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Background: Multi-parametric MRI provides non-invasive methods for response

assessment of soft-tissue sarcoma (STS) from non-surgical treatments. However,

evaluation of MRI parameters over the whole tumor volume may not reveal the full extent

of post-treatment changes as STS tumors are often highly heterogeneous, including

cellular tumor, fat, necrosis, and cystic tissue compartments. In this pilot study, we

investigate the use of machine-learning approaches to automatically delineate tissue

compartments in STS, and use this approach to monitor post-radiotherapy changes.

Methods: Eighteen patients with retroperitoneal sarcoma were imaged using

multi-parametric MRI; 8/18 received a follow-up imaging study 2–4 weeks after

pre-operative radiotherapy. Eight commonly-used supervised machine-learning

techniques were optimized for classifying pixels into one of five tissue sub-types using

an exhaustive cross-validation approach and expert-defined regions of interest as a gold

standard. Final pixel classification was smoothed using a Markov Random Field (MRF)

prior distribution on the final machine-learning models.

Findings: 5/8 machine-learning techniques demonstrated high median cross-validation

accuracies (82.2%, range 80.5–82.5%) with no significant difference between these

five methods. One technique was selected (Naïve-Bayes) due to its relatively

short training and class-prediction times (median 0.73 and 0.69ms, respectively

on a 3.5 GHz personal machine). When combined with the MRF-prior, this

approach was successfully applied in all eight post-radiotherapy imaging studies

and provided visualization and quantification of changes to independent STS

sub-regions following radiotherapy for heterogeneous response assessment.
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Interpretation: Supervised machine-learning approaches to tissue classification

in multi-parametric MRI of soft-tissue sarcomas provide quantitative evaluation of

heterogeneous tissue changes following radiotherapy.

Keywords: magnetic resonance imaging, soft-tissue sarcoma, artificial intelligence, cancer heterogeneity,

radiotherapy, imaging biomarkers

INTRODUCTION

Soft-tissue sarcoma (STS) is a rare form of cancer that
develops in connective tissues. Approximately 3,300 new
cases are diagnosed every year in the UK and the 5-years
survival rate is ∼53% (1). STS tumors are often highly
heterogeneous with variable tissue components that include
cellular tumor, fat, necrosis, and cystic change. In patients
undergoing non-surgical treatments, such as radiotherapy and
systemic drug treatments, conventional imaging methods of
assessing treatment response are limited as responding tumors
may not change in size, or may even grow (pseudoprogression),
after treatment (2–4). Hence, more effective and non-invasive
methods for assessing treatment response are desired in trials
of non-surgical treatments, such as combined radiotherapy
with systemic agents. This is particularly difficult since
the response of any tumor can be heterogeneous, with
different components of a tumor responding differently to the
same treatment.

Magnetic resonance imaging (MRI) is widely used in soft-
tissue sarcoma, owing to its excellent soft-tissue contrast.
Quantitative MRI techniques enable non-invasive investigation
of the entire tumor and can provide information about
the biological properties of tumors through functional
measurements. For example, maps of apparent diffusion
coefficient (ADC) derived from diffusion-weighted MRI inform
on tissue cellularity, with lower ADC values observed in
highly cellular or more aggressive regions within tumor (5).
Using contrast enhanced MRI, the time course of T1 signal
enhancement after intravenous injection of gadolinium-based
contrast agent provides estimates of tumor perfusion and
permeability (6). By applying the Dixon MRI techniques,
the presence of fat in sarcomas can also be measured and
quantified (7).

However, evaluation of multi-parametric quantitative MRI
averaged over the entire tumor may not reveal the extent
of heterogeneous changes following treatment. By combining
quantitative MRI techniques that inform on different aspects
of tumor properties (e.g., diffusion-weighted MRI, contrast
enhanced MRI and Dixon MRI), it is possible identify sub-
components of tumors demonstrating cellular, vascular or fatty
phenotypes before and after treatment, thereby enabling tracking
and monitoring of the heterogeneity of tumors in response
to treatment.

The aim of this pilot study is to evaluate supervised machine
learning methods for tissue classification of multi-parametric
MRI measurements in soft-tissue sarcomas, and use these
methods to quantify post-treatment changes in a cohort of
patients treated with radiotherapy.

MATERIALS AND METHODS

Patient Cohort
Eighteen patients with retroperitoneal sarcomas were included in
this prospective single-center study (11 male patients and seven
female patients; age range 43–76). The study was approved by a
national Research Ethics Committee, and all patients gave their
written informed consent to participate. Tumors included 14
liposarcomas, two leiomyosarcomas, one spindle cell sarcoma,
and one synovial sarcoma. All patients underwent an MRI
examination at baseline. In eight patients who were treated with
pre-operative radiotherapy (50.4Gy in 28 fractions) anotherMRI
examination was performed 2–4 weeks after the final fraction of
radiotherapy and prior to surgery; 10 patients were treated by
surgery alone.

Imaging Protocol
Patients were scanned on a 1.5 T Siemens MAGNETOM Aera
MRI scanner (Siemens Healthcare AG, Erlangen, Germany).
Anterior body matrix and posterior spine matrix receive coils
were used for image acquisition. Following axial and coronal
anatomical T1-weighted and T2-weighted imaging sequences,
functional imaging was performed and consisted of diffusion-
weighted imaging (DWI), Dixon imaging, and pre- and post-
contrast T1-weighted imaging sequences. Images were acquired
with a field of view that fully covered the tumor volume;
parameters are described in Appendix A and further detailed by
Winfield et al. (8) (a second imaging station was used if necessary
for large tumors). Post-Gadolinium (Gd) T1-weighted images
were acquired 4min after injection of a Gd-based contrast agent
(Dotarem, 0.2 ml/kg body weight, administered at 2 ml/s using a
power injector).

Image Analysis
Maps of apparent diffusion coefficient (ADC) were calculated
from the DWI and fat-fraction (FF) from Dixon images:

FF =
Sfat

Sfat + Swater
× 100% (1)

where Sfat and Swater represent the fat and water signals,
respectively. Maps of fractional enhancement (EF) were
calculated from the pre- and post-Gd T1-weighted images using
the following equation:

EF =
Spost − Spre

Spost + Spre
× 100% (2)

where Spre and Spost are the signal intensities in pre- and post-Gd
T1-weighted images, respectively (9). Volumes of interest (VOIs)
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FIGURE 1 | (Left) An illustration of our decision tree used to define habitats within our sarcoma population. Classes 3 and 4 were not further divided as

cystic/necrotic regions and fat do not enhance in post-Gd images. ADC is not evaluable in fat- suppressed DWI. (Right) Images from one patient with a

dedifferentiated liposarcoma showing examples of training ROIs positioned in regions corresponding to habitat 1 (red) and habitat 3 (blue). Training ROIs (2 cm2) were

drawn on either the fat fraction (FF), apparent diffusion-coefficient (ADC), or enhancing fraction (EF) maps, and then transposed onto other maps.

were defined for each tumor by an expert radiologist with 16
years of experience, outlining the whole tumor on every slice on
which the tumor appeared on axial T2-weighted images; VOIs
were transferred to ADC, FF, and EF maps. All parameter maps
were rescaled to ensure values were in the range [0, 1] using
the following linear transformations: ADC → ADC/3 × 10−3

mm2/s, EF→ (EF+ 100)/200%, and FF→ FF/100%. No spatial
registration was performed between parameter maps as adequate
spatial alignment was verified by a consultant radiologist with
experience in STS MRI.

Tissue Classification
We defined four possible tissue classes for the STS volumes as
illustrated in Figure 1, reflecting the aim of segmenting cellular
tumor (low ADC, classes 1 and 2) from necrotic/cystic regions
(high ADC, class 3), fat (class 4). The cellular tumor was further
separated into enhancing (class 1) and non-enhancing (class 2),
which may have different biological behavior (2). In addition,
we defined a further class to represent the combinations of
MRI parameters that were not part of the training data, called
“novelties” (10) (class 5). Training data for building the machine-
learning classifiers were defined by placing square regions of
interest (ROIs) with area 1–2 cm2 (45–100 voxels) in regions that
exemplified each class, at locations far from visible boundaries

(Figure 1). Training ROIs were drawn by a clinical scientist with
more than 6 years of experience in tumor analysis and confirmed
by a consultant radiologist with 16 years of experience. Between
1 and 4 ROIs were placed in each tumor depending on the
classes present, providing a total of 36 ROIs across all 18 patients’
baseline scans.

Eights machine-learning (ML) techniques were evaluated for
classifying the tissue type for each voxel in this pilot supervised
classification exercise using the Scikit-Learn software package
(11): Logistic Regression (LR), Support Vector Machine (SVM
with a radial basis function), Random Forest (RF), k-Nearest
Neighbor (kNN), Kernel Density Estimation (KDE), Naïve-
Bayes (NB), and a 20-node, three-layer, fully-connected Neural
Network (NN). We also tested a variant of the KDE method
where the hyperparameter (bandwidth) was automatically
selected using Silverman’s approximation (12). To ensure that
techniques were sensitive to novelties (voxels that do not
represent any of the classes defined in this study), data for
an additional 15 ROIs were synthesized by randomly sampling
from a uniform distribution covering the intrinsic range of the
parameters: EF ∈ [−100, 100] (%), FF ∈ [0, 100] (%), ADC ∈ [0,
3] (×10−3 s/mm2). All data were normalized to the range [0, 1]
prior to training of algorithms. An exhaustive cross-validation
approach was used for evaluating classification performance of

Frontiers in Oncology | www.frontiersin.org 3 October 2019 | Volume 9 | Article 941

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Blackledge et al. Heterogeneous Response Assessment in Sarcoma

TABLE 1 | Median training and prediction times for each of the machine-learning techniques used in this study over the range of hyper-parameters tested (5th and 9th

percentiles provided in parentheses).

ML technique Median training time

in ms (5th−95th perc.)

Median prediction

time in ms

(5th−95th perc.)

Hyper-parameter

(range considered for optimization)

Logistic regression (LR) 9.51

(5.50, 12.58)

0.06 (0.05, 0.11) C: Inverse of the regularization strength (10−3–1010)

Support vector machine (SVM) 208.69

(96.01, 1,745.5)

12.94

(5.19, 29.81)

C: Penalty parameter that favors smoother decision

boundaries when set to a smaller value (10−3–105)

Neural network (NN) 412.23

(47.72, 465.35)

0.24

(0.22, 0.33)

α: A L2-regularization parameter that attempts to reduce

over-fitting. Smoother decision boundaries with larger

values (10−8–105)

Naïve-Bayes (NB) 0.73

(0.70, 1.26)

0.69

(0.66, 1.23)

None

Random forest (RF) 399.98

(7.35, 7,304.26)

4.74

(0.23, 86.40)

N Estimators: The number of trees being used in the

forest (10–1,000)

k-Nearest neighbor (kNN) 1.73

(1.64, 2.39)

6.00

(1.20, 67.10)

N: The number of closest training data (Euclidean

distance) considered to be neighbors of the data being

predicted (10–1,000)

Kernel density estimation (KDE) 1.57

(1.44, 2.55)

11.33

(6.15, 55.62)

Bandwidth: The standard-deviation of the Gaussian

kernel used for fitting a KDE model (10−4–101)

Automatic KDE (aKDE) 1.81

(1.54, 2.82)

30.84

(26.83, 36.94)

None: Bandwidth is automatically calculated using

Silverman’s approximation

Training times are estimated for 1,350–3,000 samples in each case, whilst prediction times are for 135–300 samples (validation step). A brief description of the hyper-parameter used

in each case is provided (if applicable), with range test provided in parentheses. Computation times are from a 3.5 GHz personal machine with 16 GB of memory and an Intel Iris Plus

graphics card.

each of the machine-learning techniques: For each training cycle
voxels from one ROI of each class were selected as a validation
set, and the MLmethod under investigation was trained on voxel
values from the remaining ROIs. This process was repeated for
each unique combination of validation ROIs providing a total of
2,240 training/validation cycles. This process was repeated over
the range of hyper-parameters considered for each ML method
(see Table 1 for a list of the hyper-parameters considered and
their range, along with training/prediction times for eachmodel),
and the hyper-parameter that provided the highest median
accuracy, defined as the percentage of voxels correctly classified
in the validation ROI set, was chosen for further investigation.
The data for one patient, for whom 3 different ROI classes had
been drawn, was left out of this training/validation phase in
order to evaluate the accuracy of these ML methods in an unseen
case; this left a total of 33 ROIs for cross-validation analysis.
Comparison between methods was achieved using a two-tailed
Student’s t-test (p < 0.05 for significance).

Once the optimum hyper-parameter was selected and
models had been trained, they were used to classify the
entire tumor volume in all patients, providing a map of
the suspected STS tissue sub-type at each voxel location
(13) for radiological review. Results were visualized using
(i) 3D surface rendering and (ii) color-coded masks overlain
on Multi-Planar Reformats (MPRs) of the anatomical images
acquired (T2-HASTE). To reduce the level of classification
noise observed in the derived habitat maps, a classification de-
noising algorithm was used by applying a Markov Random
Field (MRF) model to the machine-learned classifications
(see Appendix B for the theoretical justification underlying

this model, with Python code provided as supplementary
file “ml_utilities.py”).

RESULTS

The cross-validation accuracy for the ranges of hyper-parameters
tested in each of the machine-learning methods is demonstrated
in Figure 2. For both kNN and KDE methods, optimum hyper-
parameters can be established (number of neighbors = 34
and bandwidth = 0.75, respectively). For the remaining ML
methods, a plateau is reached in the cross-validation accuracy
indicating relative insensitivity to the choice of hyper-parameter
after some threshold. Figure 2 also demonstrates the accuracy
of each machine learning method on the test ROIs ignored
during training: RF classification scored the highest in this
case with a test accuracy of 98.1%, and SVM, NN and kNN
methods demonstrating slightly lower accuracies of 96.3, 93.2,
and 89.4% respectively.

Figure 3 demonstrates the cross-validation accuracy for
each of the classes independently and for all classes combined,
using the optimal hyper-parameters in each case. The results
are sorted in order of ascending median accuracy. NB scored
the highest in two out of five tissue classes: (3) high ADC, and
(4) fatty tissue, whilst kNN scored highest for discriminating
enhancing, well-vascularised (1) from non-enhancing, poorly
vascularised (2) tumor tissue. The performance for all tissue
types combined demonstrates that in general there is little
to choose between 5/8 of these classification methods (NB,
NN, KDE, NN, SVM), whilst logistic regression (LR) and
random forest classifiers perform poorly in comparison
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FIGURE 2 | Demonstration of cross-validation accuracies over the range of hyper-parameters tested in this study. For the Kernel Density Estimation and k-Nearest

Neighbor methods, an optimum hyper-parameter can be identified. For the remaining techniques, a hyper-parameter limit is identified by the presence of a plateau in

the validation accuracy curve. Solid curves represent median values, shaded areas demonstrate the interquartile range and dashed lines represent the 5th and 95th

percentiles of the validation accuracy measurements. The optimum hyper parameter is annotated on each sub-plot with the corresponding validation accuracy shown

in the top-left.

across the tissue sub-types considered. Of the five methods,
the Naïve-Bayes (NB) classifier was chosen for further
investigation due to its relatively short training and prediction
times (Table 1).

Figure 4 compares the classification results of the NB classifier
with and without MRF correction on the test-patient that was

not included in the initial training of our machine-learning
approaches. It is evident that the application of a MRF reduces
the classification noise induced when the classifier is applied
on a voxel-wise basis without taking into consideration the
correlations that are likely to occur between neighboring voxels.
This figure also demonstrates the convergent properties of the
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FIGURE 3 | Comparison of the validation accuracy for the different machine learning (ML) techniques applied to our labeled training-set data. Methods are compared

for each tissue label separately (colored as per Figure 1) and for all tissue types combined (white). Boxplots demonstrate the distribution of validation accuracies

(derived using a randomized cross-validation approach) following optimization of hyper-parameters (bold-lines represent median, shaded areas indicate the

inter-quartile range and whiskers the 5th/95th percentiles). Methods are ordered from left to right in order of increasing median accuracy (**p < 0.005, ***p < 0.0005).

MRF algorithm, which converged after a median of 27 iterations
in this case.

We used the NB classifier, in combination with ourMRF class-
label de-noising algorithm, to investigate the changes occurring
to each of the tissue habitats in three patients who received a post-
treatment MR exam following radiotherapy (Figure 5). Patient 1
demonstrated STS consisting of mostly viable tumor with high
vascularity (class 1 in red), with a necrotic core (class 3 in blue).
Following treatment, there was no clear change in the volume
of either of these tissue types, nor any change in the ADC (as
depicted through a pie-chart in the figure), indicating that the
patient did not respond well to treatment. Patient 2 demonstrated
with a highly heterogeneous STS, with a mix of tissue classes
(1), (2), and (3). Following treatment, there is a clear increase in
the proportion of non-enhancing tissue, suggestive of disruption
to the vascular supply of the tumor following radiotherapy.
When combined with an observed increase in ADC for the
remaining well-vascularized tissue, this may provide evidence
of tumor response to radiotherapy, regardless of the absence
of any significant change in tumor volume (5.7% reduction

following treatment). Patient 3, however, demonstrated highly
fatty, well-differentiated liposarcoma, which has been well-
described through our approach; no change is found following
radiotherapy. Results for all eight patients are provided
in Appendix C.

DISCUSSION

Soft-tissue sarcoma is a highly heterogeneous disease, and there
remains a lack of appropriate imaging biomarkers for monitoring
the success of therapy. Novel therapeutic agents or radiotherapy
may not result in a significant change in tumor size, but in
a heterogeneous change in the tumor composition. In this
technical development study, we have investigated the use of
a number of machine-learning approaches for automatically
segmenting the heterogeneous tissue compartments within
STS, thereby providing a map that aims to characterize the
tumor microenvironment for radiological review. This approach
facilitates the quantification of changes in ADC, fat-fraction and
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FIGURE 4 | Demonstration of the improvement to tissue sub-region classification following Markov Random Field (MRF) correction of the Naïve-Bayes classifier. This

figure demonstrates results for the patient that was not included in the training of our machine-learning approaches (test data). Spie-charts (14) demonstrate the

proportion of each tissue sub-compartment within the entire volume as the angle of each segment, whilst the mean ADC of each tissue sub-type is represented by the

radius of each segment (note that the ADC of the fat/yellow tissue sub-type from fat-suppressed diffusion-weighted imaging studies should not be interpreted as it will

be heavily noise-corrupted; only the proportion/angle of this tissue sub-type is informative). The far-right plot demonstrates the number of voxels that change

classification following each iteration through the MRF fitting algorithm across all axial images in this patient: it is evident that the algorithm converges after a finite

number of iterations.

enhancement-fraction estimated through co-registered, multi-
parametricMRI occurring in each of the segmented tissue classes,
and may provide a novel response biomarker in STS.

Out of the eightmachine-learning approaches we investigated,
we found that 5/8 methods did not outperform each other in
terms of segmentation accuracy. This is likely due to the fact that
our data is intrinsically low-dimensional (only three parameters
per-voxel: ADC, enhancement-fraction and fat-fraction), and
most of the techniques provide enough degrees of freedom to
account for the variation of these parameters for the different
classes investigated for STS. This is supported by the relatively
poor performance of logistic regression, which was unable to
model the full complexity of the data space.

In addition, we have investigated inclusion of the estimated
class probabilities from machine-learning classification methods
into a Markov Random Field framework, which allows for de-
noising of the estimated habitat maps by introducing a spatial
prior distribution on the segmented regions. This technique
provided smoother classification maps when compared to
classification based purely on the trained ML architectures alone.
This approach could well be extended to any other machine-
learning task where the classifications of a group of input data
are not expected to be independent (15–17).

Although previous authors have investigated the role of
machine learning for the segmentation of sarcoma using MRI
data, these reports focused on the utility of dynamic contrast-
enhanced MRI alone, and did not exploit the multi-parametric
capabilities of MRI for determining a more complete habitat
image of the tumor, as explored here (18, 19). Moving forward,

there is a clear need to explore a larger patient population for
further validation of the methods described in this article. This
should include multi-center studies to determine the sensitivity
of the technique to images acquired from multiple vendors and
at different institutions (20). Another important consideration is
when MRI studies should be performed following neoadjuvant
radiotherapy in order to observe a measureable treatment-
induced change; the effects of treatment may not manifest
immediately after the final radiation dose. However, the
timing of imaging after neoadjuvant radiotherapy is limited
by surgery, which is typically performed at 4–6 weeks post-
treatment. Imaging following radiotherapy to non-resectable
disease may enable insight into later effects. The segmentation
methodology would also benefit from repeatability testing to
determine its sensitivity as a radiotherapy response biomarker
(21). A limitation of this study is that one expert radiologist
generated training data samples in the patients investigated,
and so further work may investigate the user-repeatability for
generating gold-standard training data. The regions chosen
for training data would ideally be validated through post-
operative histopathological confirmation of the tissue type in that
region. There may also be scope for including more complex
deep-learning approaches for producing habitat maps for soft-
tissue sarcoma, including methods, such as U-Net convolutional
networks (22), but these techniques would require a much larger
cohort size, which may be unfeasible in a population with
a rare cancer type. Lastly, the cohort of eight patients who
received radiotherapy had STS tumors that were predominantly
well-vascularized, and future randomized studies should include
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FIGURE 5 | A demonstration of our proposed habitat classification scheme on three patients applied before and after radiation therapy. Spie charts are presented

with a radius equal to the mean ADC of the given tissue sub-compartment; dotted lines on the post-treatment Spie charts show the ADC of that tissue sub-type in the

pre-treatment data. Multi-planar reformat habitat maps are overlain on T2 HASTE MR-images acquired within the same patient study. Patient 1 demonstrates a

patient with a liposarcoma where a necrotic core is clearly identified (blue) within a majority of strongly enhancing solid tumor (red) prior to treatment. Although

there is a marginal increase in the volume of the necrotic core, there little overall change is observed following treatment. Patient 2 demonstrates data from a pleomorphic

(Continued)
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FIGURE 5 | sarcoma where there is a clear heterogeneous pattern observed with the majority of the disease consisting of strongly enhancing tumor. Following

treatment, there is a marked increase in the proportion of poorly vascularized (green) and necrotic tissue. Within the remaining strongly enhancing tumor after

radiotherapy, an increase in mean ADC is observed indicative of treatment response. Patient 3 demonstrates a well-differentiated liposarcoma with the majority of the

tumor consisting of fatty tissue before and after treatment. Results for all eight patients (including these three exemplary patients)with pre-/post-radiotherapy imaging

are provided as supplementary information in Appendix C.

patients with more heterogeneous tumor phenotypes. However,
the full cohort of this study, which included patients for whom
no radiotherapy was delivered, provided sufficient examples of
each tissue class to evaluate this technological development.

Modern advances in artificial intelligence and machine-
learning are anticipated to improve automatic segmentation
accuracies in the next few years, and supersede conventional
image-processing methods for extracting regions of interest
in medical imaging datasets. We have demonstrated that a
variety of simple machine-learning approaches can be used
to automatically extract sub-regions in a highly heterogeneous
tumor phenotype, and that quantification of the volume
and ADC within these regions may provide a radiotherapy
response biomarker in soft-tissue sarcoma. Tools, such as
these will facilitate clinical decision making for a disease
that can be difficult to manage, and thus may promote
personalized treatment regimens and improve patient outcome.
Intra-tumoural heterogeneity confounds the interpretation of
treatment response in many other, more common cancers;
provided sufficient data is acquired, we envisage that these
methods will be highly applicable in many prospective cancer
studies investigating tumor response to targeted therapeutics.
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