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Breast cancer (BC) is the leading cause of cancer-related death in women. Therefore,

a better understanding of BC biology and signaling pathways might lead to the

development of novel biomarkers and targeted therapies. Although a number of

transcriptomic studies have been performed on breast cancer patients from various

geographic regions, there are almost no such comprehensive studies performed on

breast cancer from patients in the gulf region. This study aimed to provide a better

understanding of the altered molecular networks in BC from the gulf region. Herein,

we compared the transcriptome of BC to adjacent normal tissue from six BC patients

and identified 1,108 upregulated and 518 downregulated transcripts. A selected number

of genes from the RNA-Seq analysis were subsequently validated using qRT-PCR.

Differentially expressed (2.0-fold change, adj. p < 0.05) transcripts were subjected to

ingenuity pathway analysis, which revealed a myriad of affected signaling pathways and

functional categories. Activation of ERBB2, FOXM1, ESR1, and IGFBP2 mechanistic

networks was most prominent in BC tissue. Additionally, BC tissue exhibited marked

enrichment in genes promoting cellular proliferation, migration, survival, and DNA

replication and repair. The presence of genes indicative of immune cell infiltration and

activation was also observed in BC tissue. We observed high concordance [43.5%

(upregulated) and 62.1% (downregulated)] between differentially expressed genes in our

study group and those reported for the TCGA BC cohort. Our data provide novel insight

on BC biology and suggest common altered molecular networks in BC in this geographic

region. Our data suggest future development of therapeutic interventions targeting those

common signaling pathways.

Keywords: breast cancer, RNA-Seq, pathway analysis, transcriptome, IPA

INTRODUCTION

Breast cancer (BC) is the second most common type of cancer around the world
comprising approximately 11.6% of new cancer cases and 6.6% of all cancer-related deaths up to
2018 (1). Among females, BC is the most frequently diagnosed and the leading cause of cancer
mortality. GLOBOCAN 2018 reported region-specific incidence and age-standardized mortality
rate for BC in Western Asia (incidence: 45.3/100,000, mortality: 13.6/100,000) and Eastern Asia
(incidence: 39.2/100,000, mortality: 8.6/100,000) (1).
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Gene expression profiling by DNA microarray have
identified the inherent classification of BC into five main
molecular subtypes: Luminal A (estrogen receptor (ER)
+/progesterone receptors (PR) +/epidermal growth factor
receptor 2 (HER2; ERBB2) –) are commonly of low score;
luminal B (ER+/PR–/+/HER2+/–) are normally of higher
score with more proliferation rate; HER2-enriched subtype
(ER–/PR–/HER2+); triple-negative breast cancer (TNBC;
ER–/PR–/HER2–); and carcinomas that are analogous to
normal breast tissue and is associated with good prognosis
(2–4). In addition, claudin-low cancers, metaplastic, molecular
apocrine, and invasive lobular carcinomas were identified
as molecularly different BCs (5). Furthermore, genome-
wide association studies have identified many novel breast
cancer vulnerability variants such as hereditary risk factors,
encompassing four sporadic high-penetrance transcriptomes
(BRCA1, BRCA2, TP53, and PTEN), four sporadic moderate:
penetrance transcriptomes (CHEK2, ATM, BRIP1, and PALB2),
and around twenty common low-penetrance variants in 19 genes
or loci (6, 7).

The age-standardized incidence rate is growing in many
countries, particularly in the Arab countries where the reported
BC incidence ranges from 9.5 to 50 cases per 100,000 women
per year. In the gulf region, the incidence of BC in Bahrain,
United Arab Emirates, Saudi Arabia, Qatar, and Kuwait were
53.4, 22.8, 17.5, 48.2, and 46.6 cases per 100,000 women,
respectively (8). Although the incidence of BC in this geographic
region is lower than those reported in Europe and USA, the
incidence of BC in Arab countries are on the rise (1, 9).
Interestingly, patients diagnosed with BC in the Arab world
are approximately a decade younger and they are oftentimes
presented with larger and more advanced stage tumors (8). A
previousmicroarray-based study comparing the clinical and gene
expression profile of breast cancer from the north (France) and
south (Lebanon, Tunisia, and Morocco) Mediterranean patients
revealed more aggressive tumor in the south Mediterranean
patient group. Tumors from the south group were predominantly
luminal B, while tumors from the north were mostly luminal A
subtype (10).

Recent advances in transcriptome analysis have
revolutionized our understanding of human disease (11).
In the current study, we utilized next generation sequencing
(NGS) and bioinformatics and characterized the transcriptional
landscape of BC compared to adjacent normal tissue from the
gulf region and identified multiple activated networks. Our
data provides the first transcriptome and network analyses
of BC in this geographic region setting the foundation
for future development of novel BC biomarkers and
therapeutic interventions.

Abbreviations: BC, breast cancer; NGS, next generation sequencing; TT, tumor

tissues; NT, normal tissues; IPA, ingenuity pathways analysis; URA, upstream

regulator analysis; DEA, downstream effects analysis; MN, mechanistic networks;

CAN, causal network analysis; TCGA, the cancer genome atlas; FOXA1, forkhead

box A1; MUC1, mucin 1; HBA2, hemoglobin alpha 2; MYOC, myocilin;

HBB, hemoglobin subunit beta; HBA1, hemoglobin subunit alpha 1; qRT-PCR,

quantitative reverse transcriptase-Polymerase chain reaction.

MATERIALS AND METHODS

Ethics Statement and Sample Collection
Tumor tissues (TT) and adjacent non-cancerous normal tissues
(NT) were obtained from six breast cancer patients. All patients
included in the study were treatment-naive prior to surgery and
were provided with a written informed consent prior to sample
collection. The study was performed under ethical approval from
Qatar Biomedical Research Institute, Doha, Qatar (Protocol no.
2017-006). The characteristics of patients included in current
study are provided in Table 1.

Tissue Preparation and RNA Isolation
RNA was isolated using the RNA/DNA/Protein Purification
Plus Kit (Norgen Biotek Corp, Ontario, Canada) as per the
manufacturer’s instructions from TT and adjacent NT. Briefly,
frozen tissues were transferred into a mortar containing adequate
amount of liquid nitrogen and were grinded thoroughly using a
pestle followed by resuspending the tissue in lysis buffer followed
by RNA extraction. The concentration and purity of extracted
RNA were measured using NanoDrop 2000c (Thermo scientific,
MA, USA) and RNA were stored at−80◦C.

RNA Concentration and Quality
Assessment
The quality and quantity of extracted RNA was measured using
on-chip electrophoresis utilizing the Agilent RNA 6000 Nano Kit
(Agilent Technologies, CA, USA) and Agilent 2100 Bioanalyzer
(Agilent Technologies) as per the manufacturer’s instructions.
Samples exhibited an RNA Integrity Number (RIN) > 7 were
used for library preparation.

Library Preparation
The RNA was quantified using Qubit instrument (Invitrogen,
USA) and RNA BR assay kit (Invitrogen). Hundred nanogram
of RNA was used as an input for library preparation using
TruSeq RNA Access Library preparation kit (Illumina, CA, USA)
as per the manufacturer’s instructions. Briefly, the RNA was
fragmented into small pieces under high temperature using
divalent cations. The RNA fragments were immediately reverse
transcribed to first strand cDNA using random hexamers.
Following the first strand, second strand was synthesized
by incorporating dUTP instead of dTTP. The sequencing
adaptors were ligated to the double-stranded cDNA followed
by a single “A” nucleotide adenylation at 3′ end of blunt
fragments. The final library was created by capturing the
coding regions of the transcriptome using sequence-specific
probes. The yield of cDNA libraries was quantified using
Qubit dsDNA HS assay kit (Invitrogen) and size distribution
of the cDNA libraries were determined using the Agilent
2100 Bioanalyzer DNA1000 chip (Agilent Technologies). The
clusters were generated on a cBot cluster generation system
(Illumina) and sequencing was done on Hiseq 4000 with 300
bp paired-ends.

Frontiers in Oncology | www.frontiersin.org 2 September 2019 | Volume 9 | Article 910

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Vishnubalaji et al. Transcriptome Analysis of Breast Cancer

TABLE 1 | Clinical information of patients included in current study and their tumor characteristics.

Patient ID Age Ki-67 ER PR Her2 Histological grade Type TNM stage Staging

PBC-004 41 70% Negative Negative Positive Poorly differentiated IDC pT4b N2 Mx IIIB

PBC-005 33 30% Positive Positive Negative NA IDC PT2 N0 Mx IIA

PBC-020 59 10% Positive Positive Positive Poorly differentiated IDC pT2 N1 M0 IIB

PBC-041 59 20% Positive Positive Positive Moderately differentiated IDC pT3 N3 M0 IIIC

PBC-045 57 15% Positive Positive Negative Poorly differentiated IDC pT1 cN0 IA

PBC-055 43 10% Positive Positive NA Well differentiated IDC pT1 N0 Mx IA

TABLE 2 | qRT-PCR SYBR Green primer sequences used in this study.

Gene symbol Forward primer (5′-3′) Reverse primer (5′-3′)

MUC1 TGCCGCCGAAAGAACTACG TGGGGTACTCGCTCATAGGAT

FOXA1 GCAATACTCGCCTTACGGCT TACACACCTTGGTAGTACGCC

HBA2 CTGGACAAGTTCCTGGCTTC TGCTGCCCACTCAGACTTTA

MYOC AGTTCCTGCTTCCCGAATTT CTCGCATCCACACACCATAC

HBB TCTGTCCACTCCTGATGCTG CACTGGTGGGGTGAATTCTT

HBA1 GGTCCCCACAGACTCAGAGA AGTGCGGGAAGTAGGTCTTG

β-ACTIN AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG

Quantitative Reverse Transcription PCR
(RT-qPCR)
One microgram of RNA from each sample was reverse
transcribed into cDNA using QuantiTect Reverse Transcription
Kit (Qiagen, Hilden, Germany). PCR reactions were performed
on QuantStudio 7/6 Flex qPCR (Applied Biosystems, California,
USA) using PowerUP SYBR Green Master Mix (Applied
Biosystems). All data were normalized to β-actin. Non-specific
amplifications were checked by the use of melting curve.
The relative changes in target gene expression were analyzed
using 2-11CT method. Sequences of primers used in current
study are listed in Table 2. The primers were designed using
Primer3 (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).

RNA-Seq Data Analysis
Pair end reads were aligned to the hg19 human reference genome
in CLC Genomics Workbench-12 (QIAGEN, Germany). The
abundance of the expression of transcripts was measured as the
score of TPM (Transcripts Per Million) mapped reads in CLC
Genomics Workbench 12. Abundance data were subsequently
subjected to differential gene expression using 2.0-fold change
and < 0.05 p-value cut-off in CLC Genomics Workbench 12.

Gene Set Enrichment and Modeling of
Gene Interactions Networks
Upregulated genes were imported into the Ingenuity Pathways
Analysis (IPA) software (Ingenuity Systems; www.ingenuity.
com/) and were subjected to functional annotations and
regulatory network analysis using upstream regulator analysis
(URA), downstream effects analysis (DEA), mechanistic
networks (MN) and causal network analysis (CNA) prediction
algorithms. IPA uses precise to predict functional regulatory

networks from gene expression data and provides a significance
score for each network according to the fit of the network to the
set of focus genes in the database. The p-value is the negative
log of P and represents the possibility that focus genes in the
network being found together by chance (12, 13).

Retrieval of the Cancer Genome Atlas
(TCGA) Breast Cancer Expression Data
Differentially expressed genes from the TCGA breast cancer data
set were retrieved from (http://gepia.cancer-pku.cn/detail.php?
gene=&clicktag=expdiy) (14). The expression profile of selected
genes from the TCGA breast cancer data set was retrieved
from the StarBase V3.0 database (http://starbase.sysu.edu.cn/
panGeneDiffExp.php) (15).

Statistical Analysis
Statistical analyses and graphing were performed usingMicrosoft
excel 2016 and GraphPad Prism 8.0 software (GraphPad, San
Diego, CA, USA). The Benjamini–Hochberg False Discovery
Rate (FDR) method was used for multiple testing corrections.
For comparative qRT-PCR analysis, p-values ≤ 0.05 (two-tailed
t-test) were considered significant. For IPA analyses, a Z score
(2.0 ≤ Z ≥ 2.0) was considered significant.

RESULTS

RNA-Seq Gene Expression Profiling in BC
The clinical information of the six patients included in the
current study and their tumor characteristics are provided in
Table 1. To characterize the transcriptional landscape alterations
during malignant transformation, tumor, and adjacent normal
breast tissues from six BC patients were subjected to whole
transcriptome RNA-Seq analysis. As shown in Figure 1A,
hierarchical clustering based on differentially expressed RNA
transcripts revealed clear clustering of breast cancer from
adjacent normal tissues. Using 2.0 FC and ≤ 0.05 FDR
p-value cut off, 1108 upregulated and 518-downregulated
transcripts were identified (Supplementary File 1). Selected
number of upregulated (forkhead box A1 (FOXA1), mucin
1 (MUC1), and downregulated [hemoglobin alpha 2 (HBA2),
myocilin (MYOC), hemoglobin subunit beta (HBB), and
hemoglobin subunit alpha 1 (HBA1)] genes from the RNA-
Seq data were subsequently validated using quantitative reverse
transcriptase-PCR (qRT-PCR) (Figure 1B) and demonstrated
concordant expression to those observed in the RNA-Seq data
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FIGURE 1 | Differentially expressed genes in BCs. (A) Hierarchical clustering of six breast cancer and the corresponding adjacent normal tissue based on differentially

expressed RNA transcripts (2.0 FC, FDR p < 0.05) from the RNA-Seq data. Each column represents a sample and each row represents a transcript. Expression level

of each gene in a single sample is depicted according to the color scale. (B) The expression levels of selected genes from the RNA-Seq data were validated using

qRT-PCR in four breast cancer and adjacent normal tissue. Data are presented as the mean ± S.E., n = 2. (C) Top significantly affected (2.0 <Z score< −2.0)

canonical pathways based on IPA. The horizontal bars denote the different pathways based on the Z-scores. Red color indicate activation, while blue color indicate

suppression.

(Supplementary File 2). Canonical pathway analysis on the
upregulated gene transcripts using ingenuity pathway analysis
(IPA) revealedmost significant enrichment in pathways related to
pyrimidine ribonucleotides biosynthesis, and estrogen-mediated
S phase entry, while G-Protein inhibitory (Gai) and IL8
signaling were among the most under-presented canonical
pathways (Figure 1C).

Activation of Cancer Cell Proliferation,
Invasion, and Metabolism of DNA
Functional Categories in Breast Cancer
Tissue
IPA downstream effector analysis provides a powerful tool
to predict the increase or decrease in downstream biological
activities and functions that are likely to be casually affected
by the transcriptome data. Figure 2A presents a high-level

tree map of affected downstream functional categories based
on differentially expressed genes in breast cancer tissue. The
major colored rectangles indicates a family of associated
biological functions or diseases, blue (decreasing) and orange
(increasing), and dimension (using FET P-value) of rectangles
indicates where associated functions are predicted to up or
down most significantly as a group, the color intensity specify

higher absolute Z-scores. This analysis revealed remarkable

enrichment in several functional categories, mainly those
involved in cancer cell growth, and proliferation (Figure 2B).

Furthermore, functional categories associated with tumor cell

movement and invasion were enriched, while those associated

with myeloid and phagocyte cell chemotaxis were diminished

(Figure 2C). Notably, functional categories associated with DNA

replication, recombination and repair were also upregulated in

BC tissues, especially those involved in chromosome alignment
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FIGURE 2 | Downstream effector analysis of upregulated gene transcripts in breast cancer. (A) Tree map (hierarchical heat map) depicting affected functional

categories based on differentially expressed genes where the major boxes represent a category of diseases and functions, (B) cellular growth, and proliferation,

(C) cellular movements, DNA replication, recombination, and (D) repair, and (E) cell death and survival. Each individual colored rectangle is a particular biological

function or disease and the color range indicates its predicted activation state: increasing (orange), or decreasing (blue). Darker colors indicate higher absolute

Z-scores. In this default view, the size of the rectangles is correlated with increasing overlap significance.

andmetabolism of DNA (Figure 2D), while those involved in cell

death were under presented (Figure 2E). Taken together, our data

revealed a significant increase in cell proliferation, migration,

DNA replication, while chemotaxis, and cell death-associated
functional categories were suppressed.

A Chemokine-Network Indicative of
Enhanced Tumorigenesis in BC
IPA revealed a number of immune-related functional categories
to be differentially expressed in BC compared to normal
tissue. Among those, binding and movement of myeloid cells,
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FIGURE 3 | A chemokine-network indicative of enhanced tumorigenesis in BC. (A) Heatmap depicting the expression of several upregulated and (B) downregulated

immune regulators in six breast cancer compared to adjacent normal tissue. Data are presented as log2 TPM expression value. Expression values are depicted

according to the color scale.

and chemotaxis were most prominent (Figure 2C). Figure 3A,
provides heat map log2 expression value for the upregulated
immune-related genes (S100A14, CHGA, CCL11, S100A7, GRP,
TFF3, CXCL17, SERPINA1, RLN2, SERPINA3, CXADR, GDF15,
C4A, PRKCZ, RAP1GAP, CXCL9, LEF1, SRCIN1, ITGA2, EGF,
CXCL10, DDR1, MIF, FCGR1A, and PLAU) in BC tissue.
Interestingly, CXCL9, and CXL10 were shown before to enhance
the mobilization of cytotoxic T cells form regional lymph
nodes to tumor tissues and to promote CTL-mediated tumor
immunity (16). In contrary, expression of CXCL17 by tumor
cells was shown to recruit CD11b+Gr1highF4/80− immune cells
and to promote tumor progression in mice (17). On the other
hand, several genes involved in chemotaxis were downregulated
in breast compared to normal tissue (ANXA1, DPP4, CCL3,
PPARG, CAV1, CCL8, SOCS3, FGF2, FIGF, S100A9, DDR2,
CXCL2, F10, PTGS2, S100A8, LEP, MARCO, FPR2, SAA1,
IL8, CXCR1, CXCR2, FCAR, S100A12, FCGR3B, PPBP, and
PF4, Figure 3B). Previous studies had shown strong correlation
between CCL2 expression and TAM infiltration and tumor
progression (18). Interestingly, both CCL3 and CCL8 binds
to CCR5, which was shown to regulate breast cancer cell
proliferation, through P53 activation (19). Our data implies loss
of CCL3 and CCL8 in breast cancer could lead to enhanced cell
proliferation and tumor progression.

Mechanistic Network Analysis Predicts
Activation of ERBB2, FOXM1, ESR1, and
IGFBP2 Networks in Breast Cancer
Upstream regulator analysis predicts upstream molecules and
provides mechanistic networks that could explain the observed
changes in gene expression. Upstream regulator analysis on
the differentially expressed genes revealed several activated
mechanistic networks in breast cancer, including ERBB2 (Z score
= 4.5), FOXM1 (Z score= 3.9), FOXA1 (Z score= 2.5), ESR1 (Z
score = 2.4), and IGFBP2 (Z score = 2.2), while suppression of

NURP1 (Z score=−6.1), TP53 (Z score=−3.4) was prominent
(Supplementary File 3).

ERBB2 (HER2), which was upregulated in BC tissues, is
predicted to be directly activating NCOA3 and inhibiting
CDKN1A and AR (inconsistent relationship) with more
confidence. Similarly, activated ERBB2 is directly inhibiting
EGFR (inconsistent relationship) and ERK with less confidence,
and in a high confidence state PPARG (inconsistent relationship)
has been found to be inactivated through the down regulation
of ERK and activation of NCOA3. Furthermore, upregulation
of ERBB2 was predicted to activate the NFkB complex and
impeding the RELA and STAT3 through the downregulation of
ERK. However, its inconsistent relationship, in a high confidence
mode tumor suppressor TP53 function, was disabled through
direct inhibition of CDKN1A and AR. Moreover, HIF1A,
CTNNB1, and ESR1 are predicted to be activated by the
upregulated ERBB2 through the intermediated EGFR and AR
downregulations (Figure 4A). Analogous to the ERBB2, FOXM1
also exert its inhibitory effect on TP53 via downregulation
of CDKN1A (Figure 4B). While excavating further on the
ESR1 function from the Figure 4A, though the effect of
relationship was not predicted, RARA, NCOA2, NCOA3, HIF1A,
JUN, and CTNNB1 are predicted in an active state whereas
EGFR, SP3, and STAT3 are inactivated (Figure 4C). Similar
occurrence has also been observed with IGFBP2 activation in BC
tissues (Figure 4D).

Breast Cancer Gene Signature Is Highly
Enriched in Genes Indicative of Breast
Cancer-Related Functional Categories
With More Confidence and High Level of
Predicted Relationship
Interestingly, we also observed ESR1 as a key hub gene in the
cancer network. This interaction network is illustrated as genes
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FIGURE 4 | Mechanistic network analysis predicts multiple affected signaling networks. (A) Illustration of the ERBB2, (B) FOXM1, (C) ESR1, and (D) IGFBP2

mechanistic networks with predicted activated state of the network based on transcriptome data with subsequent predicted effects on downstream effector

molecules. Figure legend illustrate the relationship between molecules within the network.

(presented as nodes) and biological relationships between nodes
(presented as edges) as mapped by IPA. The intensity of the
node color correlates with the degree of gene upregulation.
Nodes are displayed using different shapes representing the
functional class of the gene (e.g., Enzyme, growth factors,

transporters, etc.) that is illustrated in the corresponding
legend (Figure 5A).

The top enriched functional network generated by the
regulator effect network analysis in IPA is the cell cycle
progression, and cell proliferation of breast cancer cell lines
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FIGURE 5 | Enrichment in multiple cancer-associated networks in breast cancer. (A) Illustration of the “Cellular Development, Cellular Growth, and Proliferation,

Digestive System Development and Function” network, “Cell cycle progression, (B) Cell proliferation of breast cancer cell lines”, and (C) “metabolism of DNA”

functional networks based on IPA predicted activation state and subsequent effect on cellular functionality. Figure legend illustrate the relationship between molecules

within the network and their activation state. Red color indicates activation while blue color indicate suppression.
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network. The network combined differentially expressed
potential regulators (12) and genes (34, including 31 increased
and 3 decreased legends) in the middle of the hierarchy which
are involved in the two major downstream effector function such
as cell cycle progression and cell proliferation of breast cancer
cell lines (Figure 5B).

The other intriguing enriched network was that involved in
the metabolism of DNA. This functional network consists of
3 activated (E2F, E2F3, and HELLS) and two inhibited (E2F6
and MAP2) upstream regulators, and 12 upregulated and one
downregulated gene, in the middle hierarchy which are involved
in metabolism of DNA (Figure 5C). Orange symbols at the top
are the predicted upstream regulators. Colored symbols represent
upregulated genes, with color intensity corresponding to the
change in gene expression (Figure 5C).

We subsequently compared the list of differentially expressed
genes from the current study to those reported in the TCGA
invasive breast cancer dataset. Overall, we observed a large
similarity between the upregulated (43.5%) and downregulated
(62.1%) genes in the current study and those reported in
the TCGA invasive breast cancer dataset (Figures 6A,B). The
expression profile of select cancer-related genes, which were
upregulated in current study, in the TCGA dataset is presented
in Figure 6C, which was concordant with our data.

DISCUSSION

The pathobiology of breast cancer is orchestrated by complex
regulatory networks involving many gene hubs and regulatory
molecules (20–22). Deciphering such complex signaling
and functional networks provides a foundation for future
development of targeted therapeutic interventions and disease
biomarker discovery. While a multitude of transcriptomic data
are currently available for breast cancer from several parts of
the world, there are almost no such studies performed on breast
cancer from the gulf region (23–25). Our previous data have
highlighted a number of common and novel transcriptome
networks in colorectal cancer from patients in the gulf region,
suggesting a possible role for environmental and genetic factors
in shaping the transcriptome of colorectal cancer (26, 27).
Therefore, our current study provides the first RNA-Seq
transcriptome analysis of breast cancer from the gulf region.
Herein, we integrated the power of next generation sequencing
with the ingenuity pathway analysis platform to understand the
biology of breast cancer and to highlight various signaling and
functional perturbations during breast cancer development in
this geographic region, highlighting a number of key signaling
networks in breast cancer.

Our global analyses revealed the enrichment of gene
signatures indicative of cell proliferation and movement
(migration and invasion), DNA replication and recombination,
and immune cell trafficking, while genes associated with cell
death were underrepresented. Mechanistic network analyses
revealed activation of several signaling cascades with ERBB2,
FOXM1, and ESR1 on top of the hierarchy. Our data are
concordant with other studies highlighting an important role for

ERBB (HER2), FOXM1, and ESR1 in breast cancer from other
geographic regions (28–30).

In agreement with our expression data, functional studies
revealed exogenous expression of ERBB2 in ERBB2-negative
breast cancer cells (MCF7 and T47D) to enhance the expression
of FOXM1 and MMP2. Inhibition of FOXM1 by RNA
interference prevented induction of invasion by ionizing
radiation (IR), while overexpression of FOXM1 in MCF10A cells
was sufficient to promote IR-induced invasion (31). On the other
hand, silencing of IGFBP-2 suppressed MCF7 breast cancer cell
proliferation and increased cell death, suggesting IGFBP-2 as
promoter of breast cancer survival (32). Interestingly, silencing of
ER-α/ESR1 reversed the ability of IGFBP-2 to confer cell survival,
suggesting IGFBP-2 to modulate IGFs, to directly regulate PTEN,
and to play a role in maintaining ER-α expression (33). Those
data corroborate a functional role for the identified molecular
networks in BC biology.

Interestingly, one of the patients used in the RNA-Seq
experiments was classified as HER2− based on the pathological
report; however, the expression of HER2 mRNA transcript
was elevated based on the RNA-Seq data, suggesting possible
differences in the pathological and molecular assessment of
HER2 expression in breast cancer. Our data also revealed
upregulation of not only ERBB2, but also ERBB3 and ERBB4 in
breast cancer.

Tumor-infiltrating immune cells play critical roles in breast
cancer pathogenesis (34). Our data highlighted the presence
of a gene signature indicative of altered immune infiltration.
Interestingly, CXCL9 and CXL10 were upregulated in BC
tissue and were shown before to enhance the mobilization
of cytotoxic T cells form regional lymph nodes to tumor
tissues and to promote CTL-mediated tumor immunity (16).
In contrary, expression of CXCL17 by tumor cells was shown
to recruit CD11b+Gr1highF4/80− immune cells and to promote
tumor progression in mice (17). On the other hand, several
other chemokines were downregulated in breast compared to
normal tissue. For instance, previous studies had shown strong
correlation between CCL2, which is downregulated in BC tissue,
expression and TAM infiltration and tumor progression (18).
Interestingly, both CCL3 and CCL8 binds to CCR5, which
was shown to regulate breast cancer cell proliferation, through
P53 activation (19). Our data implies loss of CCL3 and CCL8
in breast cancer could lead to enhanced cell proliferation
and progression. Altered chemokine expression in the tumor
microenvironment (TME) results into several consequences
including leukocyte activation and trafficking, angiogenesis,
metastasis, and proliferation of cancer cells (35, 36). In ovarian
cancer, it has been reported that monoclonal antibodies or
pharmacological inhibitors targeting CCL11may be beneficial for
the treatment of the disease (37). Additionally, both in vivo and in
vitro studies in breast cancer patients elucidated the importance
of CXCL17-CXCR8 axis in promoting the proliferation and
migration of cancer cells (38). Additional studies on primary
colorectal tumor showed that the expression of CXCL17 on
tumor cells promotes angiogenesis and tumor infiltration of
immune cells (39). These data show that CXCL17 could be
a promising target for cancer immunotherapy. On the other
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FIGURE 6 | Overlap between differentially expressed gene in current study and the TCGA BC dataset. (A) Venn diagram depicting percentage overall in upregulated

and (B) downregulated genes from current study compared to the TCGA BC dataset. (C) Expression of selected upregulated cancer-related genes based on current

study in the TCGA BC dataset comparing BC and adjacent normal tissue. Red color indicate expression in breast cancer, while blue color indicate expression in

adjacent normal tissue. Y-axis indicate expression intensity (log 2).
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hand, other reports showed that chemokine ligands including
CXCL9 and CXCL10 have potential angiostatic and anti-tumor
activities (40, 41). The interaction between CXCL9/CXCL10 with
CXCR3 can recruit anti-tumoral dendritic cells, T lymphocytes
and natural killer cells to the TME, which could be beneficial for
tumor suppression (41). Our data suggest that in the breast TME,
chemokines/receptors including CCL11, CXCL17, CXCL9, and
CXCL10 were significantly upregulated, compared with normal
tissues. Apart from chemokines, ITGA2 and EGFwere also found
to be upregulated (Figure 3A). It has been reported that ITGA2
is expressed more significantly in glioblastoma compared with
normal glial cells, and targeting ITGA2 through monoclonal
antibody could impede the migration of glioblastoma cells, but
not their proliferation (42). Moreover, some reports showed
that EGF promotes epithelial-mesenchymal transition (EMT),
which could contribute to the migration/metastasis of tumor
cells, and resistance to chemotherapy or hormonal therapy
(43, 44). We also found that SERPINA1 and SERPINA3 to be
upregulated in breast TME (Figure 3A). Previous reports showed
that SERPINA1 and SERPINA3 are potential prognostic markers
and therapeutic targets for colorectal cancer and melanoma,
respectively (45, 46). Furthermore, another chemokine, CXCL17,
which was found to be upregulated in breast tissue (Figure 3A),
has been reported to be involved in angiogenesis, recruitment of
immune suppressor cells and tumor metastasis (17, 47). CXCL17
was preferentially expressed in the aggressive types of breast, lung
and gastrointestinal cancer cells, resulted in the accumulation
of immature CD11b+Gr1+ myeloid-derived suppressor cells at
tumor sites (17, 47). These data revealed that targetingmigration-
related genes including chemokines and their receptors in breast
TME might be beneficial for tumor immunotherapy.

Current data revealed large similarity in the transcriptome of
breast cancer from our study (43.5% upregulated), and (62.1%
downregulated) when compared to differentially expressed genes
from the TCGA BC dataset. In particular, we observed common
altered breast cancer-driver genes in both datasets, suggesting
common altered mechanism in breast cancer, regardless of the
geographic region. Therefore, our data highlight a common
molecular signature associated with key signaling networks

in breast cancer, regardless of the ethnic background and
geographical relation, which warrants further investigations
using larger sample size and multicenter involvement.
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