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Background: Radiomics has been widely used to non-invasively mine quantitative

information from medical images and could potentially predict tumor phenotypes.

Pathologic grade is considered a predictive prognostic factor for head and neck

squamous cell carcinoma (HNSCC) patients. A preoperative histological assessment can

be important in the clinical management of patients. We applied radiomics analysis to

devise non-invasive biomarkers and accurately differentiate between well-differentiated

(WD) and moderately differentiated (MD) and poorly differentiated (PD) HNSCC.

Methods: This study involved 206 consecutive HNSCC patients (training cohort: n =

137; testing cohort: n = 69). In total, we extracted 670 radiomics features from contrast-

enhanced computed tomography (CT) images. Radiomics signatures were constructed

with a kernel principal component analysis (KPCA), random forest classifier and a

variance-threshold (VT) selection. The associations between the radiomics signatures

and HNSCC histological grades were investigated. A clinical model and combined model

were also constructed. Areas under the receiver operating characteristic curves (AUCs)

were applied to evaluate the performances of the three models.

Results: In total, 670 features were selected by the KPCA and random forest

methods from the CT images. The radiomics signatures had a good performance

in discriminating between the two cohorts of HNSCC grades, with an AUC of 0.96

and an accuracy of 0.92. The specificity, accuracy, sensitivity, positive predictive value

(PPV), and negative predictive value (NPV) of the abovementioned method with a

VT selection for determining HNSCC grades were 0.83, 0.92, 0.96, 0.94, and 0.91,

respectively; without VT, the corresponding results were 0.70, 0.83, 0.88, 0.80, and

0.84. The differences in accuracy, sensitivity and NPV were significant between these

approaches (p < 0.05). The AUCs with VT and without VT were 0.96 and 0.89,

respectively (p < 0.05). Compared to the combined model and the radiomics signatures,

The clinical model had a worse performance, and the differences were significant

(p < 0.05). The combined model had the best performance, but the difference between

the combined model and the radiomics signature weren’t significant (p > 0.05).
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Conclusions: The CT-based radiomics signature could discriminate between WD and

MD and PD HNSCC and might serve as a biomarker for preoperative grading.

Keywords: head and neck cancer, grade, computed tomography, radiomics signature, biomarker

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common malignant tumor worldwide. Many factors affect
the prognosis of patients with HNSCC; among these factors, the
histological differentiation grade was reported to correlate with
lymph node status, distant metastases, survival and prognosis
(1–4). A pretreatment histopathologic grade evaluation for
HNSCC provides information for clinical decision making.
Although the histological differentiation grade is routinely
confirmed by biopsy and surgical resection in many head
and neck cancer centers, invasive biopsy is sometimes of little
predictive value in early-stage oral SCC (5). In addition, intra-
tumor heterogeneity is an issue. Biopsies do not exactly reflect
the overall pathophysiology of the lesion.

Some non-invasive functional imaging modalities have been
developed in the clinic, such as diffusion-weighted imaging
(DWI), dynamic contrast-enhancedmagnetic resonance imaging
(DCE-MRI), perfusion-weighted imaging (PWI), and positron
emission tomography (PET), all of which have been applied in
the grading of HNSCC (6–8). These imaging modalities play
important roles in the evaluation of disease grade to some extent,
but combining clinical visual assessments is necessary to increase
the overall accuracy.

Radiomics, which refers to an enhanced deep analysis of
the molecular aspects of tumors and accounts for intrinsic
susceptibility in the long-term follow-up, is a qualitative and
quantitative analysis of a large amount of radiologic data
extracted in a high-throughput manner to obtain predictive or
prognostic information from cancer patients (9, 10). Radiomics
is suitable for providing some predictive, classifying, and
prognostic information for HNSCC patients (11–13). A few
radiomics studies have been conducted based on MRI regarding
the staging and grading of HNSCC (14–16). Although the vast
majority of radiomics analyses were conducted on CT images, no
studies exist about radiomics models based on CT signatures to
differentiate HNSCC grades.

A large number of machine-learning methods were used
to evaluate their applying values in HNSCC patients (17, 18).
In this study, we will use another analysis method based on
CT radiomics signatures to evaluate its predictive value in
differentiating between HNSCC grades (WD vs. MD/PD).

MATERIALS AND METHODS

Study Population
We collected patients with head and neck tumors confirmed to
be SCC by surgical pathology in our hospital from January 2012
to February 2018. This study was approved by the institutional
review board of our hospital (approval number 2019-178), and
informed consent was waived. All patients underwent both

precontrast and multiple-phase pretreatment contrast enhanced
multi-slice spiral computed tomography (MSCT) scans. In this
study, the patients were chosen and excluded according to
the criteria presented in Figure 1. A total of 206 consecutive
patients were identified met the criteria. These patients were
randomly divided into a training cohort and a testing cohort
at a ratio of 9:1 by a computer. We retrospectively analyzed
the clinical information of all patients, including race, age, sex,
tumor sites, tumor differentiation, tumor nodemetastasis (TNM)
classification, and stage.

CT Image Acquisition
All CT scans were performed using a GE Discovery 750 HD (GE
Healthcare, Milwaukee, WI, USA) multidetector CT scanner.
The CT scanning area was from the skull base down to the thorax
inlet. The scanning parameters were as follows: 120 kV; 80mA;
pitch 0.984; detector collimation, 64 × 0.625mm; rotation time,
0.6 s; matrix, 512 × 512; section thickness, 5mm; and field of
view, 220–250 × 220–250mm. First, a non-contrast enhanced

FIGURE 1 | Flowchart showed patients selection for the study.
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CT scan was performed, and then a contrast-enhanced CT scan
was performed in the arterial phase (25–30 s), portal venous
phase (60–65 s), and delayed phase (120 s), after an intravenous
injection of non-ionic iodinated contrast medium (Ultravist 370,
Bayer Schering Pharma, Berlin, Germany) (dose 1.5 mL/kg,
injection rate 3.5 mL/s).

Image Analysis
Preprocessing

Lesion segmentation and labeling
We segmented and labeled the lesions on picture archiving
and communication systems (PACS) (Carestream Health Inc.,
Rochester, NY, USA). First, the doctor’s terminal was opened
to view the enrolled patients’ CT images, especially the portal
venous phase contrast-enhanced images, and then the slice
on which the lesion was the most obviously displayed was
determined. Second, the image window width was adjusted to
350 Hounsfield units (HU), and the window level was adjusted
to 40 HU. Third, the curve measurement button on the toolbar
was clicked to set the line color to red. Then, the largest solid
part of the tumor was encircled to include themarkedly enhanced
area and excluded the necrotic or cystic areas. The enclosed area

FIGURE 2 | Steps of preprocessing: (A) cutting off the patches of ROI; (B)

detecting the edge; (C) fulfilling the edge and generating mask.

was recognized as a region of interest (ROI) and could be round,
oval or another irregular shape. The area of the ROI was more
than 1 cm2, which guaranteed a large enough area for analysis.
Finally, the image with the ROI was exported and saved in a JPG
format for subsequent processing. The segmentation and labeling
processes were performed by two head and neck radiologists
(J.F. and Y.T. with 5 and 10 years of diagnostic experience,
respectively). Any discrepancies that occurred were resolved by
a consensus between the two radiologists.

The goal of preprocessing was to delineate tumor regions, but
first, the coordinates of the tumor area needed to be detected.
Because the CT image was almost gray, the red line could easily
be detected by a sliding a 64 × 64 rectangle to scan the whole
image from the left top with step size of 1. This sliding rectangle
recorded the coordinates of the vertex as soon as the rectangle
came into contact with the closed red line.

We used a 64 × 64 window to scan the whole image with a
step size of 1. Once the closed red line was found, the scanning
process was stopped. Since we used the red line to contour the
tumor, the window had a 100% overlap with the tumor at this
time. The segmentation process was performed by two head
and neck radiologists (W.X. and C.Y. with 8 and 11 years of
diagnostic experience, respectively). We used an original non-
annotated image in case the annotated red line interfered with
the prediction. The coordinates recorded by the sliding rectangle
could help delineate a 64 × 64 tumor region on the original
image. These delineated images are called patches. Only the
tumor region was considered when discriminating WD HNSCC
from MD/PD HNSCC so that we could focus on the tumor and
reduce the amount of noise interference. In addition, compared
to a complete tumor region, a 64 × 64 patch contained some
tissues around the tumor, which could also contribute to the
tumor grade.

To extract the shape features, we need an additional mask to
describe the shape of the tumor. We extracted the edge of the

FIGURE 3 | The workflow of proposed kernelized radiomics model in HNSCC.
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patch, primarily by keeping only the red parts of the image and
then filling in the edge and erasing the small annotated area to
generate a mask. We used both the segmented patches and masks
to extract all features (Figure 2).

Extracting radiomics features
We extracted 670 radiomics features from the portal venous
phase contrast-enhanced CT images. These features quantified
the phenotypic HNSCC characteristics and were divided into
four feature groups: shape and size features; histogram features;
texture features; and transformation features. All features are
shown in Tables S1–S4, and we used all features to construct the
random forest model. The workflow of the radiomics analysis
is shown in Figure 3. The preprocessing and feature extraction
methods were coded in MATLAB and python using scikit-
image (19).

Feature decomposition and classification
Although 670 features were extracted for each patient, these
features did not contribute equally to discriminating between
WD HNSCC and MD/PD HNSCC. The features with low
discrimination capabilities or those highly correlated with each
other would overfit the classifiers and lead to a poor outcome.
Therefore, feature decomposition was performed to find a set
of candidate features with excellent discrimination capabilities
and significant differences before grade prediction. In addition
to feature selection, feature decomposition could also generate
new features that are more capable of discrimination and have
less correlation with each other than the original features. We
used a non-linear kernelization method in the analysis. KPCA,
which could be seen as a non-linear version of PCA, is a perfect
answer to non-linear requests. In this paper, the following radial
basis function (RBF) kernel was used:

kRBF
(

xi, xj
)

= exp(−

∥

∥xi − xj
∥

∥

2

2σ 2
). (1)

Then, the features extracted from the CT image could be
processed by the KPCA algorithm with a RBF kernel. The
decomposition and classification methods were implemented
using scikit-learn (20), followed by a random forest classifier, and
we finally obtained our proposed kernelized radiomics model. All
experiments were performed under a Windows OS on a machine
with CPU Intel Xeon E5 2687W V3, GPU NVIDIA GeForce
1080ti, and 16∗8GB of RAM.

Kernelized radiomics model building
To build our kernelized radiomics model, we first decided on
the dimensions of the kernelized features. When using the RBF
kernel, we tuned the dimension value from 30 to 200 with steps
of 10.

Because a little imbalance existed between the positive and
negative samples in our dataset, AUC, instead of accuracy, was
used to select the dimension value.

Since the dimension of the kernelized features had been
decided, we still needed to select the classifier parameters. For an
ensemble learning method using random feature selection, the

main factors that could affect the performance of the random
forest model are the number of basic learners (decision tree),
maximum depth of each decision tree and number of randomly
selected features.We used a gidsearch to search for the best values
of these parameters, which tuned one parameter while freezing
the others.

We removed features with a training set variance lower than
0.8. We used the python and sklearn library to implement this
method, which first calculated the variance of each feature and
then removed features with a low variance.

Clinical and combined model building
According to previous studies (1, 4, 21–25), some clinical and
radiological characteristics are related to the differentiation
grades of HNSCC. The TN classification, stage and enhancement
types were selected as the clinical parameters for clinical
model building (Supplementary Data Sheet 2). These clinical

TABLE 1 | HNSCC patients information and tumor characteristics in the study.

Information/

characteristic

Testing cohort Training cohort p-value

Age 63.57 ± 12.01 (31–87) 61.18 ± 11.87 (27–86) 0.18

Sex 0.74

Male 53 (76.8%) 108 (78.8%)

Female 16 (23.2%) 29 (21.2%)

Tumor primary location 0.45

Oral cavity 35 (50.7%) 71 (51.8%)

Oropharynx 12 (17.4%) 13 (9.5%)

Hypoharynx 12 (17.4%) 28 (20.4%)

Larynx 10 (14.5%) 22 (16.1%)

Others 0 3 (2.2%)

Tumor differentiation 0.95

WD 42 (60.9%) 84 (61.3%)

MD/PD 27 (39.1%) 53 (38.7%)

T classification 0.64

T1–2 19 (27.5%) 42 (30.7%)

T3–4 50 (72.5%) 95 (69.3%)

N classification 0.52

N0 38 (55.1%) 69 (51.1%)

N+ 31 (44.9%) 68 (48.9%)

Stage 0.79

I–II 14 (20.3%) 30 (21.9%)

III–IV 55 (79.7%) 107 (78.1%)

Enhancement types

Observer 1 0.70

Homogeneous 1 23 (33.3%) 42 (30.7%)

Heterogeneous 1 46 (66.7%) 95 (69.3%)

Observer 2 0.23

Homogeneous 2 22 (31.9%) 33 (24.1%)

Heterogeneous 2 47 (68.1%) 104 (75.9%)

Age data are mean ± standard deviation, age range in parentheses, other data are

number (percentage). P > 0.05.
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and radiological characteristics and radiomics signatures were
integrated to build the combined model.

Statistical Analysis
The discriminating performance of this model was evaluated
with ROC curves and AUCs, and these values were compared
using DeLong tests. The differences in clinical characteristics
between the training and validation sets were evaluated
using Student’s t-tests and chi-square tests, and a p < 0.05
was considered statistically significant. IBM SPSS software
ver. 24 (IBM Corp., Armonk, NY, USA) and open-source
machine learning studio were used for statistical analysis.
The inter-observer agreement in evaluating the enhancement
types (homogeneous/heterogeneous) was assessed with kappa
statistics: a kappa value between 0.00 and 0.20 indicates a
slight agreement; a value between 0.21 and 0.40 indicates a fair
agreement; a value between 0.41 and 0.60 indicates a moderate
agreement; a value between 0.61 and 0.80 indicates a substantial
agreement; and a value between 0.81 and 1.00 indicates an almost
perfect agreement.

RESULTS

Patient Population Information and Tumor
Characteristics
The clinical information of the patients and HNSCC
characteristics in this study are summarized in Table 1.
The testing cohort included 69 patients (53 males and 16
females). The training cohort included 137 patients (108 males
and 29 females). All patients were Chinese, with no patients
who were white, black or of other races. Regarding the tumor
TNM classifications, only two patients were classified as M1,
and the others were classified as M0; therefore, we did not
conduct statistical assessments on the M stage. There were no
differences between the training and testing cohorts in terms of
age, sex, tumor primary location, histological differentiation, TN
classification, stage or enhancement types (p > 0.05).

The p-value of the kappa statistics analysis was 0.000 (p
< 0.05), indicating that inter-observer agreement existed. The
kappa value was 0.510 [95% CI (confidence interval, CI)

0.379–0.642]. The degree of inter-observer agreement regarding
enhancement types was moderate.

After the parameters were finished tuning, a dimension of
130 corresponded to the biggest AUC (AUC = 0.97). Therefore,
we obtained a 130-dimensional vector after kernelizing the
features of the sample (Figure 4). We built our kernelized model,
which used KPCA with a kernelized dimension of 130 as a
feature decomposer and random forest classifier, because these
parameter values led to the best model performance in terms
of AUC.

We obtained the top two features: smoothness and
GLCM_t_45_d_1_Con_2. There were significant differences
between the WD and MD/PD HNSCC cohorts (p < 0.05).

Performance of the Models
On the basis of VT selection, which eliminated the features
with a variance <0.8, the kernelized radiomics model from the
CT images achieved the best classification performance. The
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of using the kernelized
radiomics models both with and without VT to differentiate
WD HNSCC from MD/PD HNSCC are shown in Table 2.
ACC, SEN, and NPV in the cohort with VT selection were
significantly higher than those without VT selection. The AUCs
of the models with VT and without VT are 0.96 and 0.89,
respectively (Figure 5). There was significant difference between
them (p < 0.05).

We used 3-fold validation to split our entire dataset into
three parts and recursively used two parts as the training set
and one as the testing set. The model was trained on the

TABLE 2 | The performances of kernelized models with and without VT selection.

ACC SEN SPE PPV NPV AUC

With VT selection 0.92 0.96 0.83 0.94 0.91 0.96

Without VT selection 0.83 0.88 0.70 0.80 0.84 0.89

p-value 0.002N 0.002N 0.131 0.113 0.000N 0.000N

ACC, Accuracy; SEN, Sensitivity; SPE, Specificity. Np < 0.05.

FIGURE 4 | Tuning number of principle components.
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FIGURE 5 | Receiver operating characteristic curves of kernelized models with and without VT selection (FPR false positive rate, TPR true positive rate).

training set and validated on the testing set, which the model
could not learn from. We used ACC, SEN, SPE, PPV, NPV,
and AUC to describe the performance of the model, which
has the ability to ignore an unbalance between samples with
different classes.

The performances of each model in discriminating
tumor grades are summarized in Table 3 and
Supplementary Data Sheet 3. The clinical model had lower
performance parameters than the radiomics signature and
the combined model, and there were significant differences
among these models (p < 0.05). The combined model had
a relatively higher ACC, SEN, and NPV than the radiomics
signature, but there were no significant differences between
these two models (p > 0.05). The AUCs of the three models
are shown in Figure 6. The AUC of the clinical model was
much lower than that of the radiomics signature and that of
the combined model, which were significant differences (p <

0.05). The AUC of the radiomics signature was slightly lower
than that of the combined model, but the difference was not
significant (p > 0.05).

DISCUSSION

In this study, we combined a RBF KPCA with a random forest
classifier for the prediction of HNSCC tumor grade, especially
for differentiating WD tumors from MD/PD tumors. A total of
670 features were extracted from each tumor lesion. In total,
130 dimensions were from the PCA based on the highest AUCs
at different dimension levels (30–200). These 130 dimensions
were used as the inputs for the random forest model. Notably,
the application of VT selection to eliminate features with
variance <0.8 improved the AUC. We also constructed a clinical
and a combined model, and evaluated their performances; the
combined model achieved the best performance.

TABLE 3 | Discrimination performances of clinical model, radiomics signature

features, and the combined model.

Models ACC SEN SPE PPV NPV AUC

ClinicalN♀ 0.68 0.87 0.38 0.69 0.68 0.63

Radiomics*N 0.92 0.96 0.83 0.94 0.91 0.96

Combined*♀ 0.93 0.97 0.83 0.90 0.92 0.97

* 0.72 0.52 1.00 0.97 0.54 0.94

p valueN 0.00 0.016 0.00 0.00 0.00 0.00

♀ 0.00 0.003 0.00 0.00 0.00 0.00

*p > 0.05, Np < 0.05, ♀p < 0.05.

As the solid cancer is spatially and temporally heterogeneous,
radiomics is advantageous for non-invasively capturing intra-
tumoral heterogeneity frommedical imaging (10). Radiomics has
been reported for grading brain gliomas and can discriminate
high- vs. low-grade gliomas (26–28). Although other modalities
such as PET, DWI, histogram analysis of apparent diffusion
coefficient (ADC) maps, PWI and DCE-MRI have been used to
differentiate the histologic grades of HNSCC (6–8), these multi-
parameter imaging methods provide information regarding the
composition of HNSCC to reflect metabolism, cellularity, and
perfusion. There might exist complex associations among those
parameters depending on tumor grade (6). Additionally, intra-
and inter-observer variability are important factors in whether
these radiology diagnostic tools are independently reliable. In this
study, the AUC and ACC of our constructed model were higher
than those of PWI (8).

Radiomics is a promising tool for the non-invasive
characterization of tumor phenotypes. In our study, we
extracted a large number of quantitative features from contrast-
enhanced CT images: ROIs were characterized regarding their
shape and size features, histogram features, texture features
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FIGURE 6 | Receiver operating characteristic curves of the performances of three models.

and transformation features. A few radiomics studies have
been performed based on MRI to stage and grade HNSCC,
and these studies used various methods and obtained some
quantitative parameters. Ren et al. (14) also constructed
radiomics signatures with the method of least absolute shrinkage
and selection operator (LASSO) logistic regression and explored
the associations between radiomics signatures and HNSCC stage.
The researchers used MRI with contrast-enhanced T1-weighted
imaging (CET1WI) and T2-weighted imaging (T2WI) and found
that there were three radiomics signatures that were significantly
different between stage III-IV and stage I-II in both the testing
and training cohorts. Fujima et al. (15) used MRI histograms
and a texture analysis of fat-suppressed T2WI to predict the
histological grade of HNSCC and found that the relative
mean signal and contrast were significantly lower in poorly
differentiated SCC than in the well/moderately differentiated
SCC. The homogeneity was higher in poorly differentiated
SCC than in the well/moderately differentiated SCC. Ahn et al.
(16) studied different b values to determine whether histogram
analyses of ADC maps can differentiate histologic grades of
HNSCC; the researchers found that at a high b value (2,000
s/mm2), the mean ADC and kurtosis ratio were significantly
different among cohorts of different grades, and the diagnostic
accuracies varied among various cohorts.

On the basis of VT selection, which eliminated features with a
variance <0.8, the kernelized radiomics model from CT images
achieved a good performance. The ACC, SEN, and NPV of the
kernelized radiomics models with VT were significantly higher
than those of the model without VT. The variance threshold
could clearly help improve the performance of the model in
grading HNSCC.

Of all 670 features extracted from the portal venous
phase contrast-enhanced images, the top two features were
smoothness and GLCM_t_45_d_1_Con_2. The smoothness
feature concerns the texture of the image, which is either

smooth or rough. When the image contains constant gray level
intensity values, the texture is smooth. When the intensity
levels rapidly vary, the texture is considered rough. In this
study, the images of the WD cohort were smoother than
those of the MD/PD cohort. We speculated that a WD
tumor would resemble normal squamous epithelium, be slightly
more keratinized, have slight atypia nuclei, and show less
necrosis than a MD/PD tumor; these observations reflect the
pathological characteristics of the WD tumor and may relate
to smoothness. Regarding the feature GLCM_t_45_d_1_Con_2,
GLCM describes the spatial relationship of the pixels and
characterizes the image texture by calculating how often
pairs of pixels with specific values and spatial relationships
occur in an image. HNSCC tumors of different grades
have various pathological characteristics, including cellularity,
necrosis, vessels, desmoplasia, and inflammatory infiltration, all
of which have various pixel values and spatial relationships.
Fujima et al. (15) also reported that the contrast and homogeneity
parameters of the GLCM texture features based on MRI were
significantly different between WD/MD and PD SCC patients.
GLCM features may be useful for determining HNSCC grade.
Surov et al. (29) reported that ADC histogram parameters
represent the proliferation potential and cellularity of HNSCC.
In G1/2 and G3 tumors, various ADC parameters correlated with
Ki67 expression, cellularity, cell count, and total nucleic area, all
of which depend on the tumor grade.

To assess the performance of the radiomics signature
for discriminating among HNSCC grades, we additionally
constructed two models, a clinical model and a combined
model, and compared the performances of these models. Among
these three models, the combined model achieved the best
performance, although there were no significant differences
between the radiomics signature and the combined model.
When we incorporated clinical and radiological information
into the radiomics signature, the performance of the combined
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model was not significantly different from that of the radiomics
signature, which explains why the radiomics signature also played
a predominant role in discriminating between HNSCC grades.
A computerized algorithm analysis can make quantitative and
qualitative improvements in grading HNSCC tumors with CT
images. In prospective radiomics, a signature analysis may serve
as a useful, non-invasive tool that is extensively applied in
clinical practice.

There were several limitations in our study. First, this was
a retrospective and single center study. The study data are
limited; multi-center datasets, larger sample data and prospective
studies will be needed to validate the performance of our
model. Second, the ROIs were subjectively identified by observers
according to the most significantly enhanced area inside the
tumor on one slice of a CT image. Only 2-dimensional (2D)
analysis, rather than 3-dimensional (3D) analysis, was conducted
for the radiomics analysis. 3D analyses tend to be more
representative of tumor tissue heterogeneity, but a 3D analysis
may be more complex and time-consuming. In the future,
we will use the automatic segmentation method to define the
ROIs. Finally, the methodology used in this study needs to
be improved. As machine learning techniques develop, deep
learning method has emerged. Convolutional neural network
(CNN) is a representative, more advanced method in deep
learning. In the future, if the study sample size is enough for
deep learning, we will try CNN method for image segmentation
and feature extraction. Then the model can be worthy of
explaining more.

CONCLUSIONS

In conclusion, in this study, we constructed a radiomics
model that could non-invasively discriminate WD HNSCC
from MD/PD HNSCC. This radiomics model could be used in
precision medicine and improve therapeutic strategies in the
clinic. The radiomics model had a better performance with the
use of a KPCA, random forest classifier and VT selection andmay
serve as a potential method for assessing imaging biomarkers for
HNSCC patients.
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