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Introduction: Glioblastoma and anaplastic astrocytoma (ANA) are two of the most

common primary brain tumors in adults. The differential diagnosis is important for

treatment recommendations and prognosis assessment. This study aimed to assess the

discriminative ability of texture analysis usingmachine learning to distinguish glioblastoma

from ANA.

Methods: A total of 123 patients with glioblastoma (n = 76) or ANA (n = 47) were

enrolled in this study. Texture features were extracted from contrast-enhanced Magnetic

Resonance (MR) images using LifeX package. Three independent feature-selection

methods were performed to select the most discriminating parameters:Distance

Correlation, least absolute shrinkage and selection operator (LASSO), and gradient

correlation decision tree (GBDT). These selected features (datasets) were then randomly

split into the training and the validation group at the ratio of 4:1 and were fed into linear

discriminant analysis (LDA), respectively, and independently. The standard sensitivity,

specificity, the areas under receiver operating characteristic curve (AUC) and accuracy

were calculated for both training and validation group.

Results: All three models (Distance Correlation + LDA, LASSO + LDA and GBDT +

LDA) showed promising ability to discriminate glioblastoma from ANA, with AUCs ≥0.95

for both the training and the validation group using LDA algorithm and no overfitting was

observed. LASSO+ LDA showed the best discriminative ability in horizontal comparison

among three models.

Conclusion: Our study shows that MRI texture analysis using LDA algorithm had

promising ability to discriminate glioblastoma from ANA. Multi-center studies with greater

number of patients are warranted in future studies to confirm the preliminary result.

Keywords: texture features, machine learning, linear discriminant analysis, differential diagnosis, glioblastoma,

anaplastic astrocytoma
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INTRODUCTION

Glioblastoma and anaplastic astrocytoma (ANA) are two of the
most common primary brain tumors in adults (1). There is a
true increase in incidence rates, especially in the elderly (1–
3). In clinical practice, it is difficult to differentiate patients
with glioblastoma from those with ANA before surgery or
biopsy, because the symptoms and signs of the two tumors
are relatively uniform and non-specific (4, 5). However, the
management for them are different, such as the chemotherapy
protocol, dosage, and mode of administration (6). For example,
for patients with ANA (WHO grade III), it is recommended
to receive radiotherapy or TMZ after resection or biopsy;
while for patients newly diagnosed with glioblastoma (WHO
grade IV), it is radiotherapy plus concurrent TMZ, followed
by adjuvant TMZ. According to previous studies, glioblastoma
and ANA grow by invasion into normal brain tissue, spread
through the cerebrospinal fluid (CSF), and extend beyond a
single carotid or vertebral artery distribution, thus they both
have a poor response to medical management and become
leading causes of cancer-related death in adults (7, 8). Besides,
the prognosis of glioblastoma and ANA are different. In the
elderly population, there is no significant difference in prognosis
between glioblastoma and ANA, but the difference may exist
in younger population (9). Therefore, it is hard but crucial to
distinguish glioblastoma from ANA.

Magnetic Resonance Imaging (MRI) is the optimal
neuroimaging in the preoperative diagnosis of glioblastoma
and ANA for its multiplanar capability and superior soft
tissue contrast. Although some studies demonstrated that the
presence of ring-like enhancement and necrosis was suggestive
of glioblastoma, in most cases, both glioblastoma and ANA
appear as irregular shapes on MR images (hyperdense on T2-
weighted sequence and hypodense on T1-weighted sequence)
with various degree of Gd-based contrast enhancement and
edema, of which the differences were usually imperceptible to
the human eye (10–12).

Recently, texture analysis (TA), also known as radiomics, has
been widely applied in different fields. Researchers found that
TA was a feasible and promising method to facilitate differential
diagnosis, since it enabled acquisition of additional quantitative
information from MR images which was invisible to human
assessment (13–15). TA describes the frequency distribution and
the spatial organization of voxel value to reveal the possible
differences in tumor tissue (16). Previous studies have explored
the feasibility of applying TA in differential diagnosis, subtype
classification of tumors and detection of heterogeneity of tumor
tissue (17–19). To our acknowledgment, the application of TA

Abbreviations: ANA, Anaplastic astrocytoma; LDA, linear discriminant analysis;

MRI, Magnetic Resonance Imaging; MR, Magnetic Resonance; LASSO, Least

absolute shrinkage and selection operator; GBDT, Gradient correlation decision

tree; CSF, Cerebrospinal fluid; TA, Texture analysis; ROI, Regions of interest;

HISTO, Histogram-based matrix; GLCM, Grey-level co-occurrence matrix;

GLRLM, Grey-level run length matrix; GLZLM, Grey-level zone length matrix;

NGLDM, Neighborhood grey-level dependence matrix; AUC, Area under the

receiver operating characteristic curve; PCNSL, Primary central nervous system

lymphoma; MLP, Multilayer perceptron; IDH, Isocitrate dehydrogenase.

in differential diagnosis between glioblastoma and ANA has not
been reported yet. The purpose of this study was to evaluate
the discriminative ability of MRI texture analysis using machine
learning algorithms to differentiate glioblastoma and ANA.

MATERIALS AND METHODS

Patient Selection
We retrospectively searched our institution database and
screened all patients histopathologically diagnosed as
glioblastoma or ANA, from January 2015 to December
2018. Eligibility criteria for qualified patients were: (1) conclusive
histopathological diagnosis of glioblastoma or ANA; (2) elaborate
electronic medical records, especially pathologic material; (3)
diagnostic MR scan at our institution before surgical resection.
Exclusion criteria were: (1) history of intracranial disease
(e.g., brain trauma, intracranial infection or other types of
brain tumor), considering the interference of scar tissue on
the intensity of the images; (2) presence of motion artifact on
MRI; (3) history of treatments before MR scan (e.g., surgery,
chemotherapy or radiotherapy); (4) patients who did not reach
the criteria for diagnosis of glioblastoma or ANA according to
the 2016 WHO classification system. A senior neuropathologist
with 10-year experience judged whether the patient met the
criteria (the 2016WHO classification system) for glioblastoma or
ANA. The institutional review board approved this retrospective
study. The written informed consent was obtained from
participants enrolled in this study. The Ethics Committee of
Sichuan University and radiology department of our institution
have approved of the utilization of the statistics for this study.

MR Image Acquisition
For all patients included in this study, contrast-enhanced T1-
weighted sequences were available and were obtained on 3.0T
Siemens Trio Scanner with the following parameters: TR/TE/TI
= 1900/2.26/900ms, Flip angle = 9 ◦, 20 axial slices with
thickness = 5mm, axial FOV = 25.6 × 25.6 cm2 and data
matrix = 256 × 256. Contrast-enhanced T1-weighted imaging
used gadopentetate dimeglumine (0.1mmol/Kg) was the contrast
agent for contrast-enhanced image, and multi-directional data
of contrast-enhanced MRI were collected during the continuous
interval time of 90–250 s.

Texture Extraction
In our study, LifeX package (http://www.lifexsoft.org) was used
to extract texture features. Post-contrast T1-weighted (T1C)
images were selected for further analysis due to the clear
depiction of tumor location and border (20). Region of interest
(ROI) was manually drawn slice-by-slice in the axial plane
along the lesions on contrast-enhanced images to obtain texture
features. Two experienced neurosurgeons, blind to patients’
medical records and histopathological diagnosis, drew the ROI
followed by editing by a senior radiologist and a senior
neurosurgeon. The disagreements were addressed by discussing
and consulting with the senior radiologist and the senior
neurosurgeon. A total of 40 texture features were extracted from
the MRI images, including minValue, meanValue, maxValue,
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stdValue, and parameters derived from six matrixes: Histogram-
based matrix (HISTO), Shape, Gray-level co-occurrence matrix
(GLCM), Gray-level run length matrix (GLRLM), Gray-level
zone length matrix (GLZLM), and Neighborhood gray-level
dependence matrix (NGLDM).

Features Selection
There were 40 texture features in total derived from six selected
matrixes. The explanation of the 40 texture features were shown
in Supplementary Table 1. The statistics of these texture features
were shown in Supplementary Table 2. Feature selection was
performed to determine relevant features and thereby avoid
overfitting. Besides, the machine learning algorithm applied in
this study could not take all 40 texture features into analysis.
Three independent feature-selection methods were used to
select optimal texture features, including Distance Correlation,
least absolute shrinkage, and selection operator (LASSO), and
gradient correlation decision tree (GBDT). Three subsets of
texture features were thereby formed and constituted three
different datasets.

Classification
Linear discriminant analysis (LDA) is a robust classification
method to separate two classes by searching for the linear
combination of predictors thatmaximizes the separation between
groups. In this study, three classification models were established
based on LDA algorithm: Distance Correlation+ LDA, LASSO+

LDA, and GBDT + LDA. Datasets were fed into LDA algorithm,
respectively, and independently. Each dataset was randomly
split into training and validation group at the ratio of 4:1.
The model trained by training group was then applied to the
independent validation group to evaluate its performance. To
appraise the robustness of LDA algorithm, the procedure was
repeated for 100 cycles with different, random and independent
case assignment. A confusion matrix was determined using the
true assignment from histopathology and predictions of LDA
algorithm. The standard sensitivity, specificity, the areas under
receiver operating characteristic curve (AUC) and accuracy were
calculated for both the training and validation group to reveal
the discriminative ability of the models. The comparison of
three models (Distance Correlation + LDA, LASSO + LDA,
and GBDT + LDA) was carried out to determine the optimal
discriminative model for glioblastoma and ANA. The flowchart
of MRI classification by texture features is shown in Figure 1.

RESULTS

Patients Characteristics
A total of 133 patients with glioblastoma (n = 76) or ANA (n
= 57) fulfilled inclusion criteria. All patients with glioblastoma
were enrolled in this study, while 10 patients with ANA were
excluded according to the exclusion criteria. Finally, 76 patients
with glioblastoma and 46 patients with ANA were included in
this study. The mean ages of patients were 46.9 (15–67) and
40.0 (7–69), respectively. All patients underwent surgically tumor
resection in our neurosurgery department from 2015 to 2018.
Figure 2 shows two cases of the axial plane of contrast-enhanced
images in patients with glioblastoma and ANA.

Glioblastoma vs. ANA
There were three models analyzed in this study, including
Distance Correlation + LDA, LASSO + LDA, GBDT + LDA.
The texture features used for classification in these models
were shown in Supplementary Table 3. The performance of each
model was presented in Table 1 (including sensitivity, specificity,
accuracy, and AUC of the training and the validation group).
LASSO + LDA achieved the best performance with the highest
AUCs in both training and validation group. The sensitivity,
specificity, accuracy and AUC for its training group were 0.989,
0.993, 0.996, and 0.997, respectively; and for validation group,
they were 0.927, 0.989, 0.968, and 0.974, respectively. In addition,
Distance Correlation + LDA and GBDT + LDA also showed
promising ability to discriminate glioblastoma from ANA, with
AUC ≥0.95 for both training groups and validation groups.

Figure 3 shows the relationship between the canonical
discriminative functions from LASSO + LDA models for the
glioblastoma and ANA groups (triangles and circles) and for the
group centroids (squares). Minimal overlapping was observed
in this figure. Qualitatively, analysis of the data selected by
LASSO could separate glioblastoma from ANA. Figure 4 shows
the distribution of the direct LDA function determined for the
glioblastoma and ANA for one of the 100 independent training
cycles in the data analysis to illustrate the performance of the
LASSO + LDA model. There were clear shifts of LDA function
values, with left shift for ANA and right shift for glioblastoma.

DISCUSSION

The pre-treatment differential diagnosis between glioblastoma
and ANA is important considering the significant difference
in treatment strategy and patient prognosis. MR scan, the
main radiological preoperative examination for brain tumors,
is highly recommended as the good sensitivity in lesion
detection. However, the accurate diagnosis before operation is
still challenging due to the reason that both tumors present
similar characteristics on conventional MR images which are
beyond human naked eye assessment (4, 5). In this study, we
extracted texture features making quantitative description of
images to maximize the utilization of MR examination, with
which three LDA-based models were established. The results
demonstrated that MRI-based texture analysis combining with
LDA algorithm could enable the feasible differentiation between
glioblastoma and ANA.

TA is a mathematical approach to characterize the
heterogeneity of voxel value on images. It could visualize
spatial histologic heterogeneity which is invisible to human
eye assessment (21). Theoretically, the characteristics of lesions
images could be quantitively analyzed as texture features due to
their different enhanced patterns on MR images (22). Moreover,
previous studies suggested the textures features could reflect a
series of abnormal pathology process of tumor such as edema,
effusion, and necrosis, providing a potential mechanism for
texture features in discriminating glioblastoma from ANA
(23, 24).

Artificial intelligence has been widely explored in recent
researches. Combined with texture features extracted from
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FIGURE 1 | Flowchart of MRI classification by texture features. ANA, anaplastic astrocytoma; LDA, linear discriminant analysis; MRI, Magnetic Resonance Imaging;

LASSO, least absolute shrinkage and selection operator; GBDT, gradient correlation decision tree; HISTO, histogram-based matrix; GLCM, Gray-level co-occurrence

matrix; GLRLM, Gray-level run length matrix; GLZLM, Gray-level zone length matrix; NGLDM, Neighborhood gray-level dependence matrix; AUC, area under the

receiver operating characteristic curve.

images, it was reported to assist in tumor grading, clinical
diagnosis, and outcome prediction. A study aimed to evaluate
the diagnostic performance of TA-based machine-learning
algorithms in differentiating PCNSL from glioblastoma
presented optimal performance with the mean AUC
of 0.921, while the AUC of three readers were all <

0.8. Thus, the researchers concluded that the diagnostic
performance of TA-based machine-learning algorithms
was superior to that of human readers (25). Other studies

with similar purpose also demonstrated similar results with
AUCs higher than 0.85 (18, 26). Moreover, researchers
aiming to apply machine learning in astrocytoma grading
also reported promising ability in discrimination (27).
In our study, the classification models were established
based on LDA algorithms. LDA is the statistic classifier
combining inputted parameters into a discriminant function
to classify cases in different groups (28). Our results
demonstrated that LDA-based model represented promising
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FIGURE 2 | Examples of two cases from the contrast-enhanced MR images in patients with glioblastoma and ANA. (A) Contrast-enhanced images with ANA,

(B) contrast-enhanced images with glioblastoma. ANA, Anaplastic astrocytoma.

TABLE 1 | Discrimination between glioblastoma and ANA.

Training Validation

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Distance Correlation 0.995 0.979 0.987 0.982 0.996 0.955 0.972 0.966

LASSO 0.989 0.993 0.996 0.997 0.927 0.989 0.968 0.974

GBDT 0.909 0.991 0.963 0.970 0.918 0.994 0.964 0.972

Entries in bold were most significant. ANA, anaplastic astrocytoma; AUC, area under the receiver operating characteristic curve; LASSO, least absolute shrinkage and selection operator;

GBDT, gradient correlation decision tree.

FIGURE 3 | Relationship between the canonical discriminative functions from

LASSO + LDA models for the glioblastoma and ANA groups (triangles and

circles) and for the group centroids (squares). Minimal overlapping was

observed in this figure. Qualitatively, analysis of the data selected by LASSO

could separate glioblastoma from ANA. LASSO, least absolute shrinkage and

selection operator; LDA, linear discriminant analysis; ANA, Anaplastic

astrocytoma.

performance in accurate diagnosis between glioblastoma
and ANA.

The adoption on optimal features for machine learning
algorithms was challenging but was necessary relative to

diagnostic performance. Previous studies perform feature
selection with varied methods: Mann-Whitney U test with AUC
of ROC, Student’s t-test with recursive feature elimination,
random forest, and entropy-based discretization, respectively
(18, 25, 29, 30). Based on the results of these studies, we
could draw the conclusion that the suitable selection method
play a key role in classifier performance. As for our study,
a relatively large number of parameters were extracted
from different matrixes, increasing the chance in selecting
the optimal features but also increasing the difficulty in
selection. Therefore, three feature-selection methods (Distance
Correlation, LASSO, and GBDT) were evaluated to select
the one with best performance. The results of this study
demonstrated that LASSO+LDA was the suitable discriminative
model for glioblastoma from ANA with highest AUC in the
testing group of 0.997. LASSO was proposed as a non-linear
variable selection method for neural network in previous
study with advantage in minimizing the common sum of
squared errors. It could produce interpretable models (similar
to the subset selection) when simultaneously exhibiting
the stability of ridge regression. Previous study illustrated
that it represented superior performance over other state-
of-the-art variable selection methods (31). However, we
must interpret the results carefully that the additional
gain in information from comparing different machine
learning techniques is quite limited, specifically given that
all classifier/feature selection methods investigated seem
perform quite comparably and variance in AUC maybe partially

Frontiers in Oncology | www.frontiersin.org 5 September 2019 | Volume 9 | Article 876

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tian et al. Machine Learning-Based MRI Texture Analysis

FIGURE 4 | Distribution of the direct LDA function determined for the glioblastoma and ANA for one of the 100 independent training cycles in the data analysis to

illustrate the performance of the LASSO + LDA model. There were clear shifts of LDA function values, with left shift for ANA and right shift for glioblastoma. The

minimal overlap is observed between the two groups and a strong qualitative similarity is apparent between the plots for cycles and triangles. LDA, linear discriminant

analysis; ANA, anaplastic astrocytoma; LASSO, least absolute shrinkage and selection operator.

attributed due to the statistical group. Therefore, our study
could only be regarded as hypothesis generation for future,
larger studies.

There were some limitations of our study. First, as a
retrospective single-center study, the bias in patient selection
was inevitable. Second, the number of included patients was
relatively small, and greater number of patients were required
in further studies to validate the results. Third, ANA is
now divided into three categories according to the 2016
World Health Organization Classification of Central Nervous
System Tumors: IDH-mutant, IDH- wildtype, and NOS (32).
The ability of machine learning in discriminating subtypes
of ANA were required to be explored in future studies.
Fourth, the machine learning models in our study were not
actually validated in other datasets. We did not adopt other
institution datasets because that texture features could be
different when extracted from images acquired with various
scanners or protocols. This could be regarded as a double-
edged sword. On the one hand, a set of controlled variables
could be provided; on the other hand, the results could not
be guaranteed widely applied. The analysis protocol and image
processing procedure were open-source packages and study
with large population are required to validate and reproduce
our results.

CONCLUSION

In this work, we extracted quantitative parameters from
contrast-enhanced MR images and used three feature-selection
methods to select the most discriminating parameters. Then
we applied LDA algorithm to analyze the selected parameters.
Our study shows that texture features has promising ability
to discriminate glioblastoma from ANA. Multi-center studies
with greater number of patients are warranted to confirm this
preliminary result.
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