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Background: Retroperitoneal sarcomas (RPS) are rare and primarily managed with

surgery, which improves local recurrence-free and overall survival. Radiation can improve

local control or provide palliation for inoperable or metastatic RPS by eliciting tumor cell

death via irreparable DNA damage. In extraordinary circumstances radiation-induced

cell death promotes immune-mediated regression of non-irradiated lesions in a process

termed the abscopal effect. Abscopal effects are rare and incompletely understood,

involving a balance of radiation’s immunogenic and immunosuppressive effects. There

are currently no methods to predict abscopal responses following radiotherapy. Case

reports documenting post-radiotherapy abscopal effects provide additional information

to better characterize these responses and to inform ongoing and future clinical trials

attempting to harness radiation-induced immune responses to improve outcomes with

systemic therapy, such as SARC-032, a cooperative group trial of pre-operative radiation

± pembrolizumab. We present a case of inoperable metastatic RPS treated with proton

radiotherapy with complete responses of un-irradiated metastases.

Case Presentation: A 67 year-old female with inoperable metastatic unclassified round

cell RPS was treated with palliative proton radiotherapy only to the primary tumor.

Following completion of radiotherapy, the patient demonstrated complete regression of

all un-irradiated metastases, and near complete response of the primary lesion without

additional therapy.

Conclusions: Metastatic RPS is typically managed with first-line chemotherapy, with

objective response rates <50%. We present a case of inoperable metastatic RPS

treated with palliative proton radiotherapy for rapidly progressive disease who had

complete regression of non-irradiated metastases consistent with the abscopal effect.

To our knowledge this is the first case report describing abscopal effects in inoperable
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metastatic RPS treated with proton radiation and is among the first case reports of an

abscopal effect in a patient treated with proton therapy regardless of disease site. Further

investigation is warranted regarding the benefit of proton radiation to primary tumors for

inoperable metastatic RPS.

Keywords: retroperitoneal sarcoma, abscopal effect, proton therapy, metastasis, SMARCB1

BACKGROUND

Retroperitoneal sarcomas (RPS) are rare cancers of mesenchymal
origin encompassing numerous subtypes, representing 15% of
soft-tissue sarcomas (STS) that comprise 1–2% of all cancers
(1, 2). RPS are typically well-differentiated/dedifferentiated
liposarcoma (WDLS, DDLS) or leiomyosarcoma (LMS), with
<10% considered unclassified (3–6). Histology and stage at
presentation predict treatment response and recurrence patterns,
with poorer outcomes for higher grade, unclassified/less
differentiated histologies, and incompletely resected disease (6).
Patients often present at advanced stages due to asymptomatic
growth in the retroperitoneal space. Definitive management
of RPS is based on retrospective data and includes primary
resection to negative margins at high-volume centers to improve
local recurrence-free and overall survival (OS) (3, 4, 7, 8).
Retrospective data indicates that perioperative radiation
improves OS, with higher toxicity post-operatively; however,
recent preliminary data from the STRASS (Surgery With
or Without Radiation Therapy in Untreated Nonmetastatic
Retroperitoneal Sarcoma, EORTC 62092) trial failed to
demonstrate a recurrence-free survival benefit for pre-operative
radiation, although patient numbers on this trial were fairly
modest (9, 10). Multimodality RPS treatment yields 5-year OS
ranging from 40 to 70% depending on the grade, extent of
resection, histological subtype, and perioperative treatment.
Local recurrence is common, occurring in 50% of patients by 5
years and is associated with significant morbidity and mortality,
hence the importance of local control (2–6, 11–13).

Patients with RPS and metastases at presentation represent
10–20% of RPS cases and have poor outcomes, with median
survival of 16 months and 5% 5-year OS (13). Systemic
treatment using anthracycline-based regimens improves OS
in metastatic patients; however, objective response rates are
<20% with few complete responses, and variable responses
dependent on tumor histology (13). Surgery for primary and
metastatic lesions may improve OS, however data is limited
(3). The METASARC study was a retrospective observational
analysis of treatment patterns and outcomes for of over 2,000
patients with metastatic STS across multiple histologies (14).
At 5 years post-treatment over 80% of surviving patients
received locoregional treatment of metastatic lesions, including
surgery, radiation, or radiofrequency ablation, with an odds ratio
for survival of 7.41 that remained significant on multivariate
analysis (14). Approximately 75% of patients in METASARC
received first-line polychemotherapeutic regimens containing
doxorubicin, with median OS dependent on histology, ranging
from 11.0 months for undifferentiated pleomorphic sarcoma

to 24.9 months for LMS (14). The Trans-Atlantic RPS
Working Group (TARPSWG) recently issued a consensus
approach for metastatic RPS recommending anthracycline-
based chemotherapy for first-line management given success in
extremity STS (15). These guidelines specifically exclude rarer
RPS histologies [e.g., rhabdomyosarcoma, unclassified sarcomas,
Ewing sarcoma (EWS)/EWS fusion gene-negative small round
blue cell sarcomas] making it difficult to provide treatment
recommendations for etiologies besides WDLS/DDLS/LMS (15).

Radiotherapy is rarely recommended for first-line treatment
of metastatic RPS because systemic therapy can treat both
primary and disseminated lesions. Radiation induces significant
gastrointestinal toxicity when treating larger lesions to curative
doses due to the close proximity of small bowel to the
retroperitoneal space. Instead, radiotherapy is typically used for
palliation or consolidation following systemic therapy. Sarcoma
histology may influence radio-responsiveness, with observed
response rates <50% for some rarer variants; however, this
observation is limited by small sample sizes (16). Sarcomas
typically metastasize via hematologic spread to the lungs or liver.
Isolated lymph node metastases occur in only 2–4% of metastatic
RPS patients at presentation and carry a poor prognosis, with
an estimated median survival of 12.8 months (17, 18). Radiation
to metastatic sarcoma can be beneficial, as stereotactic body
radiation therapy for sarcoma pulmonary oligometastases is an
accepted option in the 2019 NCCN guidelines based on results
from the Penn experience (19). However, there are no clinical
series describing a standard approach for primary radiotherapy
without neoadjuvant/adjuvant treatment for RPS with lymph
node metastases due to the rarity of this presentation and
widespread use of first-line systemic agents.

CASE PRESENTATION

A 67 year-old Caucasian female with no prior oncologic history
presented to a local hospital with a multi-week history of right
lower extremity edema and pain. CT abdomen/pelvis identified
a 17.5 × 8.8 × 5.2 cm lobulated retroperitoneal soft tissue mass
extending into the right pelvis without evidence of metastases
(Figure 1A). CT-guided core needle biopsy demonstrated a high-
grade, poorly differentiated neoplasm (Supplemental Figure 1).
Given concern for primary RPS she was referred to our
institution for further workup.

She was evaluated by surgical oncology and discussed at
a multidisciplinary sarcoma tumor board that recommended
primary resection if staging scans were negative for metastatic
disease. CT chest/abdomen/pelvis identified primary mass
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FIGURE 1 | Staging CT scans and PET imaging of the primary tumor and metastatic lesion prior to radiation therapy. (A) Coronal section of the initial CT of the

abdomen/pelvis with contrast identifying a large soft-tissue mass in the right retroperitoneal space overlying the right psoas muscle with extension into the right

hemi-pelvis. (B) Coronal section of a CT of the abdomen/pelvis approximately 2 months after the initial diagnosis demonstrating interval growth of the now inoperable

retroperitoneal mass. (C) Coronal PET/CT maximum intensity projection (MIP) performed approximately 3 months after initial diagnosis, demonstrating the large

FDG-avid mass in the right retroperitoneal space (blue arrow). FDG-avidity in the inferior aspect of the image in the figure corresponds to physiological uptake in the

urinary bladder (yellow arrow). (D) Coronal PET/CT MIP from the same study as in C demonstrating a non-enlarged FDG-avid lymph node in the left supraclavicular

nodal station. Blue arrows, primary mass; yellow arrow, physiologic FDG uptake.

progression to 20.5 × 10.3 × 7.1 cm and new right common
iliac lymphadenopathy without metastases (Figure 1B).
CT-guided re-biopsy and immunohistochemistry (IHC)
demonstrated unclassified round cell sarcoma with INI1 loss
(Supplemental Figures 1B–F). Unfortunately, the patient
progressed during work-up, and on reevaluation resection was
not recommended due to symptomatic progression rendering
resection highly morbid.

PET/CT identified a bulky centrally necrotic right
retroperitoneal soft tissue mass (SUVmax 21.4; liver SUVmean
2.3) extending into the right hemipelvis, a soft tissue nodule
medial to the right psoas muscle (SUVmax 16.4), several
non-enlarged FDG-avid paracaval lymph nodes (SUVmax
13.5), and faintly metabolic right external iliac and inguinal
lymph nodes (Figure 1C). A single FDG-avid, non-enlarged left
supraclavicular lymph node (SUVmax 8.6) was identified but not
amenable to biopsy (stage IV: cT4N1M1; Figure 1D). Systemic
first-line chemotherapy was recommended. No EWSR1 fusion
gene was identified by FISH (Abbott Molecular, Des Plaines, IL).
Next-generation sequencing (NGS) of the primary tumor biopsy
was negative for common gene fusions (EWSR1, CIC, or BCOR;
Supplemental Table 1).

Due to rapidly progressing symptomatic disease the
patient was referred to radiation oncology. Palliative proton
radiotherapy was recommended to the primary mass and
adjacent FDG-contiguous lymphadenopathy [50 Cobalt Gray
Equivalents (CGE)/25 fractions, 2 CGE/fraction; Mevion S250,

Mevion Medical Systems, Inc., Littleton, MA] due to the
tumor location, size, and close proximity to the right kidney
and small bowel (Figure 2). The patient was informed that
adjuvant systemic therapy was needed to treat the metastatic
disease. Radiotherapy was delivered over 38 days without
complications. Peripheral blood counts remained stable
throughout treatment (absolute lymphocyte counts: 0.9–1.1
k/mm3, lower limit of normal: 1 k/mm3); the patient had
mild, asymptomatic Grade 1 lymphopenia before and after
radiotherapy (Supplemental Table 2).

PET/CT 1 month after radiation demonstrated disease
progression at multiple sites outside of the radiotherapy
field including the left supraclavicular lymph node (2.7 cm,
previously 1 cm; SUVmax 18.1; liver SUVmean 2.6), T12-L1-
adjacent retroperitoneal mass (1.4 cm; SUVmax 21.9, prior
SUVmax 10.9), and new FDG-avid nodal metastases (RECIST
1.1; Figure 3B) (20). The primary RPS decreased in size and
FDG-avidity (20.5 × 10.3 cm to 8.7 × 4.5 cm; SUVmax 20 to
7.1; Figure 3B). The patient reported significant improvement
in right lower extremity edema, pain, range of motion, and
performance status.

CT-guided needle biopsy of the left supraclavicular
lymph node revealed metastatic disease from primary RPS
(Supplemental Figure 2). The patient was offered palliative
chemotherapy for disease progression on a clinical trial. NGS
of the primary tumor re-biopsy identified a nonsense mutation
in SMARCB1 encoding INI1, confirmed by IHC loss of INI1
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FIGURE 2 | PET/CT of the primary retroperitoneal sarcoma with palliative proton radiotherapy plan dose distribution. (A–C) Representative coronal, axial, and sagittal

images from the CT simulation for radiation treatment planning fused to the staging PET scan showing the clinical target volume (CTV-orange) and planning target

volume (PTV-aqua) encompassing the right retroperitoneal FDG-avid disease. The CTV encompassed the FDG-avid sites of disease with a 0.5 cm expansion to create

the PTV. (D–F) Representative coronal, axial, and sagittal images from the radiation treatment plan showing the dose color wash from right anterior and right posterior

oblique beams. Dose color wash ranges from 2 CGE (dark blue) to >50 CGE (red) without significant exit dose beyond the 2 CGE isodose. Treatment was delivered

using right anterior oblique and right posterior oblique passively scattered proton beams from a MEVION S250 unit.

FIGURE 3 | Maximum Intensity Projections (MIP) from PET/CT scans performed 1 month before, 1, and 5 months after radiation treatment. (A) PET/CT prior to

radiation treatment demonstrating a large primary retroperitoneal mass, lesion superior to the mass at approximately T12 and left supraclavicular mass that were not

included in the radiation treatment plan (blue arrows). (B) PET/CT performed 1.5 months after completing radiation treatment to the primary retroperitoneal mass

demonstrating disease progression at sites outside of the radiation treatment field (red arrows). (C) PET/CT performed 5 months after completing radiation treatment

demonstrating regression of disease at non-irradiated sites. (D) Representative inverted coronal image from the patient’s CT simulation for radiation treatment showing

radiation dose color wash covering the primary mass. Note that disease superior to the mass adjacent to the right kidney and left supraclavicular region were not

included in this plan. Dose range: blue ≥ 2 CGE, green ≥ 25 CGE, red ≥ 50 CGE. Yellow arrows indicate physiologic uptake in the urinary bladder as in Figure 1.

expression; no actionable mutation(s) outside of clinical trials
were identified (FoundationOne CDxTM, Foundation Medicine,
Cambridge, MA; Supplemental Table 3). Tumor mutational
burden and microsatellite stability were low, suggesting a lower
probability of response to ICB (Supplemental Table 3).

The patient refused additional treatment and continued on
close surveillance. PET/CT performed 5 months after radiation
demonstrated near complete metabolic response of the biopsy-
proven left supraclavicular metastasis (SUVmax 3.2, previously
18.1; liver SUVmean 2.5), and size reduction to <10mm,
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with residual focal FDG avidity in the right retroperitoneum
(SUVmax 4.4, previously 6.5) consistent with post-radiation
changes vs. residual disease without other abnormal metabolic
activity (Figure 3C).

The patient continued to improve, with interval imaging at 6,
10, 13, and 17 months post-radiotherapy demonstrating residual
RPS/scar tissue and resolved metastases (Figure 4). Given the
prolonged disease-free period without adjuvant therapy the
patient agreed to PD-L1 assessment for ICB using nivolumab (28-
8 pharmDx, PhenoPath; Seattle, Washington). PD-L1 expression
was >/=1% for the primary RPS [tumor proportion score
(TPS) 1–5] and metastatic left supraclavicular lymph node (TPS
1–10). CD4 and CD8 IHC on the pre-radiation RPS biopsy
demonstrated TILs (CD4 10% positive, CD8 2% positive; 5:1
ratio) arranged in scattered nodules with patchy single-cell
infiltration throughout, with similar results found for the non-
irradiated left supraclavicular lymph node biopsied 1 month after
completing radiation (CD4 10% positive, CD8 2% positive; 5:1
ratio; Supplemental Figures 2, 3).

The patient remains without evidence of new metastatic
disease, completely regressed metastatic lesions, and nearly
resolved primary RPS with residual scar tissue. She is nearly
2 years from initial diagnosis and ∼1.5 years following
proton radiotherapy. If her disease progresses she may receive
chemotherapy or ICB based PD-L1 expression (21).

DISCUSSION

The abscopal effect (“ab”—position away from, “scopus”—
target), was coined in 1953 by Dr. Mole as “an action at
a distance from the irradiated volume but within the same
organism,” and now describes regression of non-irradiated
tumor lesions following radiotherapy (22). Abscopal reports are
infrequent, with <50 reports from 1969 to 2014, occurring
in immunogenic histologies (e.g., lymphoma, melanoma, renal
cell carcinoma) following multimodality treatment (23, 24).
Reports of abscopal effects have increased over the past
decade, with many observed after combination treatment with
radiotherapy and ICB targeting CTLA-4 or the PD-1/PD-L1
axis (25). Well-designed preclinical studies demonstrated the
immunological dependence of radiotherapy-induced abscopal
effects and potential for augmentation by ICB, wherein radiation
serves as an in situ vaccination against tumor-associated antigens
(TAAs); this effect appears to be suppressed at higher doses
over 10Gy per fraction (26–28). The biological mechanisms
underlying radiation-induced immune responses have been
extensively reviewed elsewhere and involve both innate and
adaptive immune responses following radiation-induced double-
stranded DNA damage in response to increased cytosolic
levels of tumor cell DNA sufficient to drive increase tumor
infiltration by antigen presenting cells that cross-present TAAs
to CD8T cells and adaptive anti-tumor immune responses
(28, 29). These cascades are mediated by radiation-induced
generation of Type I interferons, secretion of chemotactic ligands
and cytokines, and upregulation of MHC I on tumor cells,
resulting in increased tumor-infiltrating lymphocytes (TILs) (29).

Photon-based radiation in situ vaccination is often insufficient
to mediate abscopal responses due to suboptimal activation
of these pathways, as well as multiple opposing mechanisms
(e.g., selective enrichment of tumor infiltrating radio-resistant
myeloid/monocytic inhibitory cells, radiation-induced PD-L1
upregulation, and immunosuppressive cytokine upregulation)
within the tumor microenvironment that may be overcome by
ICB (30–34).

Abscopal effects following radiation monotherapy provide
unique opportunities to identify and optimize actionable
variables of radiotherapy delivery crucial to promoting in situ
vaccination. Effector lymphocytes mediate abscopal effects, and
higher TILs in pre-treatment tumor specimens predicts OS (29,
35, 36). Yet it is known that post-treatment lymphopenia is
associated with poor clinical outcomes and is correlated with
radiation target volume and addition of chemotherapy (37–39).
Radiation alone can induce volume-dependent lymphopenia via
irradiation of lymphoid organs, bone marrow, and circulating
lymphocytes (40). Radiation modality may also contribute
to lymphopenia, as esophageal cancer patients treated with
photons experienced more Grade 4 lymphopenia compared to
those treated with protons, suggesting a dependence on total
integral dose to lymphocyte-containing normal structures such
as the vasculature (41). Lymphocytes are very radiosensitive,
susceptible to apoptosis in response to doses as low as 1–2Gy,
with evidence indicating that activated T cells may bemore radio-
resistant (31, 32, 42). Circulating immune cells vary in radio-
sensitivity; monocytes are considered radio-resistant in vitro, and
radiation may skew the tumor infiltrating cell profile in favor
of these suppressive cells following treatment (32). Our patient
did not receive any chemotherapy that could have induced
lymphopenia. Instead, she received protons to reduce dose to
small bowel adjacent to her primary mass, as charged particles
(i.e., protons, carbon ions) have different dose deposition profiles
(e.g., Bragg peak) compared to photons, with little dose delivered
beyond the target, that could potentially reduce toxicity (43).
Proton therapy also had the potential ancillary benefit of
significantly reducing radiation dose to the aorta, inferior vena
cava, and draining lymph nodes, reducing radiation exposure to
the circulating lymphocytes as well as reducing dose to the bone
marrow (Figure 2 and Supplemental Figure 4) (44).

Evidence indicates that immunogenic cell death induced
by protons is comparable to photons (45). Abscopal responses
in metastatic patients treated with carbon ions have also been
observed; however, to our knowledge, there have been no
reports of abscopal responses in patients treated with proton
radiotherapy (46). Preclinical work in murine models suggests
elective irradiation of tumor-draining lymph nodes abrogates
anti-tumor immune responses by altering chemokine expression
and reducing intratumoral effector T cell infiltrates (47).
Radiation also up-regulates specific gene products, generating
putative tumor neoantigens that may further assist in promoting
immune-mediated anti-tumor responses (48). Circulating
lymphocytes and lymph nodes have been suggested to be
considered an organ at risk to avoid lymphopenia during
and after radiation (49). Photon-based radiation upregulates
immunosuppressive products as well (e.g., PD-L1), that may
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FIGURE 4 | CT chest/abdomen/pelvis scans from post-radiation disease progression through continued interval follow up to monitor late responses to radiation

therapy and to assess for recurrence. Representative coronal images from interval CT scans of the pelvic mass (left column- blue arrow), para-esophageal (middle

column- blue arrow), and left biopsy-proven supraclavicular lymph node (right column- blue arrow) across several interval CT scans. (A–C) 1 month post-radiation

without contrast. (D–F) 5 months post-radiation with contrast, (G–I) 7 months post-radiation with contrast, (J–L) 17 months post-radiation with contrast. Note

imaging appearance of a stable, regressed right retroperitoneal mass (D, blue arrow), regression of the enlarged para-esophageal lymph node (E, blue arrow), and

regression of the left supraclavicular lymph node noted at 5 months post-radiation (F, blue arrow). A previously identified enlarged left thyroid nodule is also present

across the scans (C,F,I,L, yellow arrow) and is not consistent with metastatic disease.

antagonize radiation-promoted immune responses (33, 34). It is
unclear if proton radiotherapy also induces PD-L1 expression,
and warrants further investigation. Thus, in this case proton
radiotherapy may have spared perturbation of draining lymph
node microenvironments, and improved antigen presentation.

The patient’s RPS had pretreatment CD4/CD8 infiltration
similar to the non-irradiated metastatic lesion suggesting
pre-treatment immunogenicity in the primary tumor
(Supplemental Figure 3). Radiotherapy likely induced death
of TILs in the primary, however the similar CD4/CD8 TIL
ratio in the non-treated metastatic lesion suggests it may have
provided a tumor antigen source and haven for primed effector
cells after radiotherapy. The potential clinical significance of

radiotherapy-primed effector cells was suggested by the results
of a secondary analysis of KEYNOTE 001 in which receipt of
prior palliative radiotherapy was associated with a statistically
significant improvement in overall survival for metastatic
non-small cell lung cancer patients treated with pembrolizumab,
even though palliative radiotherapy is not expected to improve
survival outcomes on its own (50). Results remained significant
after stratifying for prior systemic therapy. In colorectal cancer,
there is evidence that radiation increases tumor-specific immune
responses against antigens such as survivin (51). The magnitude
and duration of our patient’s disease regression on interval
imaging is impressive, and consistent with a clinical abscopal
effect at multiple sites. Our patient did not receive first-line
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chemotherapy or experience treatment-related lymphopenia,
with detectable TILs in the pre-treatment lesion. However, the
immune contribution to this abscopal effect remains a correlative
clinical observation without a priori knowledge of the specific
tumor antigen(s) needed to monitor antigen-specific CD8 clonal
expansion following radiotherapy but is feasible by prospective
NGS analysis of infiltrating effector T cell receptor (TCR)
diversity (52).

Prospective investigation of radiotherapy-primed abscopal
effects for metastatic RPS could benefit from analyzing TCR
diversity pre-and-post treatment to identify antigen-specific T
cell clonal expansion elicited by radiotherapy that is usually
insufficient to induce clinically meaningful responses. Radiation-
induced antigen-specific responses may be potentiated by ICB,
as suggested by the results of the KEYNOTE 001 secondary
analysis (50). Our patient progressed at non-irradiated sites
during and after radiotherapy, then had a delayed response post-
treatment over several months, consistent with the abscopal
effect (Figure 3). Whether this response was potentiated by
the use of proton therapy to avoid excess radiation to
circulating lymphocytes remains unclear but is hypothesis-
generating (Supplemental Figure 4). It is noteworthy that our
patient experienced a durable and complete response to therapy
exceeding the median OS for similar RPS patients with nodal
metastases at presentation (17, 18) (Figure 3).

Our patient had an unclassified round cell RPS, consisting
of small round cells without gene rearrangement (EWSR1,
CIC, or BCOR non-rearranged), a finding associated with poor
prognosis (53). Molecular profiling using NGS identified a
SMARCB1 nonsense mutation with corresponding loss of INI1
expression by IHC (Supplemental Figure 1). INI1 is a known
tumor suppressor, and INI loss is a validated marker for
epithelioid sarcoma and malignant rhabdoid tumors. INI1 loss
also occurs in other aggressive malignancies and is considered a
poor prognostic factor, upregulating enhancer of zeste homolog
2 (EZH2), a histone-lysine N-methyltransferase that represses
gene transcription (54). Inhibition of EZH2 using tazemetostat
has shown promise in treating solid tumors with mutations
of SMARC family genes, including epithelioid sarcoma (55).
Interestingly, an abscopal effect was observed in a patient
with a SMARCB1/INI1-deficient sacral chordoma treated on a
Phase II study allowing multiple sequential biopsies before and
after neoadjuvant tazemetostat and radiotherapy, documenting
increases in pre-radiotherapy TILs (56). Elevated EZH2 levels
correspond with radiation resistance, yet preclinical evidence
indicates radiotherapy alone may be sufficient to reduce EZH2
protein expression in vitro and at the mRNA level in vivo via p53-
mediated inhibition of E2F1 (57, 58). Whether radiation-induced
inhibition of EZH2 in the setting of SMARCB1-mutated loss of
INI1 occurs in vivo in humans to increase radio-sensitivity and
promote abscopal effects remains to be proven.

CONCLUSIONS

This case report represents, to the best of our knowledge, the
first description of an abscopal effect for metastatic unresectable

RPS following proton beam radiotherapy. Proton radiation of
the primary RPS achieved improved sparing of draining lymph
nodes, bone marrow, and the circulating blood volume with
minimal impact seen on circulating lymphocyte counts during
and after radiation treatment. Un-irradiated distant metastases
regressed after treatment of the primary and in the absence
of any systemic therapy, consistent with an abscopal effect.
Molecular profiling using NGS identified a SMARCB1 nonsense
mutation and IHC identified loss of INI1 expression in the
primary tumor that was also documented in a recent case
report of the abscopal effect following EZH2 inhibition and
radiotherapy for a sacral chordoma (56). Palliative radiotherapy
for inoperable metastatic RPS may generate beneficial anti-
tumor immune responses against un-irradiated sites of disease
in selected patients. Limiting radiation doses to circulating
blood volume to avoid radiotherapy-induced lymphopenia may
augment radiation-induced immune responses promoted by
post-treatment ICB, although additional research is needed. The
profound abscopal response and putative mechanisms observed
in this case report in metastatic RPS are hypothesis-generating.
Future work is required to determine if proton radiotherapy,
which could reduce radiation dose to circulating lymphocytes,
may have an advantage in eliciting abscopal effects compared to
standard radiotherapy.
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