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Purpose: To investigative the diagnostic performance of radiomics-based machine

learning in differentiating glioblastomas (GBM) from metastatic brain tumors (MBTs).

Method: The current study involved 134 patients diagnosed and treated in our

institution between April 2014 and December 2018. Radiomics features were extracted

from contrast-enhanced T1 weighted imaging (T1C). Thirty diagnostic models were

built based on five selection methods and six classification algorithms. The sensitivity,

specificity, accuracy, and area under curve (AUC) of each model were calculated, and

based on these the optimal model was chosen.

Result : Two models represented promising diagnostic performance with AUC of 0.80.

The first model was a combination of Distance Correlation as the selection method and

Linear Discriminant Analysis (LDA) as the classification algorithm. In the training group, the

sensitivity, specificity, accuracy, and AUC were 0.75, 0.85, 0.80, and 0.80, respectively;

and in the testing group, the sensitivity, specificity, accuracy, and AUC of the model were

0.69, 0.86, 0.78, and 0.80, respectively. The second model was the Distance Correlation

as the selection method and logistic regression (LR) as the classification algorithm, with

sensitivity, specificity, accuracy, and AUC of 0.75, 0.85, 0.80, 0.80 in the training group

and 0.69, 0.86, 0.78, 0.80 in the testing group.

Conclusion: Radiomic-based machine learning has potential to be utilized in

differentiating GBM from MBTs.
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INTRODUCTION

Glioblastomas (GBM) and metastatic brain tumors (MBTs) are commonly identified brain tumors
in the adult population. Pre-surgery diagnosis between these lesions is critical to assist in efficient
treatment planning, especially for MBTs with brain metastases detected before the primary tumor
(1). Magnetic resonance imaging (MRI) is highly recommended for radiological examination as
a non-invasive tool due to the advantage of identifying the location and size of lesions (2, 3).
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However, conventional MR imaging is limited in differentiating
GBM from solitary MBTs due to lacking characteristics on their
imaging, and their contrast-enhancement patterns may mimic
each other. Moreover, advanced MR techniques, like Dynamic
Susceptibility Contrast Enhanced (DSC)MR imaging and proton
magnetic resonance spectroscopy (HMRS), are not significant in
the diagnosis of these lesions either given the similarities and
the increased vascularity between these tumors or the metabolite
ratios (4–8). Evidently, even with the quantitative information
that individual MR techniques provided on specific properties
of the tumor, the single radiological technique is not enough to
provide a tumor characterization.

Considering MR data was able to reflect the pathophysiology
of tumors visually, the quantitative radiomics-based analysis
may provide a feasible solution to assist in the demanding
process. Texture analysis (TA) is the mathematical method to
calculate the voxel-intensity heterogeneity of images, including
computed tomography (CT) and magnetic resonance imaging
(MRI), and showed promising diagnostic ability in various
lesions (9, 10). Previous studies have investigated the diagnostic
ability of pattern recognition techniques combined with TA in
order to aid physicians in making clinical decisions (3, 11, 12).
However, the optimal diagnostic model is still controversial
because the performance of models could be significantly
different with various combinations of classification algorithms
and the selection method on radiomics features. In the present
study, we performed a radiomic-based machine learning method
in discriminating GBM from MBTs with five selection methods
and six classification algorithms to bring about the intuitional
selection of an optimal model. Therefore, the purpose of our
study was to assess the contribution of pattern recognition
techniques using radiomics features in the different models to
distinguish GBM from MBTs and to select the optimum one in
terms of diagnostic value.

METHODS

Patient and MR Imaging Sequence
Selection
This retrospective study was performed in our institution.
The patients were selected from the neurosurgery department
treated between April 2014 and December 2018. The initial
selection enrolled potentially qualified patients who had records
of intraoperative frozen-section confirmation on GBM or
MBTs. Then we viewed the electronic medical records to
collect the information we needed for analysis, including name,
gender, age, and pathology report. Patients were excluded
if the history of other types of intracranial diseases were
documented or observed in MRI. The preoperative MR
images were also collected from the radiological department
through Picture Archiving and Communication Systems
(PACS) (Figure 1).

In this study, we focused on conventional MR sequences,
including T1-weighted imaging (T1WI), contrast-enhanced T1-
weighted imaging (T1C), T2-weighted imaging (T2WI), and
fluid attenuated inversion recovery (FLAIR), as they are the

routine examination for patients with intracranial tumor. After
the initial evaluation on images, contrast-enhanced T1 weighted-
imaging (T1C) was chosen among all the sequences for further
analysis due to the rather precise separation of tumor tissue from
brain tissue.

Conventional MR Imaging Examination
Protocols
The MR scans were performed using the 3.0T Siemens Trio
Scanners in the MR Research Center. High-resolution 3-
dimensional T1-weighted images were collected using MPRAGE
sequence. The parameters were as follows: TR/TE/TI =

1,900/2.26/900ms, 176 axial slices with thickness = 1mm, axial
FOV = 25.6 × 25.6 cm2, Flip angle = 9◦, and data matrix
= 256 × 256. Dimeglumine (0.1 mmol/Kg) was the contrast
agent for contrast-enhanced imaging, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90–250 s.

Texture Feature Extraction
Two neurosurgeons participated in the statistic extraction
of texture features using LifeX software (http://www.lifexsoft.
org) with the assistance of senior radiologists. Following the
software protocol, they drew along the whole lesion in each
slice to obtain the 3D-texture features. In each layer of the
image, the regions of interest (ROI) were carefully drawn
along the boundary of tumor tissue (including the necrosis
and vessels within tissue). The peritumoral edema band and
adjacent structure invasion were separated from the primary
tumor with the difference in contrast enhancement. After
segmentation on the whole tumor, the software automatically
calculated and extracted texture features with default protocols
(Figure 2). To ensure the validity and reproducibility of the
procedure, the surgeons conducted data extraction twice, and
the difference between two sets was examined with Manny-
Whitney U-test. We adjusted the q < 0.01 as significant (before
was p < 0.05) to avoid the interference of false-positive errors
rising from a large number of texture features. The results
suggested that none of the features were significantly different,
implying that the results could be reliable and reproducible
(Supplement Material 1).

Texture features were calculated from two orders. In the
first order, features on shape- and histogram-based matrixes
were extracted; and in the second order, features on the
gray-level co-occurrence matrix (GLCM), neighborhood gray-
level dependence matrix (NGLDM), gray-level zone length
matrix (GLZLM), and gray-level run length matrix (GLRLM)
were extracted. Finally, we built a statistical dataset of the
radiomic statistics consisting of 43 features for machine-
learning analysis.

Classification Procedure
The establishment on the diagnostic model involved two parts:
feature selection and classification algorithm (or known as
classifier) deployment. The feature selection serviced the purpose
that the numbers of features were so many that overfitting
was inevitable for classification of algorithms. Considering the
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FIGURE 1 | The magnetic resonance images (T1C) of a patient with (A) GBM and (B) MBTs.

FIGURE 2 | Screen capture of regions of interest (ROI) delineation.

optimal selection method could be different for algorithms,
five selection methods were evaluated in our study, including
distance correlation, random forest (RF), least absolute shrinkage
and selection operator (LASSO), eXtreme gradient boosting
(Xgboost), and Gradient Boosting Decision Tree (GBDT). The

selected features were adopted into classification algorithms to
establish models.

Six classification algorithms were evaluated in our study,
including Linear Discriminant Analysis (LDA, also known as
Fisher Linear Discriminant), Support Vector Machine (SVM),
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FIGURE 3 | Heat map of the classifiers for differentiating between GBM and MBTs. (A) The AUC of the training group. (B) The AUC of the testing group.

TABLE 1 | Results of the optimal discriminative model in distinguishing GBM from MBTs in the training and the testing groups.

Model Training group Testing group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Distance correlation + LDA 0.80 0.80 0.75 0.85 0.80 0.78 0.69 0.86

Distance correlation + LR 0.83 0.83 0.79 0.87 0.80 0.79 0.71 0.85

AUC, area under curve; LDA, linear discriminant analysis; LR, Logistic Regression.

random forest (RF), k-nearest neighbor (KNN), GaussianNB,
and logistic regression (LR). Patients were divided as the
training group and the testing group on a proportion of
4:1. Area under the receiver operating characteristic curve
(AUC) of each model was calculated to assess their diagnostic
performance. For each model, the progress of machine learning
was repeated over 100 times to obtain the realistic distribution of
classification accuracies.

All procedures involving human participants were in
accordance with the ethical standards of the institutional
and/or national research committee. The Ethics Committee
of Sichuan University approved this retrospective study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for all patients. They
agreed to undertake examination if needed and were informed
that the statistics (including MR image) might be used for
academic purposes in the future.

RESULT

Patients Selection
A total number of 134 patients were enrolled in this study.
Seventy-six of the patients were diagnosed with GBM, and 58 of
them were diagnosed with MBTs. The average ages of patients
were 46.9 and 57.6, respectively. The gender ratio for each type
of tumor (Male: Female) was 10:9 and 9:5, respectively. The

pathology reports represented that the majority of MBTs were
originated from lung cancer and breast cancer (N = 54).

Diagnostic Performance of Models
As for the diagnostic models we evaluated, 30 models were
established to select the suitable one, which was defined as the
one with the highest AUC in the testing group. The results
suggested the AUC of models mostly hovered around between
0.70 and 0.76 (Figure 3), and the highest value was 0.80 observed
in two models: the Distance Correlation + LDA and the
Distance Correlation + LR (Table 1). The details of each model
performance are summarized in Supplement Material 2.

For the first model (the Distance Correlation + LDA), in
the training group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.75, 0.85, 0.80, and 0.80, respectively.
And in the testing group, the sensitivity, specificity, accuracy,
and AUC of the model were 0.69, 0.86, 0.78, and 0.80. For
the second model (the Distance Correlation + LR) in the
training group, the sensitivity, specificity, accuracy, and AUC
of the model were 0.79, 0.87, 0.83, and 0.83, respectively. And
in the testing group, the sensitivity, specificity, accuracy, and
AUC of the model were 0.71, 0.85, 0.79, and 0.80, respectively.
The LDA distribution suggested these two models represented
similar diagnostic performance (Figure 4). Figure 5 shows one
example of 100 independent validation cycles of the model,
representing the distribution of the first and second direct LDA
canonical functions.
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DISCUSSION

In the present study, we investigated the diagnostic ability of
pattern recognition techniques combined with texture features
extracted from conventional MRI in discriminating GBM from
MBTs. MRI could provide excellent information on soft tissue
differentiation to enable the exact localization of the tumors and
to assist in the prediction of tumor response to therapy evaluation
(13). However, pathological identification is the weakness
of conventional MRI bringing additional advanced imaging
techniques, which required additional fees and equipment, into
tumor characterization and treatment. Our study made the
evaluation on six classification algorithms consisting of five
selection methods and six classification algorithms to identify the
optimal model.

The diagnosis between MBTs and GBM on conventional
MRI is rather straightforward because of the clinical history
or observation of multiple lesions. The differences in tumor
growth could lead to characteristic descriptions that GBMusually
extends by infiltration, while MBTs usually arise within the
brain parenchyma and grow by expansion, leading to comprising

FIGURE 4 | Distribution of the discriminant functions of LDA in discriminating

GBM from MBTs.

surrounding brain tissue (14). However, the emergence of lesions
with a solitary enhancing appearance lacking information on
primary tumors brings difficulty on differential diagnosis because
high-grade GBM can present similar contrast enhancement
patterns (15). The accurate and early diagnosis of these lesions
is clinically important because the surgical planning, medical
staging, and therapeutic approach can significantly vary from
each other. Given that MR scan is the conventional radiological
examination for patients, TA on T1C has the potential to
serve as a feasible solution in clinical application without
requiring additional fees. Previous studies have illustrated that
TA combined with machine learning could assist in the diagnosis
of various brain tumors, such as GBM from primary central
nerve system lymphoma and meningioma from GBM (16, 17).
Moreover, it has also been applied in tumor grade system and
gene mutation prediction (18–22). The researchers illustrated
the potential of artificial intelligence in lightening the clinical
workload and improving early diagnostic accuracy.

Compared with the previous studies, our study involved
various selection methods and classification algorithms to choose
the optimal model with the best performance. Thirty models
were evaluated, and two of them represented feasible diagnostic
ability with AUC of 0.80 (the Distance Correlation + LDA
and the Distance Correlation + LR). In the previous study, the
SVM classifier was usually proven to be the suitable classifier
compared to the others, which made sense considering that
SVM is the suitable algorithm for small sample size. Our study
illustrated that the feasible optimal classifiers were LDA and
LR, while overfittings were almost observed in all SVM-based
models (Supplement Material 2). LDA and LR are considered
as the state-of-the-art on pattern recognition classifiers, with
much better performance in some cases. LDA is also taken as the
ground truth number of parameters in terms of performance. The
mechanisms of classifiers provide a possible explanation of the
differences in results. Both LDA and LR are the linear classifiers,
while SVM is the non-linear classifier. The main difference of
two types of classifiers consists in the shape of the decision
boundary: plane or straight line in the first case, and surface
or curved line in the second case. The choice of classification
algorithm should be a tradeoff between computational burden

FIGURE 5 | Example of distributions of the LDA function of (A) MBTs and (B) GBM for one cycle.
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and performance (23). This theory also demonstrated why
SVM could be the suitable algorithm for a small sample size
(50∼60) while LDA/LR was suitable for a relatively large sample
size (>100). However, it is worth noting that the diagnostic
performances of classifiers did not improve much in the current
research, even with the change in classification algorithm. All
studies applying machine learning in discrimination of MBTs
from GBM represented similar diagnostic performance with
AUC in the testing group of∼0.80, even when radiomics features
were selected with various selection methods and extracted from
various sequences (11, 12, 24). More research is required to
verify our results and to investigate the algorithm with better
diagnostic performance.

There were some limitations in the current study. First and
foremost, this study was a single central, retrospective study,
bringing inevitable selection bias (Supplement Material 3).
Second, the inhomogeneous histological subcategories of MBTs
could reduce the accuracy in the differentiation. Future
investigations with a larger sample size are required to assess
the ability of classification algorithms and texture parameters in
characterizing the lesion subtype. Third, only texture features
retrieved from T1C images were adapted into classifiers, while
features from other sequences (like T2WI and FLAIR) and
advanced MR techniques were not explored. Fourth, the models
were not validated in the other dataset, and we cannot guarantee
the diagnostic ability of our models for external datasets due to
the various protocols of imaging acquisition and MR scanners.
However, the analysis protocol and image processing procedure

were open-source packages and they should be validated
and reproduced.
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