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Angiogenesis, or generation of new blood vessels from other pre-existing, is a key

process to maintain the supply of nutrients and oxygen in tissues. Unfortunately, this

process is exacerbated in pathologies such as retinopathies and cancers with high

angiogenesis as ovarian cancer. Angiogenesis is regulated by multiple systems including

growth factors and neurotrophins. One of the most studied angiogenic growth factors is

the vascular endothelial growth factor (VEGF), which is overexpressed in several cancers.

It has been recently described that neurotrophins could regulate angiogenesis through

direct and indirect mechanisms. Neurotrophins are a family of proteins that include nerve

growth factor (NGF), brain-derived growth factor (BDNF), and neurotrophins 3 and 4/5

(NT 3, NT 4/5). These molecules and their high affinity receptors (TRKs) regulate the

development, maintenance, and plasticity of the nervous system. Furthermore, it was

recently described that they display essential functions in non-neuronal tissues, such as

reproductive organs among others. Studies have shown that several types of cancer

overexpress neurotrophins such as NGF and BDNF, which might contribute to tumor

progression and angiogenesis. Besides, in recent years the FDA has approved the use

of pharmacologic inhibitors of pan-TRK receptors in patients with TRKs fusion-positive

cancers. In this review, we discuss the mechanisms by which neurotrophins stimulate

tumor progression and angiogenesis, with emphasis on gynecological cancers.
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INTRODUCTION: ANGIOGENESIS IN GYNECOLOGICAL
MALIGNANCIES

Gynecological neoplasms belong to a group of malignances that include ovarian, cervical, uterine,
fallopian tubes, vulvar, vaginal cancer and gestational trophoblastic neoplasms. The following
sections of this review will be focused on the first two types, which are the most frequent (1).
Gynecological neoplasms are characterized by exacerbated angiogenesis (which is defined as the
generation of new blood vessels from pre-existing ones) and vascular endothelial growth factor
(VEGF) is the most widely studied angiogenic factor in the context of cancer. VEGF is secreted
by most tumor cells, mainly in response to hypoxia and low nutrient concentrations (2), and
promotes angiogenesis through its receptors expressed in endothelial cells. This antecedent has
been crucial for the development of new drugs as bevacizumab, a humanized monoclonal antibody
directed against human VEGF. Unfortunately, this drug has shown modest results (3), because
ovarian and uterine cells may overexpress other molecules that can act as angiogenic factors, such
as neurotrophins (NTs) and their receptors (4–7).
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NTs are a group of molecules widely present in the central and
peripheral nervous system. They have a key role in developmental
neurobiology, by regulating neuronal survival, differentiation,
neurites growth, and synthesis of neurotransmitters (8). NTs
not only display key roles in neuronal tissues, but also in
several non-neuronal tissues, such as mammary glands (9,
10) and gynecological organs (11–13). During the neoplastic
processes, NTs and their receptors are overexpressed by tumoral
cells, promoting progression and angiogenesis in several cancer
models. For instance, the expression of NTs predicts poor
survival rates in breast and ovarian cancer patients (14–16) and
NTs have been proposed as potential therapeutic targets in these
neoplasms (4, 17, 18).

Angiogenesis is a key process to supply nutrients and oxygen
to tumor cells, as well as a way for cells to leave or enter to the
circulation (19). In fact, tumors that have a high microvascular
density could be more aggressive and generate distant metastasis
(20). The term angiogenesis was first used by the British surgeon
John Hunter in 1787; however, the study of vascular morphology
in animal and human tumors began only in the first half of
twentieth century (21).

Endothelial cells, a baseline membrane and pericytes are
the minimal components of vasculature. Endothelial cells form
a barrier that controls the trans-endothelial flux of soluble
components and most cell types (22). During angiogenesis,
there are several important steps: a detection of humoral
paracrine signals or angiogenic factors, resulting in the sprouting
of endothelial cells, followed by an orchestrated increase of
endothelial cell proliferation, migration, and differentiation
(23). Activation of endothelial cells is accompanied by pericytes
detachment, proliferation, and migration into the vessel
interstitium to envelop the surface of the vascular tube. In
addition, fibroblasts and endothelial cells build and remodel
the new extracellular matrix (23, 24). All of these changes are
necessary to generate new capillary vessels.

TUMOR ANGIOGENESIS

Tumor growth has two phases: an avascular stage (when tumors
are constrained at diameters of 1–2mm) and a posterior vascular
stage (25), in which tumor cells need to secrete soluble factors to
promote an increase of angiogenesis and continued growing (26).

In the normal vasculature, endothelial cells are stable; rarely
they sprout or divide and they are associated to mural cells
(pericytes) in a basal membrane. However, in the case of
the tumor vasculature several chromosomal abnormalities arise
(27–29), as well as variations of size and thickness, irregular
shape, and big trans-cellular holes and fenestrae (30, 31).
These characteristics produce a decrease of blood flow and
drug delivery, and increase the interstitial fluid pressure, the
extravasation of blood components and the intravasation of
tumor cells (30, 32). Particularly in gynecologic neoplasms,
angiogenesis plays a key role, since the ovary and uterus cyclically
regulate the angiogenesis during the ovarian cycle involving
blood vessel growth and regression, with a fine regulation
(33–35). Therefore, angiogenesis is undoubtedly crucial in

gynecological cancers, but this process is uncontrolled. Given
that angiogenesis is a complex process that involves different
cell types, in vivo experiments constitute the ideal condition
to evaluate it. Some examples of in vivo assays are: the chick
embryo chorioallantoic membrane (CAM) assay (36), zebrafish
embryo assay (37, 38), corneal micropocket assay (39, 40), and
matrigel plug assays (41). Moreover, there are some experimental
approaches in vitro to evaluate the angiogenic potential of cells,
which may have some advantages, such as the reproducibility
and low cost to perform these assays (42). However, it is
considered that in vitro assays evaluate vasculogenesis or de novo
formation of vasculature-like structures and usually involve only
endothelial cells and extracellular matrix. Examples of this are
tubular formation assays in matrigel (43, 44) and the recently
developed microfluidic cell culture systems (45). Nevertheless,
in vitro assays are widely used, because they are a cheap and
reproducible method to evaluate the angiogenic potential (46).

VEGF: CLASSICAL ANGIOGENIC FACTOR
IN CANCER

There are many known angiogenic factors, among which VEGF
is the most widely studied in the context of cancer. VEGF genes
include VEGF-A to VEGF-E and another related gen, placental
growth factor (PLGF) (47–50). VEGF-A (from now referred
as VEGF) has the most important effect in the formation of
blood vessels during development or in pathological conditions
as cancer (51). At the same time, VEGF undergoes alternative
exon splicing (52, 53), leading to several transcripts that include
VEGF121, VEGF145, VEGF165, VEGF189, and VEGF206, which
give origin to VEGF peptides of 121, 145, 165, 189 and 206 amino
acids, respectively (54). Besides, VEGF121 is totally secreted and
VEGF165 is partially secreted from cells (55, 56). In ovarian,
endometrial and cervical cancers, VEGF121 and VEGF165 are the
most dominantly expressed (57–60).

ROLE OF NEUROTROPHINS IN
GYNECOLOGICAL CANCER
ANGIOGENESIS: NGF/TRKA AND
BDNF/TRKB

Neurotrophins and Its Functions in
Reproductive Tissues
NTs belong to a family of homodimeric polypeptide growth
factors that promote neuronal survival and differentiation,
and display important functions in non-neuronal cells (13,
61). Members of the NTs family include nerve growth factor
(NGF) that was first described by Dr. Levi-Montalcini in 1956
(62), brain derived neurotrophic factor BDNF, neurotrophin-
3 (NT-3), and neurotrophin-4/5 (NT-4/5) (63). Among them,
NGF and BDNF are the most important NTs studied in the
context of reproduction and cancer. NTs bind with different
affinity to Tropomyosin kinase (TRK) receptors and produce
the dimerization and transphosphorylation of its tyrosine kinase
domains, activating PI3K/AKT, MAPK/ERK, and PLCγ/PKC
signaling pathways (64). NGF binds with high affinity to TRKA
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receptor, while BDNF binds preferentially to TRKB receptor
(PMID: 1649702, PMID: 2927393), as shown in Figure 1.

Both NGF/TRKA and BDNF/TRKB are expressed in
reproductive tissues as the ovary and uterus (13, 65). These
NTs are involved in the control of early follicular growth and
ovarian function (66–70). NGF increases cell proliferation
of granulosa and thecal cells and promotes the expression of
Follicle Stimulating Hormone (FSH) receptor in rat and human
granulosa cells (68, 71, 72), while BDNF/TRKB are required
for the growth of newly formed follicles and are involved in
the maturation of human oocytes and their developmental
competence after fertilization (70, 73, 74). In addition, BDNF
levels in follicular fluid (75) and plasma (76) have been studied as
possible predictors of in vitro fertilization outcome. BDNF and
NGF seem to have a positive correlation with oocyte maturation
and pre-implantation and with embryonic development in
various mammalian species, including humans (73, 77–80).

On the other hand, NGF expression is present in epithelial
and stromal cells in the rabbit uterus (81), as well as in human
uterus (82), but its expression is lower than in the ovary
(13). In addition, NGF expression seems to be necessary to
ensure maternal tolerance in healthy pregnancies in mice, but
an excess of NGF results in fetal rejection due to exacerbated
inflammation (83). BDNF levels in menstrual blood are higher
than in peripheral blood, and this factor is also present in
the endometrium in both follicular and luteal phases (65).
Furthermore, BDNF levels in menstrual blood of fertile women

are higher than in anovulatory women (65). All these findings
show that NGF and BDNF play a key role in the homeostasis and
function of tissues in the context of female reproduction.

Roles of Neurotrophins as Direct and
Indirect Angiogenic Factors
One of the first evidence of the angiogenic role of NGF comes
from the expression of TRKA receptors in human umbilical vein
endothelial cells (HUVEC): when using a VEGF-neutralizing
antibody, NGF-induced HUVEC proliferation was not observed
(84). In another work, NGF from different biological sources
(mouse, viper and cobra) was tested in a CAM assay (85), and
an increased rate of angiogenesis in a dose-dependent fashion
and comparable with recombinant VEGF effects was described.
Additionally, one study performed in matrigel plugs in immune-
deficient mice shows that NGF strongly increases invasion, cord
formation and the monolayer permeability of endothelial cells
(86). Furthermore, a recent work shows that NGF increases
cell proliferation, migration and differentiation of the human
endothelial cell line EA.hy926 in a dose-dependent manner
(87). In fact, Figure 2 shows that NGF increases inter-cellular
contact structures (junctions) and polygonal structures (meshes)
of EA.hy926 cells, evaluated by Image J Angiogenesis Analyzer
(88). Additionally, it has been reported that NGF increases the
angiogenic score of EA.hy926 cells, the effect being several times
lower compared with VEGF (87).

FIGURE 1 | Neurotrophins and their high affinity receptors. Different NTs (NGF, BDNF, NT3) are expressed in high concentration in tumor cells. They bind to their high

affinity receptors (TRKA, TRKB, and TRKC, respectively), producing trans-phosphorylation of tyrosine residues of intracellular domain and activating different signaling

pathways such as PI3K/AKT, MAPK/ERK, and PLCγ/PKC.
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FIGURE 2 | Effect of NGF and VEGF in a tubular formation assay in matrigel with EA.hy926 cells. Cells were disposed in matrigel and stimulated with NGF (N) and

VEGF (V). Upper picture: photography of EA.hy926 cells (4 h of assay), which was analyzed by Image J Angiogenesis Analyzer. Bar charts were obtained from

multicellular junctions and polygonal structures or meshes, as the arrows indicate. *p < 0.05; **p < 0.01; ***p < 0.001, according to Kruskal Wallis test. Figure

obtained from Supplementary Material of Garrido et al. (87) (permission has been obtained).

In a comparable way, BDNF displays direct angiogenic
effects in other types of tissues. For example, in a model of
BDNF null mice, the survival of endothelial cells in intra-
myocardial arteries and capillaries in the early postnatal period
is impaired (89). Additionally, BDNF increases angiogenic tube
formation of the endothelial cells in HUVEC (90). Besides,
the overexpression of BDNF in a mouse endothelial cell line
promotes endothelial cell proliferation, migration, invasion and
survival (91). This evidence indicates that BDNF/TRKB exhibits
a direct role in the angiogenic process and can partially
explain that the anti-angiogenic therapy with Bevacizumab
(neutralizing antibody against VEGF) is not optimal in the
cancer context.

On the other hand, both NTs (NGF and BDNF) have an
indirect angiogenic role, mediated by VEGF modulation in
different cellular models. It is described that NGF and BDNF

induce VEGF expression in MAPK/ERK 2-dependent pathways

in granulosa cells (92) and osteoblasts (93), respectively.
Besides, NGF promotes VEGF expression in neuronal superior

cervical ganglia (94), while BDNF increases VEGF expression

in human chondrosarcoma (95) and neuroblastoma cells (96).
Another key point is that plasmatic levels of VEGF are
lower in deficient BDNF animals compared to wild type
animals (97). All these antecedents indicate that NTs not
only act directly in vascular cells, but also affect several
cell types by increasing VEGF expression and therefore their
angiogenesis potential.

Role of NGF/TRKA in the Ovarian Cancer
Angiogenesis
Ovarian Cancer is the most lethal gynecological malignancy
in developed countries (98–100). It is characterized by non-
specific symptoms and therefore is diagnosed at later stages,
resulting in poor survival rates (101, 102). Approximately 80%
of them are Epithelial Ovarian Cancer (EOC) (101) which is
characterized by its high extent of angiogenesis that facilitates
rapid tumor growth and dissemination (103). NGF and its
high affinity receptor TRKA are found in very low levels or
are absent in normal ovarian surface epithelium, whereas they
are highly expressed in EOC (60). Another study shows that
significantly higher levels of NGF, total TRKA, and phospho-
TRKA (active receptor) are present in poorly differentiated EOC
vs. normal ovary (4). In addition, NGF/TRKA stimulates cellular
proliferation of EOC cells, by the activation of MAPK/ERK
and AKT pathways, increasing Bcl2/Bax ratio and c-Myc (104),
indicating the importance of NGF/ TRKA in EOC progression
and suggesting that they could be considered as a potential
tumor markers. As previously shown, several studies performed
in in vitro and ex vivo models support the direct angiogenic
role of NGF in EOC (105). It is relevant to point out that the
TRKA receptor is present in endothelial cells from EOC biopsies
(4), supporting the idea that the endothelium can respond to
NGF stimulation.

On the other hand, an indirect angiogenic role of NGF has
been described through the modulation of VEGF expression
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in EOC. In fact, in EOC explants, NGF increases in a dose-
dependent manner the mRNA of VEGF121, VEGF165, and
VEGF189 (60). Equivalent results were obtained in in vitro
models, where NGF increases VEGF expression and protein
levels in the culture supernatants of the EOC cell line (4).

Role of BDNF/TRKB in the Ovarian Cancer
Angiogenesis
It has been reported that TRKB displays a key role in ovarian
development, which gives proliferative signaling in granulosa
cells during the beginning of mammalian ovary development
(70). Increased TRKB levels can promote the increase of cell
proliferation, invasion and angiogenesis, suppression of anoikis
and decreased chemotherapy response and apoptosis in different
cancer cell lines, including ovarian cancer cells (5, 106–112).
Observational studies show that high TRKB expression in
ovarian cancer is correlated with poor survival in ovarian cancer
patients (5), and that TRKB is overexpressed in metastatic lesions
compared with the corresponding primary lesions (113). In
addition, BDNF treatment enhances cell invasion and migration
of ovarian cell lines and TRKB-silenced cells increase the
percentage of apoptotic cells (5). This evidence indicates that
BDNF/TRKB may contribute to ovarian cancer progression.

In agreement with other authors, our group has found that
TRKB receptor is present in stroma and in transformed epithelia
of human ovary. The active TRKB receptor is upregulated in
serous adenocarcinomas and its immunodetection is almost
absent in the epithelia from functional ovaries or ovarian serous
adenomas (114)

Interestingly, in ovarian cell lines, the silencing of TRKB
receptor reduces VEGFR-2 mRNA by 70% (5), which suggests
that BDNF could regulate the expression of VEGF receptors.
In addition, a positive correlation between TRKB expression
and lymph vessel density has been described in ovarian cancer
(113). These results are consistent with other studies, in
which BDNF promotes VEGF-C-dependent lymphangiogenesis
in chondrosarcoma cells (95) and TRKB expression is associated
with the expression of VEGF-C and VEGF-D in oral squamous
cell carcinoma (115). These findings suggest that BDNF could
be implicated in ovarian cancer progression and modulate
angiogenesis and/or lymphangiogenesis by the increase of
different VEGF isoforms.

ROLE OF NTs IN CERVICAL CANCER AND
UTERINE PATHOLOGIES

Cervical cancer is the fourth most frequent cancer in women.
Approximately 90% of deaths from cervical cancer occur in
low-income and middle-income countries, in which strategies
of prevention, early diagnosis, effective screening, and treatment
programs are less common (116).

In the context of cervical cancer, BDNF/TRKB are perhaps
the best studied NTs. It has been described that BDNF and
TRKB expression are significantly higher in cervical cancer
tissues than in normal tissues and that their presence is higher
in advanced stages of this neoplasm (6, 7). In addition, BDNF
levels are positively associated with lymph node metastasis

(7) in cervical cancer patients. In cervical cancer cell lines,
BDNF/TRKB increases cell proliferation (7, 117), apparently
involving ERK and AKT signaling pathways (118). TRKB
downregulation in cervical cancer cells suppress the activation
of epithelial mesenchymal transition (EMT) by downregulation
of N-cadherin and vimentin, among other proteins, and strongly
diminishes cell proliferation, migration and invasion (117, 118).

Considering that the activation of ERK signaling pathway
by BDNF/TRKB was associated with an increase of VEGF
expression in osteoblasts (93), and given that TRKB can
activate PI3K and ERK signaling pathways which regulate VEGF
expression in several models (119–121), it is plausible that the
VEGF expression could be increased by TRKB in cervical cancer,
similarly to ovarian cancer.

There is no direct evidence that overexpression of NTs and
its receptors are involved in the physiopathology of endometrial
cancer. However, antecedents suggest that NTs could contribute
to this pathology, since their expression increase in endometriosis
(122–124), a condition that has been associated with higher risk
of ovarian and endometrial cancer (125–127). The endometriosis
is an estrogen-dependent inflammatory disease, characterized
by the presence of endometrial-like tissue outside the uterine
cavity (128). An important characteristic of this pathology is
that angiogenesis is deregulated. In endometriosis, the VEGF
expression is increased and promotes the spreading of new
blood vessels at the endometriotic lesions and surroundings,
which contributes to the survival of lesions (129). A recent study
has shown that drospirenone, a drug used for endometriosis
treatment, significantly decreases inflammatory cytokines and
NGF expression, as well as VEGF expression in human
endometriotic stromal cells (130). Similarly, Ginsenoside (a
ginseng-derivate extract) decreases both VEGF and BDNF in
rat endometriotic implants (131). These antecedents suggest that
NTs could contribute not only to the pelvic chronic pain typical
of endometriosis, but also to pathological angiogenesis, probably
by the increase of VEGF levels.

PHARMACOLOGIC INHIBITORS OF
NEUROTROPHIN RECEPTORS

Since the TRK receptors (TRKA, TRKB, and TRKC) are
implicated in the progression of different kind of neoplasms,
several drugs have been developed to target tumors that
overexpress TRK receptors or present chromosomal
rearrangements of TRK genes. For instance, in 2018, the
Food and Drug Administration (FDA) approved Larotrectinib
(Vitrakvi) for treatment of adult and pediatric patients with
solid tumors that have TRK gene fusions (132). This was
based in promissory results of 3 clinical trials (NCT02122913,
NCT02637687, and NCT02576431) with Larotrectinib that
showed an objective response rate of 75% in pediatric patients,
with good tolerability and safety (133, 134). Larotrectinib is a
small molecule that binds to NTs receptors, thereby preventing
neurotrophin-TRK interaction and TRK activation, which
results in the induction of cellular apoptosis and the inhibition of
cell growth (135). It is important to point out that Larotrectinib
was one of the first “tissue-agnostic drug” approved by FDA,
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concept that refers to a substance to treat cancer based on genetic
and molecular features of tumor cells, regardless of the cancer
type or origin (136).

Additionally, Entrectinib (Rozlytrek), a potent and selective
ATP-competitive inhibitor, was approved by the FDA in 2019
for adults and pediatric patients above 12 years old with solid
tumors (as ovarian cancer) that have a TRK fusion without
a known acquired resistance mutation (137). The first results
of phase I/II studies show promising results: for example, an
objective response rate of 57.4% was obtained in 54 adults
with advanced or metastatic TRK fusion-positive solid tumors
(138). Unfortunately, some patients have reported resistance to
TRK inhibition with this drug considered as first generation
of TRK inhibitors (139), probably due to mutations in TRK
domain (140, 141). To improve this aspect, a next-generation
TRK-targeted agent is under study. For example, Loxo-195
is a recently developed drug, which phase 1/2 of the study
started in 2017 in patients with TRK-positive solid tumors and
TRK fusion-positive cancers (clinical trials NCT03215511 and
NCT03206931). This drug could become an alternative treatment
for tumors with acquired resistance to first-generation TRK-
targeted agents (142). VMD-928 is another specific TRK inhibitor
which is under phase 1 of the study since 2018 for treatment of
advanced adult solid tumors or lymphoma (NCT03556228).

Because TRK overexpression is present in gynecological
cancers, and particularly TRK fusion has been described in
cervical and uterine cancer (143, 144), the use of TRK inhibitors
could be beneficial in these kinds of neoplasms. However, it is
necessary to continue the studies to determine their effectiveness
in gynecological cancers.

CONCLUSIONS

NGF/TRKA and BDNF/TRKB are the main NTs studied in
the context of cancer. These NTs and their receptors are
over-expressed in gynecological neoplasms, such as ovarian
and cervical cancers, in which they promote the progression

of these diseases. Furthermore, NTs are involved in uterine
pathologies such as endometriosis, which suggests that they could
contribute to endometrial cancer progression, however this has
not been elucidated yet. NTs are indirect angiogenic factors,
acting through the induction of VEGF expression in ovarian
cancer cells; besides, it is possible that NTs could display the
same effect in other cancer cells such as cervical and endometrial.
In addition, NTs exhibit a direct angiogenic role, mainly
studied in endothelial cells that express NTs receptors, and
respond by increasing endothelial cell proliferation, migration
and differentiation. Moreover, NTs increases angiogenesis both
in in vitro and in vivo models. Consequently, NTs and their
receptors may be considered as important angiogenic factors,
mostly in the context of anti-angiogenic therapy against VEGF,
where overexpression of NTs could increase the angiogenesis
independent of VEGF levels and contribute to therapy failure.
Since NTs and TRK receptors are drivers of a wide variety of
adult and pediatric cancers as gynecological neoplasms, the FDA
has recently approved pan-TRK inhibitors for the treatment of
TRK fusion-positive solid tumors. Because TRK fusion has been
described in several gynecological cancers, the recently developed
TRK inhibitors emerge as a new therapeutic approach for the
treatment in this subtype of neoplasms. Given that angiogenesis
is a key feature in gynecological neoplasms, and NTs acts as
direct and indirect angiogenic factors, it may be relevant to
study whether TRK inhibitors could improve the efficacy of anti-
angiogenic drugs as bevacizumab, which was not elucidated yet.
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