the Subventricular
Zone
The adult SVZ lining the lateral ventricles contains NSCs
that share features of astrocytes and of immature progenitors
(11, 12). To understand the source and organization of these
astrocyte-like NSCs in the adult SVZ it is necessary to revise the
neurogenic process that occurs during embryonic development.
The ventricular zone, or neuroepithelium, is a highly proliferative
zone that expands in the early embryonic stages of development
through division of neuroepithelial cells, symmetrically to
expand their pool, and asymmetrically to generate differentiated
progeny (13, 14). As neural tissue is added, neuroepithelial
cells become elongated and extend their processes from the
ventricle surface, to contact cerebrospinal fluid (CSF), to the pial
surface, to contact blood vessels. These elongated neuroepithelial
cells are named radial glia and are the responsible for the
bulk of neurogenesis in the early embryonic brain (Figure 1A).
Radial glia divide asymmetrically allowing their self-renewal and
the generation of neuroblasts that migrate toward their final
destination in the cortical plate with the help of the mother’s
radial glia extended process (Figure 1A). Microglial cells are also
present in the neuroepithelium when these events, including
the assembling of neural circuits, take place (Figure 1A). In
addition, during the late embryonic development and the first
weeks of birth, radial glia are also the source of astrocytes and
oligodendrocytes, that populate the different brain structures,
and of ependymal cells that will line the ventricle surface.
Nowadays, it is well-assumed that astrocyte-like NSCs within
the SVZ derive from embryonic radial glial cells (12, 15, 16).
Specifically, in rodents, SVZ NSCs consist of a subpopulation
of astrocytes (named B1 astrocytes) that differ from another
population of non-neurogenic astrocytes (B2 astrocytes). B1
astrocytes are located under the layer of ependymal cells lining
the ventricle and some of them have a short apical process
with a single primary cilium projected toward the CSF in the
lateral ventricle, and also a basal process that contacts blood
vessels of the SVZ plexus (17) (Figure 1B). This strategic location
allows type B1 cells to receive signals from the CSF and from
the blood, as radial glia do during development. In contrast,
B2 astrocytes do not contact the ventricle. Eventually, type B1
cells form transit-amplifying neural progenitor cells (type C
cells) in asymmetric divisions, which, in turn, divide to give
rise to neuroblasts (type A cells) (18–20) (Figure 1B). Newly-
formed neuroblasts migrate in chains ensheathed by gliotubes of
astrocytes toward the olfactory bulb along the rostral migratory
stream (21, 22). Once in the olfactory bulb, these immature

neurons differentiate into interneurons that integrate in pre-
existing functional circuits (23, 24). In addition, SVZ type B
cells can also generate oligodendrocyte precursors that contribute
to the maintenance of the oligodendrocyte population in the
neighboring corpus callosum, striatum, and fimbria-fornix both
in the normal brain and after a demyelinating lesion (25–27). The
SVZ is also abundant in microglial cells where they intervene in
the control of postnatal and adult neurogenesis (28).

Cytoarchitectural Distinctions of the
Human Subventricular Zone
The organization of the adult human SVZ differs from the
classical SVZ described above for other mammalian species.
During development radial glia in the human SVZ generate
neurons and macroglia that populate the developing brain. The
main difference relies on the existence of an outer SVZ, which
also contains radial glia from which neurogenesis takes place
that leads to extensive cortical expansion. This accounts for the
larger and more complex cortical characteristics of the human
brain. Following corticogenesis, the neurogenic niche of the SVZ
and outer SVZ remains proliferative in neonates, generating
new neurons that populate the prefrontal cortex and, to a lesser
extent, the olfactory bulb. After approximately 2 years, SVZ
neurogenesis ceases and the SVZ acquires an organization that
differs from the classical SVZ cytoarchitecture described for
rodents (Figure 1C). A detailed description of the adult human
SVZ was provided by Quiñones-Hinojosa et al. (29) with four
layers being characterized. Layer I is composed of ependymal
cells in contact with the ventricular lumen. Next to this layer,
there is an almost acellular layer (Layer II), which is formed
during postnatal development as a consequence of neuroblast
depletion in this region. This layer contains numerous processes
of astrocytes connected by junctional complexes and a few
microglial cells (Figure 1C). This is probably a region of signaling
exchange between astrocytes, and between astrocytes and
ependymal cells. Microglia might also influence communication
between these cell types. Adjacent to this hypocellular layer
there is a dense ribbon of astrocytic cell bodies (Layer III) with
variable morphology, whose organization resembles the glial
meshwork that surrounds migrating neuroblasts in the SVZ,
with the exception that in the adult human this meshwork
is devoid of neuroblasts (Figure 1C). Finally, Layer IV is a
transition region with few cells and similar to the underlying
brain parenchyma. Some astrocytes of the adult human SVZ
proliferate, as revealed by staining with Ki67 and proliferating
cell nuclear antigen (PCNA) (29, 30). However, as mentioned
before, neuroblasts are not found either in adult human SVZ or
in the rostral migratory stream toward the olfactory bulb. Indeed,
the incorporation of new neurons in the human olfactory bulb is
nearly extinct by adulthood (31). Interestingly, newly generated
cells in adult human brain are mainly oligodendrocytes, not
neurons (31, 32), which suggests that the oligodendrogenic
process and its correspondingmyelinmaintenance acquiresmore
significance in the human brain compared to other mammalian
brains. Therefore, NSCs remain in the SVZ of the adult human
brain although their role has not yet been clearly elucidated.
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FIGURE 1 | Cell types in the neuroepithelium and in the subventricular zone. (A) Schematic representation of the ventricular zone (neuroepithelium) during

development of the vertebrate central nervous system. Radial glia are represented in blue, neural progenitor cells in green, neuroblasts in red, and microglia in gray. A

blood vessel is illustrated bordering the pial surface in dark red. (B) Schematic representation of the adult rodent subventricular zone (SVZ). Ependymal cells are

represented in yellow, type B1 astrocytes in blue, type B2 astrocytes in pale blue, type C cells (transit-amplifying neural progenitor cells) in green, type A cell

(neuroblasts) in red, and microglia in gray. (C) Schematic representation of the human adult SVZ. Ependymal cells are represented in yellow, astrocyte-like neural stem

cells in blue, astrocytes in pale blue and microglia in gray. Layer I is constituted by the ependymal cells. Layers II and III are indicated in in the illustration. Layer IV is not

shown. (D) Schematic representation of the human adult SVZ and an adjacent glioblastoma. Ependymal cells are represented in yellow, astrocyte-like neural stem

cells in blue, astrocytes in pale blue, microglia in gray, glioma stem cells in purple, other type of glioma cells in pale purple. Astrocyte-like neural stem cells acquire

driver mutations that generate glioma stem cells which divide to form the tumor mass.

The investigation on key features of this population of NSCs,
which constitute a substrate for neoplastic transformations,
will lead us to a better understanding of neurodevelopmental,
neurodegenerative, and tumorigenic pathologies.

Cellular Constituents and Tumor Niche in
Human Glioblastomas. Similarities With the
Subventricular Zone Neurogenic Niche
Human GBMs consist of a heterogeneous cell population, both
neoplastic and non-neoplastic, that are organized as a cellular
and functional hierarchy based on a subpopulation of glioma
cells with stem cell properties, the GSCs (Figure 1D). GSCs
have potent tumor-initiating ability, self-renewal capacity, and
resistance to standard therapies (6, 33). GSCs are the origin
and source of tumor recurrence in GBM and are capable of
whole tumor regeneration once the treatment has concluded
(33–35). Interestingly, GSCs share common features with NSCs
of the SVZ, such as nestin expression, high motility, diversity
of progeny, robust proliferative potential, association with
blood vessels, and bilateral communication with constituents
of the niche such as endothelial cells, pericytes, astrocytes, or
extracellular matrix (Table 1) (36).

Glioma stem cells (GSCs) of GBMs maintain localization
within a vascular niche (37, 38) (Figure 1D) and display a

TABLE 1 | Common features between glioma stem cells and subventricular zone

neural stem cells.

Nestin expression

Proliferative potential, motility, diversity of progeny

Association with vasculature

Bilateral crosstalk with niche components:

• Endothelial cells

• Pericytes

• Microglia

• Astrocytes

• Extracellular matrix

reciprocal communication with the perivascular niche which
contributes to the GBM initiation, progression, invasion, and
therapeutic resistance. For instance, endothelial cells of the
perivascular niche produce numerous growth factors that
promote GSC self-renewal, tumorigenicity, and survival (39–
41). In turn, GSCs can release cytokines and chemokines that
regulate the tumor vasculature and can even transdifferentiate
and generate endothelial cells or pericytes to form their own
vascular niche (42–45). NSCs of the SVZ also locate in
close contact to the vasculature (46, 47) and receive signals
from endothelial cells and pericytes that intervene in their
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maintenance and proliferation (48, 49), which is not surprising
since during development, germinal zone vasculature regulates
neurogenesis (50). In return, NSCs also appear to have vascular
cell differentiation capacities (51).

Immune cells are also important constituents of the GBM
niche (Figure 1D). Microglia/macrophages are able to infiltrate
in the tumor mass in response to chemoattractant cytokines
released by the tumor (52–54), and this infiltration contributes
to the tumor progression, since microglia acquire a tumor-
promoting phenotype characterized by the release of trophic
and angiogenic factors that support the tumor growth (55).
In the adult SVZ, NSCs also establish important bilateral
communication with microglia with relevance in the shape of
neurogenesis. NSCs are able to control microglial activity and,
additionally, the activation state of the microglia influences
proliferation and differentiation of NSCs (28).

Astrocytes and extracellular matrix proteins of the GBM
microenvironment also contribute to the support of proliferation
and migration of the GSCs (56, 57) and, similarly, they intervene
in the control of NSC proliferation and migration in the SVZ
niche [reviewed in (58, 59), respectively].

Despite all the similarities between tumor and SVZ stem cell
niches, there is a niche constituent that is specific to the SVZ,
the CSF. The CSF is a source of soluble factors with a role
in mediating NSC quiescence through molecules involved in
G-protein-coupled receptor signaling (60).

FREQUENT GENE MUTATIONS IN HUMAN
GLIOBLASTOMAS

The vast majority of GBMs (80% of cases) are considered
primary GBMs; they develop rapidly de novo in elderly patients
without clinical or histological evidence of a less malignant
precursor lesion. Secondary GBMs progress from low-grade
gliomas such as diffuse astrocytomas or anaplastic astrocytomas
and are prevalent in younger patients. Histologically, primary
and secondary GBMs are indistinguishable, but they carry
specific genetic alterations in cancer-driving genes (61). Typical
for primary GBMs are epidermal growth factor receptor (EGFR)
amplification and loss of the tumor suppressor phosphatase and
tensin homolog (PTEN). Secondary GBMs are unequivocally
characterized by the presence of IDH1 (isocitrate dehydrogenase
1) mutations (62), which are absent in primary GBMs.
Historically, inactivation of the tumor suppressor protein p53
gene TP53, has been also considered a classical feature in
secondary GBMs, but infrequently in primary GBMs (61).
However, more recent literature indicates that TP53 is a key
tumor suppressor for both GBM subtypes (63). Mutations in
the promoter of TERT (telomerase reverse transcriptase) gene
are often identified in GBMs (3, 64) and correlate with elevated
mRNA expression and telomerase reactivation, which suggests
that maintenance of the telomere is a requisite step in GBM
pathogenesis (3).

Therefore, GBMs present genetic alterations in genes involved
in the control of cell proliferation, apoptosis, and tissue invasion.
Interestingly, with the exception of IDH-1, all the above

TABLE 2 | Genes most frequently mutated in glioma stem cells that are involved

in the control of subventricular zone neural stem cell biology.

Genes Glioma stem cells Subventricular zone

neural stem cells

TERT Mutations in TERT lead to an

increase in telomerase activity

NSCs have telomerase activity

derived of their TERT expression

TP53 Mutations in TP53 lead to loss of

the tumour suppressor protein

p53

p53 modulates NSC proliferation

and self-renewal

PTEN Mutations in PTEN produce

absence or deficiency in the

tumor suppressor protein PTEN

PTEN regulates NSC migration,

apoptosis and proliferation

EGFR Mutations in EGFR produce

activated EGFR signaling

EGF/EGFR signaling activates

NSC proliferation

PDGF Mutations in PDGF induce

activation of the PDGF pathway

PDGF/PDGFR signaling

activates NSC proliferation

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; NSC, neural

stem cell; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor

receptor; PTEN, phosphatase and tensin homologue; TP53, tumor suppressor gene that

encodes for the protein p53.

mentioned genes also control these functions in NSCs from the
SVZ. Next, we will describe in more detail the effect of genes that
control quiescence, proliferation, differentiation, or migration of
SVZ NSCs that are frequently mutated in GBMs (summarized
in Table 2).

Telomerase
The enzyme telomerase is responsible for the maintenance of
telomere length to prevent chromosomal shortening, end-to-
end fusions, and apoptosis during successive rounds of cell
division (65). Though expressed widely during mammalian
embryogenesis and also in the prenatal brain, in adult animals
telomerase expression is restricted to the SVZ and olfactory bulb,
the most proliferative brain regions in rodents (66). The activity
of telomerase in dividing NSCs may overcome the progressive
proliferation-induced telomere shortening and promote growth
and survival of adult NSCs (67).

The active telomerase enzyme consists of telomerase reverse
transcriptase (TERT), telomerase RNA (TERC) and specialized
proteins (e.g., dyskerin) (68). The enzyme preserves telomere
stability by adding TTAGGG repeats to the end of a given
chromosome in rapidly dividing cells, using its complementary
TERC sequence as the template and the TERT subunit as the
catalytic component. While TERC is constitutively expressed in
most cells, TERT is tightly regulated and determines telomerase
activity (69). TERT activity is frequently upregulated in human
cancers and it is thought to be a critical mechanism that
contributes to human tumorigenesis (70). Mutations in the TERT
promoter have been detected in more than 50% of primary
adult GBMs and are correlated with increased telomerase activity
(3, 71). Moreover, GBM patients with TERT promoter mutations
have lower survival times (64).

Additionally, some cancer cells use a telomerase-independent
mechanism to elongate their telomeres (72). The alpha-
thalassemia/mental retardation syndrome X-linked (ATRX) gene
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is a suppressor of these alternative mechanisms. Therefore,
mutations in ATXR are also frequently identified in GBMs (73,
74). In addition, ATXRmutations are often associated with IDH1
and TP53 mutations and are also associated with poor patient
prognosis (75, 76).

In line with previous work that suggested that GBM may
arise from the acquisition of somatic mutations in NSCs of
the SVZ (36), it is important to highlight that TERT promoter
mutations in NSCs would permit them to develop an extended
self-renewal activity, increasing their chances of acquiring GBM
driver mutations over time (Figure 1D).

Tumor Suppressor Genes
TP53

TP53 is a tumor suppressor gene that encodes for the sequence-
specific DNA-binding protein p53. p53 induces apoptosis or
cell cycle arrest in response to genotoxic stress, thus blocking
the transmission of DNA mutations to progeny cells (77).
Proliferating cells of the SVZ express p53 in the embryonic and
postnatal brain, where it exerts a role in the control of cell division
and early differentiation rather than in the control of cell death
(78). In the adult SVZ p53 also modulates proliferation and self-
renewal of NSCs (79, 80). Loss of function of p53 changes the
behavior of type B and type C cells leading to the formation
of periventricular areas of cellular hyperplasia in the adult SVZ
formed by clusters of these cell types together with neuroblasts
(79). Moreover, exposition of TP53−/− mice to the mutagen N-
ethyl-N-nitrosourea (ENU) induces the formation of GBM-like
tumors in the adult SVZ (81). TP53mutations leading to p53 loss
are frequent in both GBM subtypes (61, 63).

PTEN

PTEN encodes a phosphatase that regulates NSC migration,
apoptosis, and proliferation of mouse SVZ NSCs (82, 83).
To precisely analyse the role of PTEN in human SVZ NSCs
Duan et al. generated PTEN-deficient human NSCs by targeted
gene editing (84) and demonstrated that PTEN deficiency
induces a reprogramming of NSCs toward a GSC-like phenotype.
Specifically, PTEN deficiency leads to an upregulation of PAX7,
which in turn promotes oncogenic transformation of the NSCs.
Patients with GBMs deficient in PTEN present increased levels of
PAX7, which has been associated to the aggressive characteristics
of the GSCs. Targeting PTEN-deficient NSCs emerges therefore
as an important therapeutic strategy for GBMs. With that
purpose, the mentioned authors used mitomycin C to selectively
target NSCs with PTEN deficiency and induced their apoptosis.
In a recent article by Jaraíz-Rodríguez et al., GSCs from GBM
patients were targeted with a selective peptide that upregulates
PTEN and as a consequence, a reduction in their survival,
migration and invasion was achieved (85).

Growth Factors
EGF
Epidermal growth factor (EGF) promotes proliferation of NSCs
of the rodent SVZ by EGFR activation (86–88). Specifically, the
majority of the EGF-responsive cells in the adult mouse SVZ are
the rapidly-dividing transit-amplifying cells (type C cells) rather

than the primary and less proliferative NSCs (type B1 cells). In
addition, EGF prevents NSC differentiation, and EGFR signaling
is associated with enhanced cellular proliferation, survival, and
infiltration in the adjacent parenchyma, similar to the events
observed in high-grade gliomas (88, 89). Noticeably, the EGF
signaling pathway is also involved in gliomagenesis. For instance,
amplification of the EGFR gene is a potential transformation
mechanism in the development of GBM (90). What remains
unsolved is which is the homolog to these type C highly EGF-
responsive cells in the human SVZ. In any case, these results
suggest that mutations in the EGFR leading to activated EGFR
signaling, in more quiescent or in more proliferative NSCs of
the human SVZ, may result in the migration of SVZ cells into
the parenchyma and subsequent generation of gliomas or other
brain tumors.

PDGF
Similarly to EGF, platelet-derived growth factor (PDGF) also
activates proliferation of NSCs in the SVZ and creates areas
of hyperplasia with features of early glioma formation (91).
But contrary to EGF-responsive cells, NSCs expressing the
receptor for PDGF (PDGFRα) are mainly the type B cells.
PDGF stimulation blocks the ability of B cells to give rise to
differentiated progeny which results in an accumulation of type
C cells that invade the adjacent parenchyma. Therefore, PDFG
signaling may be involved in the regulation of primary NSCs
whereas EGFR signaling could rather be involved in the control
of the secondary type C neural progenitors.

Activation of the PDGF pathway is also a common
event in gliomagenesis and has been implicated in tumor
initiation, indeed PDGF/PDGFR overexpression occurs with
equal frequency in both low- and high-grade gliomas (92). In
addition, PDGF expression in GBM correlates well with other
mentioned bad prognosis factors such as PTEN deletion and
IDH1mutation (93).

There are many other factors and signaling pathways involved
in the control of SVZ NSC proliferation whose expression or
activity is altered in GBMs. Some of these include the c-Met
receptor, the transcription factor FOXO3, the Wnt pathway or
the sonic hedgehog pathway (36, 94–98).

Neural Stem Cells of the Subventricular Zone as the

Origin of Glioma Stem Cells
There is still controversy about the cell of origin of GBMs.
NSCs are good candidates since they are more susceptible to
malignant transformation than differentiated cells in the adult
brain (9, 99). This susceptibility is derived of their ability to
self-renew, proliferate, and bypass apoptosis and senescence
by having the precise required cellular machinery. However,
differentiated brain cells such as astrocytes, oligodendrocyte
precursor cells, and neurons have also been described to be target
of transformation and generate malignant gliomas (100–103).

The hypothesis that GBMs may originate from SVZ NSCs
that have undergone malignant transformation has been recently
demonstrated in an elegant study by Lee et al. (10). They
showed that, in 56.3% of patients with IDH1 wild-type GBM,
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tissue from their tumor-free SVZ contained mutations in cancer-
driving genes such as the mentioned TP53, PTEN, and EGFR,
that were similar to those observed at high levels in the tumor.
Furthermore, 42.3% of patients presented somatic mutations in
the TERT promoter in the SVZ tissue shared with the associated
tumors. In addition, they demonstrated that astrocyte-like NSCs
from the SVZ carrying the driver mutations were able to migrate
and develop malignant GBMs in distant brain regions. All the
results demonstrate that NSCs in human SVZ tissue are the cells
of origin that contain the driver mutations, at least in IDH1
wild-type GBM.

Interestingly, TERT promoter mutations in tumor-free SVZ
tissue were identified in all patients with IDH-wild-type GBM
with driver mutations. This finding suggests that TERT promoter
mutation may be the earliest and a common genetic event by
which NSCs in the SVZ, which have limited self-renewal activity,
are able to avoid telomere shortening, thereby increasing the
possibilities of acquiring driver mutations.

Their results, however, do not elucidate the cell of origin in
IDH1-mutant GBM, which remains unknown. And still, seven
out of the 16 GBM samples analyzed by Lee et al. did not
have mutations in the tumor-free SVZ samples, which indicates
that SVZ NSCs might not be the origin of all type of IDH1
wild-type GBMs.

In any case, their findings are the first genetic evidence
on the cell of origin of GBM from human patients with this
cancer. The alternative hypotheses that support the concept
of dedifferentiation are based on experiments performed with
rodents and no evidence has yet been provided in human
GBM patients.

Lee et al. have also generated a mouse model of p53, PTEN
and EGFR mutations in putative NSCs from the SVZ through
genome editing (10). These mutations were selected because
they are recurrent driver mutations found in tumor-free SVZ
from GBM patients. Interestingly, 90% of the electroporated
mice carrying these mutations developed brain tumors with
the presence of the target mutations. By analyzing the progress
of glioma development over time the authors showed that
mutated NSCs migrated to distant brain sites and 67% of
the gliomas developed in distant regions from the mutation-
arising SVZ. These results indicate that NSCs harboring driver
mutations migrate from the SVZ and lead to the development
of malignant gliomas in distant brain regions. Interestingly
enough, genome-edited NSCs with the driver mutations that
migrated to the olfactory bulb differentiated into mature
neurons and did not lead to gliomas. The understanding
of the environmental cues existing in the olfactory bulb
compared to the cues existing in other regions in which gliomas
are developed (i.e., cortex) may broaden new approaches of
therapy development.

Neural Stem Cells of the Hippocampus Have Not

Been Involved in Gliomagenesis
The hippocampus of the adult mammalian brain contains NSCs
that generate neurons via transit-amplifying cells, although their
existence in the human brain has been subject of debate in the
last few years (104, 105). Hippocampal NSCs are located in

the subgranular zone, and have an apical portion with which
they contact blood vessels, and a branched opposite process that
contacts neuronal processes and glial cells (106, 107). In contrast
to NSCs in the adult SVZ or during development, radial glia-
like NSCs of the hippocampus do not contact CSF. As previously
mentioned, CSF is a continuous source of soluble factors for the
control of proliferation in SVZ NSCs (60) and, a failure in this
control system could induce alterations in NSC biology that may
increase their susceptibility to malignant transformation.

Another striking difference with the SVZ is that NSCs
of the hippocampus differentiate to granule neurons in
the same neurogenic niche. Therefore, the hippocampal
niche favors neuronal differentiation which makes NSCs
less prone to proliferation and migration and thus, less
potentially tumorigenic.

The hippocampal/SVZ niches also differ in the role exerted
by microglial cells in the NSC population. Microglia in the
hippocampus are involved in the control of neurogenesis through
phagocytosis of newborn cells that become apoptotic (108)
whereas in the SVZ provide trophic support to the NSCs (109).

Interestingly, recent findings have demonstrated that the
hippocampus is a region spared of GBM invasion (110). The
authors suggest that the specific composition of extracellular
matrix in this region may explain the lack of preference for
GSC migration to this region (110). In contrast, GBM cells,
from both IDH1 wild-type and mutant-type GBMs, are prone to
migrate toward the SVZ and take advantage of the niche factors
secreted in this region that promote proliferation and migration
of progenitor cells (111, 112).

Therefore, unique features of the SVZ neurogenic niche might
explain the possible oncogenic transformation of the NSCs in
this niche, and not in the hippocampus, as well as the major
preference of migration of GSCs to this region. As our knowledge
of the neurogenic niches continues to expand, newly revealed
features will also drive better understanding of tumor cause and
therapy response.

THERAPEUTIC IMPLICATIONS

Glioblastomas (GBMs) are extremely difficult to treat since
they are constituted by a heterogeneous group of cells
with genetic and epigenetic variations, which interact with
their microenvironment (blood vessels, microglia/macrophages,
extracellular matrix), through different communication routes
(soluble factors, gap junctions, extracellular vesicles, tunneling
nanotubes), in order to support GBM progression. In addition,
most chemical treatments have to deal with difficulties derived of
the drug penetration through the blood-brain-barrier or of the
severe side-effects.

Current treatment options for GBM include maximal
surgical resection, followed by radiation and temozolomide
treatment (113). Post-surgical treatments are necessary to
prevent recurrence but, despite this, relapses occur and the
prognosis of GBM is very poor. Even with maximal surgical
resection plus radiotherapy with concomitant or subsequent
chemotherapy, patients have a median overall survival rate

Frontiers in Oncology | www.frontiersin.org 6 August 2019 | Volume 9 | Article 779

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Matarredona and Pastor Cellular Origin of Glioblastoma Stem Cells

of about 14–15 months (114). New drugs and combination
therapies of radiotherapy and temozolomide together with novel
radiosensitizers are continuously being tested in pre-clinical and
clinical trials in order to achieve better outcomes and patients’
survival (115–117), but still, compromised responses derived
of the therapeutic resistance and inefficient targeting of GSCs
are produced.

Tumor microenvironment is considered one of the main
targets for new therapies since the dialogue established between
the tumor cells and the tumor niche is essential for the tumor
to progress. For instance, vascular endothelial growth factor
(VEGF) is an important mediator of angiogenesis in GBM.
A monoclonal antibody that inhibits VEGF signaling pathway,
bevacizumab, has been used to decrease tumor angiogenesis in
GBM, but it has considerable side effects (118). Tumor-associated
microglia/macrophages also promote tumor progression by the
release of trophic and angiogenic factors (55). It is striking
that microglia modulates NSC biology in the SVZ early in
development, postnatally, and later in the adulthood, but in
GBMs microglia adapt a tumor-promoting phenotype. Attempts
have been made to counteract microglia tumor-promoting
phenotype and induce an antineoplastic phenotype. For instance,
systemic administration of amphotericin B induces an increase
in the immune functions of microglia and reduce the growth
of the glioma-initiating cells (119). In this line, the knock-down
of VEGF in myeloid cells reduces the pro-tumorigenic effects of
microglia/macrophages and attenuates glioma progression (120).
The extracellular matrix is also important for tumor invasion
and progression. The blockade of the extracellular matrix protein
laminin-411 has been shown to disrupt the perivascular GSC
niche and inhibits GBM growth (121).

Another important issue to consider in terms of possible
therapies is the heterogeneity of the GBM populations, with
fast-dividing- and quiescent GSCs combined within the tumoral
tissue (122). Conventional chemo and radiation therapies mainly
target the proliferative population. Hence, targeting the quiescent
GSC population, which is more resistant to therapy and
can initiate tumors, in combination with existing therapies
against proliferative GSCs may be critical to overcome this
cancer (35, 122).

In the context of this review, we will discuss possible
therapeutic options targeting GSCs, and more specifically,
targeting their putative cells of origin, NSCs of the SVZ
with driver mutations. Therapies aimed to develop treatments
directed not only to GBM cells and their microenvironment, but
also to the SVZ, must be taken into account in order to achieve
better prognosis for GBM patients.

Radiotherapy in the Subventricular Zone
Glioma stem cells (GSCs) in the human SVZ are specifically
resistant to radiation in vivo (113). Factors released within
the SVZ neurogenic niche are probably involved in this
radioresistance and subsequently in potential tumor relapse.
Searching treatments directed toward the blockade of the
signaling mediated by these factors would improve the success
of GBM radiotherapy. One of these SVZ niche factors is the
chemokine CXCL12. Inhibition of CXCL12 in the SVZ promotes
radiosensitization in an animal model of GBM (123) and reduces

tumor cell proliferation in a GBM pre-clinical model (124). The
relevance of the blockade of CXCL12 signaling in human GBMs
has not yet been demonstrated.

Chen et al. showed that increasing the mean radiation dose
in the SVZ after gross total resection to 40Gy or greater,
significantly improved the survival of GBM patients (125).

Targeting Telomerase in the Subventricular
Zone
As mentioned before, patients with GBM present mutations
in the TERT promoter in the tumor-free SVZ (10). As a
consequence, telomerase activity is reactivated in SVZ NSCs,
providing the capacity to divide indefinitely and increasing the
likelihood of mutations in oncogenic or in tumor suppressor
genes. Therefore, strategies directed to target telomerase in the
SVZ might be worth to be developed. Since telomerase activity is
associated with a high variety of tumors, researchers have devised
different methods to target telomerase as a therapeutic strategy,
such as the use of TERT-specific small-molecule inhibitors,
immunotherapy, gene therapy, and plant-derived compounds
(70, 126, 127). Specifically, in GBM, a phase II study with i.v.
administration of imetelstat, an oligonucleotide that binds to the
template region of the RNA component of telomerase (TERTC),
produced telomerase inhibition in the tumor and in peripheral
blood mononuclear cells, but the regimen resulted too toxic in
children with recurrent CNS tumors (128). Interestingly, there
is a plant-derived compound that inhibits the proliferation of
human GBM through the down-regulation of TERT and the
consequent reduction in telomerase activity. The compound is
known as butylidenephthalide, the chloroform extract ofAngelica
sinensis (129). Butylidenephthalide supresses the growth of GBM
cells, in vitro and in vivo in mice injected subcutaneously with the
drug (130). In order to achieve better results with this compound,
a system has been designed to allow its delivery intracranially
through biodegradable polyanhydride wafers (131). The authors
demonstrated that the butylidenephthalide wafers reduced the
size of the tumors in a dose-dependent manner without relevant
adverse effects in the animals, and induced a reduction in
TERTmRNA expression which leads to tumor senescence. These
results represent a promising method for intervening in GBM
progression and invasion. Additionally, it would be interesting
to evaluate the effect of those treatments not only in the GBM
tissue, but selectively targeting NSCs of the SVZ.

Targeting Driver Mutations in the
Subventricular Zone
As demonstrated by Lee et al. (10), astrocyte-like NSCs of the
SVZ acquire driver mutations and are the cell of origin of GSCs
that lead to GBMs. Mutated oncogenes in these SVZ NSCs could
be silenced by gene editing. The discovery and application of the
CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/CRISPR associate protein 9) system allows targeted and
accurate genome editing, correction, and repairing (132, 133).
This technology might also be used for genome correction in
mutated tumor suppressor genes in SVZ NPCs that result in the
development of GBMs. Recent findings by Gebler et al. (134) have
demonstrated that the CRISPR/Cas9 system is sensitive enough
to distinguish single base pair alteration and selectively cleavage

Frontiers in Oncology | www.frontiersin.org 7 August 2019 | Volume 9 | Article 779

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Matarredona and Pastor Cellular Origin of Glioblastoma Stem Cells

cancer mutant genes. Furthermore, the CRISPR/Cas9 system is
less genotoxic and cause less undesired DNA lesions in cells than
other cancer treatment regimes employing DNA-damaging drugs
and/or radiation.

However, the application of CRISPR/Cas9 technology to GBM
is challenging since in this cancer type there are numerous cell
clones, often with multiple mutations in different pathways per
clone, making unclear which are the driver mutations to target.
Further experiments and clinical trials will reveal the feasibility
of this technology in GBM.

Treatment Delivery in the Lateral Ventricles
Due to the close contact of SVZ NSCs with the lateral ventricle,
a possible way to target the SVZ would be the administration
of drugs, vectors or cells in the lateral ventricles. This might
be an adequate approach not only to directly target the
population of NSCs in the SVZ, circumventing limitations
imposed by the blood brain barrier, but also to target factors in
the SVZ microenvironment that might be contributing to the
GBM development.

Some authors have used viral vectors encoding anti-tumor
proteins infused in the lateral ventricles. For instance,Meijer et al.
(135) showed that intracerebroventricular (ICV) administration
of an adenovirus vector encoding interferon-beta in mice bearing
GBM reduced tumor growth and improved their survival. Other
authors have administered in the lateral ventricles antisense
oligomers to target oncogenic small non-coding RNAs (136).
This treatment, in addition to bypass the blood brain barrier,
allowed a greater distribution of the oligomers in the brain than
other administration routes. Cell therapy can also be achieved
via ICV administration. For instance, stem cells genetically
modified to release factors with antitumor effects have also
been demonstrated to be efficiently administered through the
ICV route (137). Transplanted cells create niches of viable cells
in the SVZ from where they are able to migrate to sites of
tumor infiltration. Most recently, T cells genetically modified to
express chimeric antigen receptors elicited better efficacy against
GBM administered by ICV infusions than by local intracranial
delivery (138).

Therefore, the ICV method of delivery bypasses blood brain
barrier limitation, has been shown to be effective for the delivery
of molecules, viruses and cells, and due to the proximity of
the SVZ, where glioma-initiating cells may be formed, emerges

as a promising approach for GBM therapy that warrants
further research.

CONCLUSIONS

Shared similarities between NSCs of the SVZ and GSCs
have led to the hypothesis that GBMs may arise from NSCs
residing in the lining of the lateral ventricles that undergo
malignant transformation.

Recent findings have corroborated this hypothesis showing
that astrocyte-like NSCs of the adult human SVZ acquire driver
mutations which enable them to escape from niche control
leading to uncontrolled proliferation and tumorigenesis.

Mutations identified in the tumor of GBM patients and also
in tumor-free SVZ tissue include low-level driver mutations in
TERT promoter or in cancer-driving genes, such as PTEN, TP53,
and EGFR.

The knowledge of the cell of origin that contain the driver
mutations of GBMwill allow a better understanding of the nature
of the GSCs in order to overcome their resistance to chemo-
and radiotherapy or to avoid their progression, and it may help
in the development of novel treatment interventions for this
incurable disease.
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