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Breast cancer stem cells have been known to contribute immensely to the carcinogenesis

of the breast and therapeutic resistance in the clinic. Current studies show that the

population of breast cancer stem cells is heterogeneous, involving various cellular

markers and regulatory signaling pathways. In addition, different subtypes of breast

cancer exhibit distinct subtypes and frequencies of breast cancer stem cells. In this

review, we provide an overview of the characteristics of breast cancer stem cells,

including their various molecular markers, prominent regulatory signaling, and complex

microenvironment. The cellular origins of breast cancer are discussed to understand the

heterogeneity and diverse differentiations of stem cells. Importantly, we also outline the

recent advances and controversies in the therapeutic implications of breast cancer stem

cells in different subtypes of breast cancer.
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INTRODUCTION

Breast cancer is the most commonly reported type of cancer in women worldwide, and a leading
cause of morbidity and mortality (1). With the morbidity and mortality associated with breast
cancer, more newer therapeutic approaches are warranted. The complexity and heterogeneity
of breast cancer render its treatment challenging. Gene expression profiling comprehensively
demonstrated molecular portraits of breast cancer (2, 3), defining tumors as luminal-like,
HER2-positive, or basal-like. Clinically, the heterogeneous breast cancer is categorized into four
distinct molecular subgroups (2, 4): Luminal A and luminal B breast cancers are broadly defined
as those with estrogen receptor (ERs) positive expression, which response to the antiestrogen
therapy. The HER2 positive breast cancer is the subtype with high amplification of HER2 gene.
The triple negative breast cancer (TNBCs, usually basal-like), lacking the expression of ER,
progesterone receptor (PR), andHER2 (5), always has an increased incidence of germline BRCA1/2
mutations (6, 7). Compared to the other subtypes, TNBC is highly heterogenous, and usually
have higher incidence of hematogenous metastasis. Based on a large cohort of 465 primary TNBC
tumors, TNBC are now classified into transcriptome-based subtypes: luminal androgen receptor,
immunomodulatory, basal-like immune-suppressed, and mesenchymal-like (8).

Two models have emerged to explain the heterogeneity of breast tumors (9). One is the clonal
evolution model (10), which postulated that random mutation and clonal selection give rise to
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cellular heterogeneity within breast tumors. Another is the cancer
stem cell model (11), which posited that the cellular diversity and
tumor hierarchy are generated by the breast cancer stem cells
(BCSCs). In both of the two models, tumor microenvironment
plays an important role in equipping the evolution of breast
cancer cells.

BCSCs (12) are defined as a small fraction of cells capable of
self-renewal and propagation of the heterogeneous populations
of breast cancer cells. The concept of BCSCs revealed the
cellular origin, tumor maintenance, and progression of breast
cancer. Clinically, BCSCs are considered to be responsible for
the development of resistance to treatment and cancer relapse,
through their virtue of relative resistance to radiation, cytotoxic
chemotherapy and molecular targeted therapy (13).

In the present review, we provide an overview of the current
advances in stem cells and the cellular origins of breast cancer.
We summarized information regarding the various molecular
markers of BCSCs, BCSC portraits among different subtypes of
breast cancer, and associations between BCSCs, and the tumor
microenvironment. Moreover, considering the contribution of
BCSCs to the development of resistance to treatment and tumor
recurrence, we also focused on regulatory pathways and the
related therapeutic implications of BCSCs.

Abbreviations: BCSCs, Breast cancer stem cells; CD44, CD44 molecule;

CD24, heat-stable antigen; ALDH1, Aldehyde dehydrogenase1; EMT, epithelial-

mesenchymal transition; MET,mesenchymal-epithelial transition; Id1, inhibitor of

DNA binding 1; CD133, prominin1; CD29, β1-integrin; CD49f: α6-integrin; Thy1,

Thy-1 cell surface antigen, CD90; CD61, Integrin subunit beta 3, ITGB3; Sca-1,

Stem cell antigen 1; MUC1, also known as CA153; ESA, Epithelial specific antigen;

DLL1, Delta like canonical Notch ligand1; DNER, Delta/notch like EGF repeat

containing; GD2, Ganglioside GD2; ANTXR1, ANTXR cell adhesion molecule

1; ABCG2, ATP binding cassette subfamily G member 2; Lgr5, leucine rich

repeat containing G protein-coupled receptor 5; SSEA-3, stage-specific embryonic

antigen-3; Nectin-4, nectin cell adhesion molecule 4; CD70, CD70 molecule;

TCF/LEF, T cell factor/lymphoid enhancing factor; FZD7, Frizzled-7; LRP6,

Lipoprotein receptor related protein-6; MaSCs, Mammary stem cells; NCID,

Notch intracellular domain; BMI1, BMI1 proto-oncogene, polycomb ring finger;

Suz12, SUZ12 polycomb repressive complex 2 subunit; HIPK1, Homeodomain-

interacting protein kinase 1; H-RAS, HRas proto-oncogene, GTPase; HMGA2,

High mobility group AT-hook 2; UBC9, Ubiquitin-conjugating enzyme 9; ITGB3,

Integrin b3; SCD1, Stearoyl desaturase 1; MSCs, Mesenchymal stem cells; CAFs,

Cancer associated fibroblasts; ECM, Extracellular matrix; IL6, interleukin 6;

CXCL7, pro-platelet basic protein; FOXP2, forkhead-box P2; CCL2, Monocyte

chemotactic protein-1; HMGB1, High-mobility group box 1; TAMs, Tumor

associated macrophages; M-CSF, Macrophage colony-stimulating factor; TNFα,

Tumor necrosis factor alpha; TGFβ, Transforming growth factor beta; CSCs,

Cancer stem cells; EGFR/Stat3/Sox-2, Epidermal growth factor receptor/ signal

transducer and activator of transcription 3/ SRY-box 2; HAS2, Hyaluronan

synthase 2; TILs, Tumor-infiltrating lymphocytes; CD4, CD4 molecule; CD8, CD8

molecule; FOXP3, forkhead box P3; PDX, Patient derived xenograft; YAP/TAZ,

Yes-associated protein/Transcriptional coactivator with PDZ-binding motif; HIF,

hypoxia inducible factor; ALKBH5, AlkB homolog 5; NANOG, Nanog homeobox;

PIK3CA, α-catalytic subunit of PI3K; CK8, Keratin 8; CK5, Keratin5; CK14,

Keratin14; BRCA1, DNA repair associated; GATA3, GATA binding protein

3; FOXA1, Forkhead box A1; CD10, Membrane metalloendopeptidase, MME;

ER, Estrogen receptor; TNBC, Triple negative breast cancer; P4HA2, Prolyl

4-hydroxylase subunit alpha 2; PTGR1, Prostaglandin reductase 1; RAB40B,

Member RAS oncogene family; PARP, poly-ADP-polymerase; HIF-1α, Hypoxia-

inducible factors 1α; AR, androgen receptor; KLF5, Krüppel-like factor 5; CDK4/6,

Cyclin-dependent kinase 4/6; PTEN, Phosphatase and tensin homolog; MEOX1,

Mesenchyme homeobox 1.

MOLECULAR MARKERS AND
TUMORIGENIC FEATURES OF BCSCs

BCSCs are defined as a limited group of breast cancer-
initiating cells, possessing properties of self-renewal, and
differentiation potential (14). In cancer research, BCSCs are
usually characterized as cells that are able to form the
transplantable tumors and re-establish tumor heterogeneity
(15). A panel of molecular markers was used to identify
the BCSCs (Table 1). Among these, CD44+/CD24−/low (16,
17) and ALDH1+ (aldehyde dehydrogenase1) (18) are the
most commonly used markers. Indeed, the CD44+/CD24−/low

and ALDH1+ phenotype cells are two distinct subpopulations
of BCSCs (18). Different gene expression profiles (34) have
shown that CD44+/CD24−/low marked a mesenchymal and
quiescent type of BCSCs (EMT-BCSCs, EMT: epithelial-
mesenchymal transition) (35), while ALDH1+ labeled an
epithelial and proliferative type of BCSCs (MET-BCSCs,
MET: mesenchymal-epithelial transition). According to the
fostered concept of transient EMT-MET switches in metastatic
tumor cells (36), these two subgroups of BCSCs can be
accepted as two dynamic states of BCSCs. It has been
recently demonstrated that the transition between these two
states of BCSCs (EMT and MET-BCSCs) can be reversely
regulated by cytokine signaling such as Id1 (inhibitor of DNA
binding 1) (37).

Numerous other BCSCs markers were identified in different
mouse models and breast cancer cell lines (Table 1). Wright
et al. (19) reported that BRCA1-deficient mouse mammary
tumors—which mimic the BRCA1-associated breast cancer—
harbor heterogeneous BCSCs subpopulations including CD133+

(prominin1) and CD44+/CD24− stem cells. Vassilopoulos
et al. (23) found that CD24+CD29+/CD49f+ enriched BCSC
population in BRCA1-mutant mice displayed enhanced
metastatic potential. BCSCs in breast tumors of MMTV-
Wnt-1 and p53+/−mice were identified by the marker
of Thy1 (cell surface antigen also known as CD90) (20)
and CD61 (21). In addition, Sca-1+ (stem cell antigen 1)
marked a BCSC subpopulation in the BALB-neuT mouse
model (22).

Various BCSC markers were also identified from breast
cancer cell lines such as MUC1 (also known as CA153) (24),
Procr+/ESA+ (epithelial specific antigen) (25), DLL1+/DNER+

(delta-like canonical Notch ligand1/delta/notch-like EGF repeat
containing) (26), GD2 (27), ANTXR1 (ANTXR cell adhesion
molecule 1) (28), ABCG2 (ATP-binding cassette subfamily G
member 2) (29), Lgr5 (leucine rich repeat containing G protein-
coupled receptor 5) (30), SSEA-3 (stage-specific embryonic
antigen-3) (31), Nectin-4 (nectin cell adhesion molecule 4) (32),
and CD70 (33) (Table 1).

Considering the heterogeneity of breast cancer, the variety of
BCSCs markers observed in different studies may be attributed
to different levels of breast cancer hierarchy. Moreover, it may
be explained as the results of dynamic states of BCSCs, regulated
by the microenvironment. Further in vivo and patient-derived
xenograft studies are required for the definitive identification
of BCSCs.
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TABLE 1 | Markers used to identify breast cancer stem cells, derived from breast cancer cell lines, transgenic mouse models, and patient-derived tumors.

BCSC markers Study (year) Annotations of markers Mouse model or cell line used for

the BCSC enrichment

MOST COMMONLY USED MARKERS

CD44+/CD24−/lo Al-Hajj et al. (16)

Shipitsin et al. (17)

CD44: a cell-surface glycoprotein, interacts with ligands such as

osteopontin, collagens, and matrix metalloproteinases, usually

presents in progenitor cells

Patient derived xenograft tumors

(malignant pleural effusion; primary

tumor specimen)

ALDH1+ Ginestier et al. (18) ALDH1: aldehyde dehydrogenase1, a detoxifying enzyme for the

oxidation of intracellular aldehydes, functions in early differentiation

of stem cells through its role in oxidizing retinol to retinoic acid

Patient-derived xenograft tumors

(breast tumor specimen)

MARKERS DERIVED FROM THE TRANSGENIC MOUSE MODEL

CD133+ Wright et al. (19) CD133: a transmembrane glycoprotein, prominin 1, functions in

maintaining stem cell properties by suppressing differentiation.

Brca1-deficient mouse

(Brca1111p53+/−)

CD24+ Thy1+ Cho et al. (20) Thy1: a cell-surface antigen, also known as CD90, mediates the

cell adhesion, and communication of cancer stem cells.

MMTV-Wnt-1 mouse

CD29loCD24+ CD61+ Vaillant et al. (21) CD61: β3-integrin, expressed in luminal progenitor cells, a

prognostic indicator in breast cancer

MMTV-Wnt-1 and p53+/− mouse

Sca1+ Grange et al. (22) Sca1: stem cell antigen, also known as Ly6a, expressed in

mammary gland progenitors

BALB-neuT mouse

CD24+CD29+/CD49f+ Vassilopoulos

et al. (23)

CD29 and CD49f: β1-integrin and α6-integrin, also expressed in

normal mammary stem cells

Brca1-mutant mouse

(Brca1Co/Cop53+/−; MMTV-Cre)

MARKERS DERIVED FROM THE CELL LINES

MUC1+ Engelmann et al.

(24)

MUC1: a transmembrane glycoprotein, mucin1, a well-known

tumor antigen of breast cancer also known as CA153

MCF-7 SP (CD44+/CD24−/low)cell

line

Procr+/ESA+ Hwang-Verslues

et al. (25)

Procr: protein C receptor, a known marker of hematopoietic,

neural, and embryonic stem cells. ESA: epithelial specific antigen,

expressed in epithelial cells

MDA-MB-231, MDA-MB-361 cell line

CD49f+/DLL1hi/DNERhi Pece et al. (26) DLL1: a member of the delta/serrate/jagged family involved in

cell-to-cell communication

DNER: delta/notch- like EGF repeat containing

Cells from breast

tumors(well-differentiated/G3 or

poorly-differentiated breast cancer)

GD2+ Battula et al. (27) Ganglioside GD2: a glycosphingolipid, highly expressed on bone

marrow- derived mesenchymal stem cells

HMLER, MDA-MB-231 cell lines

CD44+/CD24−/lo/ANTXR1+ Chen et al. (28) ANTXR1: ANTXR cell adhesion molecule 1, can interact with LRP6

and VEGFR and modulate Wnt and VEGF signaling

MCF-10A, TMD-231 cell lines

ABCG2+ Leccia et al. (29) ABCG2: a transmembrane transporter, ATP- binding cassette

subfamily G member 2, expressed in normal, or cancer stem cells

HCC1937 cell line (BRCA-1 mutated

basal- like cell line)

Lgr5hi Yang et al. (30) Lgr5: a Wnt signaling target gene, a stem cell marker

overexpressed in breast cancer

MCF-7, MDA-MB-231 cell line

CD44+CD24-/loSSEA-

3+ or

ESAhiPROCRhiSSEA-

3+

Cheung et al. (31) SSEA-3: stage-specific embryonic antigen-3, the globo-series

glycan

MCF-7, MDA-MB-231 cell line

Nectin-4+ Siddharth et al.

(32)

Nectin-4: a family of immunoglobulin-like cell adhesion molecules

crucial for the formation and maintenance of Cadherin-based

adherens and Claudin-based tight junctions

MDA-MB-231 cell line

CD70+ Liu et al. (33) CD70: a type II transmembrane protein, a member of the TNF

receptor superfamily

231-LM2 cell line (a highly

lung-metastatic sub-line derived from

MDA-MB-231), CN34-LM1 cell line

(a lung-metastatic derivative of

another breast cancer cell line CN34)

SIGNALING PATHWAYS REGULATING
BCSCs

Given their self-renewal and tumor-initiating properties, BCSCs
have emerged as the “ringleader” for the development of
therapeutic resistance in breast cancer (38). Therefore, BCSC-
related therapeutic options, such as targeting the main regulatory
signaling pathways in BCSCs, have recently been developed for

the treatment of breast cancer (Table 2), especially in case with
therapeutic resistance.

The major signaling pathways (39) regulating BCSCs include
Wnt (40), Notch (41), and Hedgehog (42) (Figure 1). Inhibitors

blocking these signaling were developed as the BCSC-targeting
therapies (Figure 1). (1) Increased activation of theWnt pathway

is usually found in BCSCs, leading to the nuclear translocation
of cytosolic β-catenin to activate the Wnt-targeted genes,
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TABLE 2 | Breast cancer stem cells-targeted therapies in the treatment of breast cancer and their potential mechanism of breast cancer stem cell eradication.

Therapeutic targeting

mechanism

Drug class Drug Functional mechanism of BCSC eradication

Wnt pathway Frizzled 7

inhibitors

Vantictumab Inhibiting Wnt signaling by blocking the Wnt receptor Feizzled 7

Hedgehog pathway SMO(Smoothened)

inhibitor

Vismodegib Sonidegib Inhibiting Hedgehog signaling by blocking the Smoothened, leading to the inactivation of

the Gli, which regulates the tumor-mediating genes

GLI1/2 inhibitors GANT61 Inhibiting Hedgehog signaling by blocking the Gli1 and Gli2, which regulates the

tumor-mediating genes

Notch pathway γ-secretase

inhibitors

MK-0752

PF-03084014

RO-4929097

Inhibiting Notch signaling by stopping the Notch intracellular domain into the nucleus

DNA-repair deficiency PARP inhibitors Olaparib Inhibiting the DNA repair of the cancer cells by trapping the PARPs

Cell cycle CDK inhibitors Palbocilib Impeding cancer cell proliferation by inhibiting the CDKs (such as CDK4/6 causing G1

arrest)

PI3K/Akt/mTOR mTOR inhibitors Everolimus Killing cancer cells by targeting the mTOR in PI3K/Akt/mTOR pathway, which is pivotal in

cancer cell protein synthesis, proliferation, invasion, and survival

PI3K PI3K inhibitor GDC-0941 GDC-0941 is a pan-PI3K inhibitor that suppresses BCSCs in combination with

EGFR/Notch bispecific antibody PTG12

Alpelisib Alpelisib is a PI3K inhibitor that functions in PIK3CA-althered luminal breast cancer,

including the endocrine therapy-resistant cases

HER-2 HER-2 inhibitor Trastuzumab

pertuzumab lapatinib

TDM-1

May inhibit the HER-2 related BCSC-activating pathways

AR AR inhibitor Enzalutamide Targeting BCSCs through androgen signaling pathway

PR Progestrone

antagonist

Mifepristone Suppressing BCSCs by down-regulating KLF5 expression through inducing miR-153

expression

Aldehyde dehydrogenase Antialcoholism

drug

Disulfiram Targeting BCSCs and reversing the pan-chemoresistance in breast cancer cells

Anti-hyperglycemic Diabetes mellitus

drug

Metformin Decreasing BCSCs through degrading KLF5 and its downstream target genes including

Nanog and FGF-BP1

Isothiocyanate Cancer prevention

agent

Sulforaphane Eliminating BCSCs by inhibiting NF-kB p65 subunit translocation and downregulating p52

and consequent downstream transcriptional activity

HIF-1α HIF-1α vaccination HIF-1a–specific IgG Immunization against HIF-1α inhibits the tumor growth in TNBC models of C3(1)Tag mice

and decrease SCa-1 marked BCSCs.

HSP90 C-terminal HSP90

inhibitor

L80 Inhibiting AKT/MEK/ERK/JAK2/STAT3 signaling and suppressing CD44+/CD24-BCSCs

Nanomedicine nanoparticles Gd@C82(OH)22 Blocking EMT transition with resultant efficient elimination of BCSCs through inhibiting

HIF-1α and TGF-βactivities

by binding the TCF/LEF (T cell factor/lymphoid enhancing
factor) family. Recently, the Wnt heterodimer receptor (i.e.,
FZD7 and LRP6: frizzled-7 and lipoprotein receptor related
protein-6) was found to be up-regulated in the TNBCs.
Knockdown of this receptor suppressed tumor growth (43).
Targeted medicines for the inhibition of the FZD7 receptor (i.e.,
Vantictumab) have been developed (44, 45). (2) The Hedgehog
pathway is also crucial in BCSCs. Binding of Hedgehog to the
Patched alleviates its inhibition of Smoothened. The activated
Smoothened subsequently releases Gli to regulate Hedgehog
target genes (46). Higher expression of Smoothened was found
in a BCSC subpopulation (CD44+/CD24− cells) (47) and
the inhibitor of Smoothened (i.e., Vismodegib, Sonidegib) has
already been investigated in clinical trials (48, 49). Besides, the
anti-cancer stem cell activities of Gli1/2 inhibitor (GANT61)
were also proved in TNBCs (50). (3) The Notch pathway
serves as a key signaling cascade involved in the maintenance

of BCSC phenotype. Notch ligands (e.g., Delta-like 1, 3, 4,
and Jagged 1, 2) binding to Notch receptors result in the
release of Notch intracellular domain (NCID) (41). With the
help of γ-secretase, NCID translocates into the nucleus to
activate several downstream effectors (41). McGowan et al. (51)
demonstrated that CD44hi/CD24loBCSCs contributed to the
brain metastases of breast cancer, partially arisen from increased
Notch activity. Clinically, drugs (e.g., MK-0752, RO-4929097,
and PF-03084010) (52) targeting the γ-secretase—through the
mechanism of curbing Notch signaling by stopping the NCID
into the nucleus—are currently underway for the treatment of
breast cancer.

MICRORNAS REGULATING BCSCs

Epigenetic regulation of microRNAs is important in BCSCs
(53). MiR-200 family was proved to be a critical regulator for
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FIGURE 1 | Mutation events in different types of mammary cells lead to distinct types of breast tumors.

BCSCs growth and function. MiR-200c can strongly suppress
the clonogenicity of BCSCs by targeting BMI1 (BMI1 proto-
oncogene, polycomb ring finger) (54). MiR-200b directly acts
on Suz12 (SUZ12 polycomb repressive complex 2 subunit),
and the miR-200b-Suz12-cadherin pathway functions on BCSC
growth (55). MicroRNA-200c/141 was found to regulate the
heterogeneity of the BCSCs and promote the EMT-like BCSC
generation, by targeting HIPK1 (homeodomain-interacting
protein kinase 1)/β-catenin axis (56). Let-7 was found to regulate
BCSCs by silencing H-RAS (HRas proto-oncogene, GTPase)
and HMGA2 (high mobility group AT-hook 2), resulting in
reduction of self-renewal and enhancement of differentiation
of BCSCs (57). Similar to let-7, reduction of microRNA-30 in
BCSCs contributes to the maintenance of self-renewal capacity
in BCSCs, by targeting UBC9 (ubiquitin-conjugating enzyme
9) and ITGB3 (integrin b3) (58). In addition, in BCSCs, miR-
600 acts as a bimodal switch that regulates WNT Signaling
through SCD1 (stearoyl desaturase 1), balancing the self-renewal,
and differentiation of BCSCs (59). More microRNAs and their
clusters need to be investigated in BCSCs, especially for their roles
in stem cell maintenance of self-renewal, differentiation, and
EMT transition. Clarifying the microRNA regulation of BCSCs
can further advance or understanding of the roles of BCSCs in
breast cancer progression.

BCSCs AND THE TUMOR
MICROENVIRONMENT

BCSCs are located in the tumor microenvironment, which is
also called as BCSC “niche.” The BCSC niche plays a vital
role in sustaining the function of BCSCs. It is a complex

network, containing stroma cells [such as mesenchymal stem
cells (MSCs), cancer associated fibroblasts (CAFs), adipocytes,
endothelial cells, and immune cells], extracellular matrix (ECM)
components, cytokines, growth factors, and physical factors
(such as hypoxia).

MSCs are the multipotent mesenchymal stomal cells which
can be recruited from the bone marrow or normal breast
stroma. It has been shown that bone marrow-derived MSCs
can expand the BCSC population through cytokine loops
involving IL6 (interleukin 6) and CXCL7 (pro-platelet basic
protein) (60). It was also found that MSCs can propagate traits
of BCSCs by promoting the contact-dependent upregulation
of microRNA-199a and subsequent repression of FOXP2
(forkhead-box P2) (61). CAFs are activated fibroblasts in the
tumor-hosting niche, which can promote cancer progression,
especially that of breast cancer. It was reported that CAFs
can regulate BCSCs through factors such as CCL2 (monocyte
chemotactic protein-1) (62), IL-6 and IL-8 (63). Moreover,
autophagic CAFs can promote stemness of luminal breast
cancer cells by releasing HMGB1 (high-mobility group box 1)
(64). Conversely, BCSCs can also regulate CAFs via signaling
such as Hedgehog, in which CAFs subsequently promote the
expansion and self-renewal of BCSCs (49, 65). Immune cells,
especially the tumor-associatedmacrophages (TAMs)–are closely
associated with tumor propagation. Tumor cells produce M-
CSF (macrophage colony-stimulating factor) to expand TAMs,
while TAMs produce TNFα and TGFβ to facilitate CSCs (66).
In breast cancer, TAMs can promote BCSCs through a paracrine
EGFR/Stat3/Sox-2 signaling pathway (67), while upregulation
of HAS2 (hyaluronan synthase 2) in CD44+/CD24−/ESA+

BCSCs can enhance the interaction between BCSCs and TAMs,
resulting in the BCSC growth (68). Other immune cells, such as
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tumor-infiltrating lymphocytes (TILs, including CD4+, CD8+,
and FOXP3+ TILs) are also closely correlated with BCSC
phenotypes, therapeutic response, and prognosis in breast cancer
(69). Recent research bymachine learning identified that immune
microenvironment content and PD-L1 levels associated with
the stemness of breast cancer (70). Adipocytes constitute a
major component of the breast stroma which provide pro-
tumorigenic signals in breast cancer (71). In the Goto et al.
study (72)—using a PDX (Patient derived xenograft) model—it
was found that adipose tissue secreted adipsin to enhance BCSC
properties in breast cancer. Endothelial cells are necessary in
tumor angiogenesis, which is important for nutrient and oxygen
supply in the tumor microenvironment. Independently of their
vascular functions, Ghiabi et al. (73) found that endothelial cells
can enrich the CD44+/CD24− stem population in breast cancer.

The ECM is a three-dimensional network of extracellular
macromolecules that confines tumor cells in the
microenvironment, thereby sustaining tissue homeostasis. It was
illustrated that stiffness of the ECM influenced breast cancer cells
through the YAP/TAZ (Yes-associated protein/Transcriptional
coactivator with PDZ-binding motif) (74). Hpoxia is very
important in sustaining the quiescent state of stem cells by
activating the hypoxia-inducible factor (HIF). In breast cancer,
hypoxia induces the BCSC phenotype through HIF-dependent
and ALKBH5-mediated m(6)-demethylation of NANOG
mRNA (75).

CELLULAR ORIGINS OF BREAST CANCER

The concept of “cellular origins” is closely associated to—but
quite distinct—from the notion of “cancer stem cells” (76).
The BCSC concept highlights a tiny population of the breast
tumor-initiating cells that can maintain tumorigenesis and seed
metastases, while the notion of cellular origins emphasizes the
original normal cell types in the breast which generate a full-
blown tumor. The diversity of the phenotypes displayed by
breast cancer cells stimulates interests in investigating the cellular
origins of this disease.

Historically, in breast cancer, the name “luminal” of luminal-
A/B subtypes and the name “basal-like” of basal-like subtype
are derived from similarities in transcriptomes between breast
tumors and the corresponding normal mammary luminal or
basal epithelium.However, the real cellular origins of luminal and
basal-like breast cancer are greatly different from their naming
rules. Oncogenic events in different types of mammary cells lead
to distinct types of breast tumors (Figure 1). PIK3CA (α-catalytic
subunit of PI3K) mutations occur in 30% of breast cancers,
including both luminal and basal-like tumors. However, Meyer
et al. (77) reported that themutant PIK3CA inmammary luminal
progenitors generated heterogeneous tumors of both luminal and
basal differentiation. Van Keymeulen et al. (78) also found that
expression of the PI3KCA mutant in luminal cells—marked by
CK8—induced the luminal or basal-like breast tumors, while
its expression in basal cells—marked by CK5—gave rise to the
luminal tumors. BRCA1 basal-like breast cancers may originate
from basal stem cells. However, interestingly, Molyneux et al.

(79) demonstrated that deletion of BRCA1 in mammary luminal
epithelial cells—targeted by Blg—can generate basal-like breast
tumors, phenocopying the human BRCA1-associated breast
cancers, while the deficiency of BRCA1 in basal cells– targeted by
CK14− can only generate the malignant adenomyoepitheliomas
which are rare in human BRCA1-associated breast cancer.
Furthermore, Tao et al. (80) depicted that the CK8+ luminal
cells carrying the Etv6-NTRK3 fusion oncogene can induce the
heterogeneous tumors with the expression of luminal and basal
markers. Compelling evidence showed that luminal progenitors
can serve as the cellular origins of both luminal- and basal-like
human breast cancers, while the distinct genetic mutations—
occurring in the transformation of luminal progenitors—are
probably determinant of the eventual luminal-like or basal-
like tumor phenotypes (81). Genetic sequencing results have
illustrated different mutation profiles between luminal-like and
basal-like tumors. The luminal-like tumors present distinct
mutations, such as PIK3CA (82, 83), GATA3 (84, 85) and FOXA1
(84), while the basal-like tumors exhibit high rates of p53 and
BRCA1 mutations. Using conditional mouse models, Liu et al.
showed that somatic loss of both BRCA1 and p53 did result in
the development of basal-like breast cancer (86).

The cellular origins of the rare type of breast cancers, such as
metaplastic carcinoma should also be mentioned. Molecularly,
this metaplastic subtype is similar to claudin-low breast cancer.
Keller et al. (87) found that the transformation of CD10+ basal
cells gave rise to rare metaplastic tumors. McCarthy et al. (88)
demonstrated that these metaplastic tumors frequently harbored
the p53 mutation and aberrant BRCA1 expression.

BCSCs AMONG DIFFERENT SUBTYPES
OF BREAST CANCER AND THEIR
THERAPEUTIC IMPLICATIONS

Different subtypes of breast cancer exhibit different abundances
of BCSCs, as well as varying proportions of epithelial or
mesenchymal BCSC subtypes. It is commonly recognized that
BCSCs are much more enriched in the TNBCs and HER2
subtypes vs. luminal breast cancer. In the model illustrated by
Brooks et al. (9), claudin-low TNBCs are characterized by a
high proportion of mesenchymal BCSCs with CD44+/CD24−/lo

expression, while basal-like TNBCs contain a subcomponent
of mesenchymal BCSCs and a higher proportion of epithelial
ALDH1+ BCSCs. Liu et al. (89) compared the transcriptional
profiles of epithelial or mesenchymal BCSC subtypes in TNBCs
and found that the bi-BCSC subgroup (i.e., ALDH1+ and
CD44+/CD24−/lo) was highly purified, with expression of
prognostic genes such as P4HA2, PTGR1 and RAB40B.

TNBCs harbor the highest proportion of BCSCs compared
with other subtypes, contributing to the poor prognosis
associated with this subtype (90). Currently, the only established
treatment against TNBCs is the cytotoxic chemotherapy;
however a considerable number of patients develop resistance
(5, 91). Recently, a PARP (poly-ADP-polymerase) inhibitor—
through the underlying mechanism of inhibiting DNA repair,
has demonstrated good efficacy against BRCA1-associated breast
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cancer, which usually refers to TNBCs. In breast cancer cell
lines, PARP inhibitor (Olaparib) can significantly decrease the
proportion of BCSCs with CD44+/CD24−/low/ESA+ cell surface
marker, indicating the potential activity of PARP inhibitor in
anticancer stem cells (92) (Figure 2, Table 2). However, Liu et al.
(93) recently reported that there were some BCSCs in BRCA1-
mutant TNBCs which were relatively resistant to PARP inhibitor
(Olaparib), and reduction of RAD51 can sensitize these BCSCs
to Olaparib treatment. Clinical benefits from the EGFR inhibitor
(94) and a pan-PI3K inhibitor (95) have been reported in TNBC
patients, while Fu et al. (96) further reported that EGFR/Notch
bispecific antibody PTG12 in combination with pan-PI3K
inhibitor GDC-0941 exerted a stronger antitumor effect in
TNBC tumors by inhibiting the stem cell–like subpopulation
and reducing tumor-initiating cell frequency (Figure 2, Table 2).
Up to half of all TNBCs express androgen receptor (AR) (97).
AR-targeted therapies (Enzalutamide) can decrease a BCSC-like
population in TNBC cell lines (98), indicating Enzalutamide may
enhance the efficacy of chemotherapy by targeting a BCSC like
cell population (Figure 2, Table 2). In TNBCs, hypoxia-driven
BCSCs abated the effectiveness of paclitaxel-based chemotherapy
and antiangiogenic agents (e.g., VEGF inhibitors bevacizumab),
through HIF-1α (hypoxia-inducible factors 1α). In pre-clinical

models, the co-administration of HIF-1α inhibitors was able to
overcome BCSC-related resistance (99, 100). HIF-1α vaccination
can also inhibit tumor growth in TNBCmodels of C3(1)Tag mice
and decrease SCa-1 marked BCSCs (101) (Table 2). Recently,
Cho et al. (102) reported that L80, which is the C-ring
truncated deguelin derivative as a C-terminal HSP90 inhibitor,
can effectively target BCSC-like trait in TNBCs, together with
obvious reduction in CD44+/CD24− cancer cell population,
ALDH1 activity and mammosphere forming-ability (Table 2).

Some drugs were repurposed as the BCSC inhibitors in
TNBCs (Table 2). Disulfiram, an antialcoholism drug, was found
to target BCSCs and reverse the acquired pan-chemoresistance
in TNBC cell lines (103) (Table 2). Mifepristone, a progesterone
antagonist for abortion, was reported to suppress BCSCs in
TNBC tumors by down-regulating Krüppel-like factor 5 (KLF5)
expression, which is a stem cell transcription factor over-
expressed in basal type TNBC (104) (Table 2). Metformin,
a first-line drug for type 2 diabetes mellitus, was found by
the same group that can decrease the BCSC population in
TNBC, also by targeting KLF5 for degradation (105) (Table 2).
Besides, sulforaphane, a cancer prevention agent, was found
to preferentially eliminate BCSCs by inhibiting NF-kB p65
subunit translocation and downregulating p52 (106) (Table 2).

FIGURE 2 | Signaling pathways and breast cancer stem cell-targeted agents in breast cancer (Copyright: Springer Nature 2014 and 2016).
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And Sulforaphane can also reverse taxane-induced ALDH+

BCSC enrichment (106). Interestingly, novel medicines such
as nanomedicines, Gd@C82(OH)22 nanoparticles, were found
possess intrinsic inhibitory activity against BCSCs in claudin-low
TNBC cell lines (107).

In Brook’s model, HER2 breast cancer is characterized by a
high proportion of epithelial ALDH1+ BCSCs (9). HER2 is a
crucial regulator in BCSCs (108). Recent studies indicated that
the regulation of BCSCs by HER2 was not observed only in
HER2 breast cancer but extended to all the subtypes of breast
cancer (109). To some extent, the remarkable clinical efficacy of
HER-2 inhibitors (e.g., trastuzumab, pertuzumab, lapatinib, and
TDM-1) was attributed to target BCSCs (109) (Figure 2,Table 2).
Nevertheless, a proportion of HER-2 amplified breast cancers
continue to eventually develop drug resistance, probably due to
the PTEN (phosphatase and tensin homolog) loss or activation
of PIK3CA mutation (110). A recent study performed by Sun
et al. (111) showed that MEOX1 (mesenchyme homeobox 1)
may be a novel target in BCSCs of PTEN-deficient trastuzumab-
resistant breast cancers. However, the precise role of BCSCs in the
development of resistance to HER-2 inhibitors remains elusive.
Thus, further investigation is required to elucidate this process.

Luminal A breast cancer had the lowest proportion of
BCSCs among all the breast cancer subtypes, presenting the
best prognosis (9). Luminal B breast cancer displayed a certain
proportion of BCSCs, which was lower than those observed
in TNBC or HER2 breast cancer. A proportion of luminal-
B patients have poor prognosis, supposed to be the result of
containing a proportion of the BCSCs (112). The presence of
the BCSCs is also regarded as the main cause of resistance to
hormonal therapy in luminal breast cancer (113, 114), which
can be regulated by the CyclinD-CDK4/6 (cyclin-dependent
kinase 4/6) complex (115, 116) and mTOR signaling (117)
(Figure 2, Table 2). Use of CDK4/6 (i.e., palbocilib) (118) or
mTOR inhibitor (i.e., everolimus) (119) significantly improves
the survival of patients who develop endocrine resistance.
Recently, the PI3K inhibitor (i.e., alpelisib) was also proved to
have great clinical activity in PIK3CA-altered luminal breast
cancers, including the endocrine therapy-resistant cases (120).

As described above, BCSCs are of great therapeutic relevance,
particularly in overcoming resistance to treatment. Although
pre-clinical models and clinical trials yielded promising results
in targeting BCSCs, the efficacy and safety of BCSC-targeted
therapy requires further evaluation. BCSCs share the similar
markers and signaling pathways with mammary stem cells.
Currently, it is unclear whether BCSC-targeting agents may
also target normal mammary stem cells, resulting in severe
treatment-related side effects. Besides, the clinical trial data
have shown that addition of BCSCs- targeting agents to
chemotherapy or hormonal therapy improved treatment efficacy.

However, the combination of BCSC-targeting agents and
different conventional therapies requires further investigation.

CONCLUSIONS AND PERSPECTIVES

Impressive advances have been witnessed in understanding the
carcinogenesis of breast cancer, in which BCSCs hypothesis
provided very important models. BCSC-targeted therapy may
eradicate the cancer stem cells, which are regarded as the “the
seed of tumor.” Therefore, indubitably, the clinical relevance of
BCSCs is a primary concern. However, the BCSC population is
heterogeneous, involving various cellular markers and regulatory
signaling pathways. In addition, the BCSC microenvironment
is complex. These facts render BCSC-targeted therapy difficult.
Also, different subtypes of breast cancer exhibit distinct BCSC
subtypes and abundances. This evidence calls for appropriate
BCSC- targeted regimens against different subtypes of breast
cancer. Moreover, considering that BCSCs only constitute a small
fraction of the tumor cells, the classic clinical endpoints of tumor
shrinkage may be inappropriate to assess the efficacy of BCSC-
targeted therapy. Recent studies have indicated that the detection
of BCSCs markers in tumor biopsies or even in circulating tumor
cells may be a favorable option (121, 122).

In conclusion, despite challenges ahead, the comprehensive
understandings of stem cells and the cellular origins of breast
cancer have assisted andwill continue to assist treating physicians
in ultimately overcoming the stubborn aspects of breast cancer.
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