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Convection-enhanced delivery (CED) is a method used to increase transport of

therapeutics in and around brain tumors. CED works through locally applying a pressure

differential to drive fluid flow throughout the tumor, such that convective forces dominate

over diffusive transport. This allows therapies to bypass the blood brain barrier that

would otherwise be too large or solely rely on passive diffusion. However, this also

drives fluid flow out through the tumor bulk into surrounding brain parenchyma, which

results in increased interstitial fluid (IF) flow, or fluid flow within extracellular spaces in

the tissue. IF flow has been associated with altered transport of molecules, extracellular

matrix rearrangement, and triggering of cellular motility through a number of mechanisms.

Thus, the results of a simple method to increase drug delivery may have unintended

consequences on tissue morphology. Clinically, prediction of dispersal of agents via CED

is important to catheter design, placement, and implementation to optimize contact of

tumor cells with therapeutic agent. Prediction software can aid in this problem, yet we

wonder if there is a better way to predict therapeutic distribution based simply on IF flow

pathways as determined from pre-intervention imaging. Overall, CED based therapy has

seen limited success and we posit that integration and appreciation of altered IF flow

may enhance outcomes. Thus, in this manuscript we both review the current state of the

art in CED and IF flow mechanistic understanding and relate these two elements to each

other in a clinical context.
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INTRODUCTION

Convection-enhanced delivery (CED) is a technique that harnesses increased flow of fluid to
increase transport of large molecules and drugs throughout a tissue. In brain cancer therapy, this
technique has been implemented for decades but has not been adopted widely in the clinic. The
ability of this therapy to move drugs around is useful, however there are a number of factors that
can inhibit or obstruct the ability of this method to work appropriately. Fluid flow in the brain
(healthy or diseased) is a constant force and it can affect not only the transport of drugs and
molecules throughout the tumor and surrounding tissue, but also cause changes to tumor cells
and surrounding cells that could worsen or alter disease progression. Specifically, interstitial fluid
(IF) flow, or the fluid flow around cells within the porous extracellular matrix, interacts with cells
to enact intracellular signaling events. CED, by its nature, increases this interstitial fluid flow (IFF)
but the two are rarely discussed together. Thus, we hope to describe these flows in the context of
both the natural flow in the brain and the changes in IF flow that may be attributed to the technique
of CED.
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THE FLUID FLOW NETWORK OF THE
BRAIN: A SECONDARY SYSTEM OF
REGULATION

Within the brain fluid flow is a tightly-controlled, yet
complicated, process that occurs along defined pathways. A
major driver of these flows is pressure: intracranial pressure
resulting from the brain incompressibility of fluid within the
confined space of the cranium and hydrostatic pressure arising
from circulatory dynamics. This pressure includes the tissue and
fluid components of the brain and is normally around 11 mmHg
(1). Pressure is regulated by the flux of bulk fluid into and out of
the brain and thus is directly linked to the fluid flow pathways
and rates within the tissue. Intracranial pressure changes result
in shifting or compression of at least one of the four principle
components of the cranial fluid vault: blood, cerebrospinal
fluid (CSF), IF, and brain tissue (2). Discrete pressures can
be measured in the vasculature running throughout the brain.
Contraction of ventricles within the heart create this hydrostatic
pressure which is the main driver of convective flow in fluid
movement through the arteries and across capillary walls. Thus,
this vascular pressure also drives IF flows due to the resultant
pressure differential between arteries and parenchymal space.
While pressure provides the force for fluid movement, anatomic
structures provide the pathways (summarized in Figure 1). A
fundamental understanding of these pathways and the fluids that
move within them is essential to appreciate the complex effects
of introducing an exogenous convective force and fluid into the
brain as therapy.

The Fluids, Structures, and Forces That
Drive Flow
There are three main fluids that flow within the physiological
domains of the brain: CSF, blood, and IF. Various groups have
measured average flow velocities of blood, CSF, and IF (3–5).
Ivanov et al. measured blood flow through cerebral capillaries
in mice which was found to be 0.79 ± 0.03 mm/s. Using
fluorescence intensity after bleaching on a rabbit ear, Chary and
Jain measured interstitial flow to be 6× 10−5 cm/s. CSF through
the cerebral aqueduct was 5.27 ± 1.77 cm/s as reported by
Mase et al. However, these flow rates can differ based on the
localization within the tissue (i.e., major arteries vs. capillaries)
and disease states.

CSF bathes the cortex and subarachnoid spaces acting as
both a homeostatic regulator, distributing ions and nutrients
and removing waste in the parenchyma, and as a hydraulic
protector, providing buoyancy and cushioning for the brain.
While there is still controversy surrounding the topic of CSF
production and circulation (6, 7), general consensus is that the
majority of CSF originates at the choroid plexus that line the
lateral, third, and fourth ventricles (8–10). Once secreted, the
CSF flows from the lateral ventricles through the interventricular
foramen to the third ventricle. It then passes through the cerebral
aqueduct and into the fourth ventricle before flowing into the
spinal cord and subarachnoid spaces. The arachnoid villi, or
arachnoid granulations, within the subarachnoid space provide
a direct path for CSF to the systemic circulation through the

superior sagittal sinus (11, 12). Experimental evidence suggests
that another path exists through the cribriform plate. The CSF
travels around olfactory nerve sheaths and is absorbed into the
lymphatics within the submucosa of the olfactory epithelium
(13, 14). More recently, CSF has been observed to drain into a
recently (re) discovered lymphatic network within the meninges
and into deep cervical lymph nodes (15, 16).

CSF flow is dynamic, driven by multiple pulsatile drivers
within the central nervous system. Choroid plexus production of
CSF, and subsequent velocity, has been linked to pulsatile blood
flow and the cardiac cycle by Nilsson et al. (17). Phase contrast
MRI indicates the pulsatile nature of CSF as it travels throughout
the brain (18) indicating driving forces of heart rate (19, 20),
respiration (21, 22), and ciliary beating of ependymal cells lining
the ventricles and central canal of the spinal cord (23, 24). CSF
flow is complicated and closely tied to other fluid movement
within the brain.

Blood flow is a major driver of other fluid movement within
the brain. Cerebral arteries run throughout the subarachnoid
space and penetrate the cortex through the pia mater, forming
what is known as the Virchow Robin space. This space is
occluded from the parenchyma as the pial sheath surrounding
the artery fuses with the basement membrane of the glia (6).
As the arteries taper into arterioles and the complex capillary
network within the parenchyma, glial cells and pericytes envelope
the area around the endothelial cell layer of the blood vessels,
collectively forming the blood brain barrier (BBB). Endothelial
cells are especially important, forming tight junctions. The BBB
limits solute transport into the brain based on size and polarity
(25). The capillaries then converge to form venules and veins,
leading back to the subarachnoid space, and eventually joining
up with the jugular veins. To demonstrate the impact of arterial
pulsation in driving transport within the brain, Rennels et al.
showed that by blocking cerebral artery pulsation, horseradish
peroxidase was prevented from rapid paravascular influx (20).
Similarly, Hadaczek et al. infused fluorescent liposomes into
rat striatum and measured distribution volumes between rats
with high and low blood pressure rates (19). In rats with
high blood pressure, infusate was distributed in significantly
larger volumes. Thus, blood is a major driver of not only
CSF flow, but also is the primary driver of endogenous
IF movement.

IF, as the primary fluid within the parenchyma of the brain, is
involved in cellular homeostasis and transport of nutrients. This
IF is found in the spaces between the cells and extracellularmatrix
and is very similar in composition to CSF (26). IF originates from
the blood brain barrier as the sodium-potassium pump provides a
net secretion of fluid (filtered blood serum) into the parenchyma
(27, 28). It may also arise as the byproduct of CSF mixing in the
parenchyma as it travels via the glymphatic system.

Experimental evidence in mice suggests that CSF passes
through the Virchow Robin space and enters spaces around the
cerebral arteries within the cortex. In this para-arterial space,
CSF passes around the astrocytic endfeet and into the interstitial
space within the brain parenchyma, mixing with and becoming
IF. Iliff et al. showed that IF is involved in the glymphatic system
along with the CSF by injecting a tracer into the cortex and
then fixing and imaging brain sections at different time points.
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FIGURE 1 | Fluid flows throughout the brain in bulk flow pathways and in interstitial space within the cellular environment. (A) Bulk flow pathways include CSF through

the ventricles and subarachnoid space, blood through the arteries and veins, and lymph through the meningeal lymphatics. Flow direction is shown by arrows. (1) CSF

to cribriform plate (2) CSF to venous sinus through arachnoid villi (3) CSF to spinal cord. (B) Interstitial flow moves from cerebral arterioles to venules through the

endothelial cells, crossing through extracellular matrix and cells such as neurons, astrocytes, and microglia. Figure not to scale.

They demonstrated that at<10min after injection, the tracer was
seen around arteries only, but after 1 h the tracer accumulated
around venules as well. This indicates that IF and CSF drain
via the same paravenous pathways after moving through the
parenchyma. CSF and IF then collect in the corresponding
paravenous spaces of the cerebral vein and, finally, either flow
back to the subarachnoid space, enter the bloodstream, or drain
to the cervical lymphatics (29). Interestingly, this system lines
up nicely with the research done by Aspelund et al. (15) as
the glymphatics would provide the link between upstream CSF
and IF flow and downstream collection within the lymphatic
vasculature (30). Recent criticisms debate the importance or
independent existence of the glymphatic system (31, 32), but it
would seem there is some means to linking the CSF and IF in
the brain parenchyma. However, the degree to which they are
independent vs. consistently mixed, is mostly semantic, as there
are no independent barriers separating these two fluids (like with
lymph and interstitial fluid for instance).

Though considered a convective force, there is supporting
literature that IF flow is primarily a diffusional process (33–
36) as the parenchyma has too high a hydraulic resistance for
convection to occur. However, several groups have identified
a convective component of IF (26, 27, 29). Abbott et al. (37)
recently reviewed IF transport, which describes both contributors
indicating that both convection and diffusion exist but may
be dependent on anatomical location. White matter promotes
convective flow as the fibers are aligned with lower amounts
of dense matrix and cell bodies, whereas gray matter promotes
diffusive flow (38). This has major implications for drug delivery
as particles undergoing diffusion will be governed by size
and particles undergoing convection will be governed by fluid
flow velocity.

These pathways and fluids, in concert, offer a dynamic and
complex network of flow within the brain. While we have
yet to understand them altogether, significant work has been
done to characterize and model the physiological state of these
systems. This has led to a foundation from which abnormal
flows can be studied, such as those arising in tumors, with
the intention of more wholly understanding and developing
therapeutic strategies against cancer.

Disruption of Fluid Flow in Diseased
States: Focus on Glioblastoma
There has been considerable work to identify the impact
that diseased states have on fluid transport and how this
transport can, in turn, affect disease progression. Indeed, fluid
flow in the brain is dynamic along many time scales, with
velocity magnitudes that fluctuate with circadian rhythm
(17, 39), decrease with age (40), and vary depending
on changes in blood pressure (19). Flow has also been
implicated in the progression of neurological disorders
such as Alzheimer’s (41). But perhaps the most drastic change
to flow magnitudes is from the formation of brain tumors,
which will be the focus of this review with specific emphasis on
glioblastoma (GBM).

GBM has an overall survival from diagnosis of <2 years,
making it the deadliest primary brain tumor. This type of
primary brain cancer is known for its invasive nature and
most commonly arises in the cortex of the brain, specifically
the frontal and temporal lobes (42). Like fluid flow, the tumor
is constrained by the fundamental architecture of the brain.
Microscopically, the microenvironment that these tumors grow
in is a complex assortment of cells, vasculature, and extracellular
matrix (ECM) that contribute to altered molecular transport
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and tumor progression (43). Glial and endothelial cells have
been implicated in the progression of disease via invasion,
maintenance of stem cell populations, and proliferation (44–
50). The extracellular matrix is comprised of dense 3D networks
composed of hydraulically resistant glycoproteins, proteoglycans,
and hyaluronic acid (51) and contributes 20% of total brain
volume (52). This fluid-rich, gel-like matrix has tortuous paths,
with an estimated pore size between 20 and 60 nm that
constrain and dictate the movement of molecules (36, 53).
Conversely, fluid flowwithin the ECM can bend and stretch ECM
molecules, altering the configuration of the microenvironment
and triggering cellular mechanotransduction pathways (54, 55).
A rich vasculature runs throughout the parenchyma yielding
channels for fluid flow along glymphatic routes (56, 57).

In cancer, neo-vascularization causes a highly disorganized
network of blood vessels. These vessels are also leaky due to
increased permeability, are tortuous, and have blind ends (58).
As blood and serum leak from the vasculature into the tumor
and increase in volume, the IF pressure rises. In addition to
increased fluid influx, the extracellular matrix undergoes massive
reorganization by tumor cells and surrounding parenchymal cells
(59, 60). This leads to decreased hydraulic conductivity and
retention of fluids in the tumor bulk, further contributing to the
increased IF pressure which can be as high as 45 mmHg inside
some types of tumors (61). This pressure difference, specifically
at the tumor border, drives flow from the tumor out into the
surrounding parenchyma (62).

Dynamic contrast-enhanced imaging, which employs
gadolinium contrast agents and time-lapse imaging, can be
used to examine fluid movement into and within tumors.
This technique is used clinically to examine blood vessel
permeability and vascular transport in brain tumors. In an
effort to observe the interstitial flow patterns in mouse models
of glioma, Kingsmore et al. (63) adapted this technique by
using concentration gradients of contrast to simultaneously
calculate flow velocity and diffusion, yielding a map of the
flow patterns within the tumor and surrounding interstitial
space. Flow directionality is heterogeneous in and around the
tumor, although there are converging regions that are believed
to overlap with structures (like white matter tracts) within the
brain. The average interstitial flow magnitude remains relatively
restricted between 0 and 6 µm/s (when corrected). D’Esposito
et al. (64) created a computational model to study intratumoral
IF pressure of glioma in a mouse model. They removed the
tumor postmortem and cleared the tumor and cortex of the
mice, imaging the vasculature afterward. This was then used
in a computational model which incorporated intravascular
and interstitial compartments, vascular permeability, and blood
and interstitial flow to yield quantitative information about
perfusion, IF pressure, and IF velocity. Findings indicate a mean
IF pressure within the tumor of 16± 10 mmHg, an IF velocity of
<0.01 µm/s in the tumor center, and an interstitial velocity of 17
± 4 µm/s at the tumor periphery (64). Similarly, interstitial flow
of tumors in general has been modeled in numerous groups (65–
68) and more recently in the context of chemokine convection
(69). Incorporation of these natural flows into broader models
of drug delivery should allow for better prediction of drug

distribution, specifically in the context of manipulating
fluid flow.

CONVECTION-ENHANCED DELIVERY TO
DRIVE TISSUE TRANSPORT

The guiding principle behind CED is creating a positive
pressure gradient to deposit treatment directly into the tumor
or resection cavity and drive it through the surrounding
parenchyma such that invaded cells might be accessed. This
method was first described by Bobo et al. (70) in order
to bypass the BBB and locally deliver chemotherapeutics or
other anti-tumor agents. One such early example was the use
of conjugated human transferrin to selectively target human
glioma cells. Human transferrin is expressed ubiquitously in
malignant tumors such as glioblastoma, but also in endothelial
cells (71), creating an obstacle to intravenous delivery. CED
was employed to deliver this type of drug and found to be
efficacious in treating human glioma (72), eventually leading
to clinical trials (73). CED uses catheters placed at specific
locations to perfuse treatment directly in a, theoretically,
spherical area. This method has been modeled mathematically,
and at its core takes advantage of fundamental mass transport
principles to increase convective over diffusive flux through
the tissue.

CED is employed to solve drug delivery issues related not
only to limited BBB permeability, but also to overcome high
intratumoral pressures (sometimes termed the blood-tumor
barrier) or limit systemic toxicity that may arise from some
drugs. For example, Degen et al. conducted a study testing the
dose effects of carboplatin and gemcitabine in a rat glioma
model, utilizing CED or systemic delivery (74). They found that
the perfusion of brain regions could be accomplished without
toxicity and that the CED-treated groups had higher long-term
survival. The positive pressure induced by CED drives flow
through the tissue via convection-dominated transport until
it reaches a certain limit governed by the infusion volume
and rate. At this point, diffusion-dominated transport would
govern. This means that near to the catheter, the velocity of
flow is most important to the transport of the drug while
farther away, the size of the drug is more important. Thus,
CED is particularly beneficial to large molecule drugs, such as
antibodies, nanoparticles, or conjugates (often imaging agents
coupled with a drug or biomarker). Therefore, these types of
therapies have been a major focus of preclinical and clinical
CED application.

CED Has Shown Limited Clinical Success
Figure 2 shows a depiction of CED at the macroscopic level
as it may be clinically implemented. Infusion rates range from
0.1 to 10 µL/min, and a single catheter can usually distribute
drug up to a few millimeters as confirmed by imaging (75).
Clinically, the therapeutic application is defined by two terms:
volume of distribution (Vd), or amount of drug that is delivered,
and volume of infusate (Vi), the amount of infusate (drug and
carrier fluid) that is delivered. The ratio of Vd to Vi is used to
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FIGURE 2 | Overview of CED into brain tumors. (A) CED is performed through

catheters placed either intratumorally or intraparenchymally. The infusate

profile will change depending on region of delivery (shown in orange).

(B) Some example catheter designs that have been used to deliver CED.

describe how well CED delivers a specific drug, dependent on the
drug and tissue being perfused. A higher ratio is desirable as this
would indicate greater distribution of drug, all else being equal.
An example is the ratio of graymatter, spinal cord, and peripheral
nerves which range from 4:1 to 7:1 compared to the ratio of
compacted white matter which ranges from 6:1 to 10:1 (76). This
means that drug distribution is greater in the white matter than
the gray matter, consistent with the increased permeability of that
tissue, and thus conducts fluid flow at a different rate.

Catheter design, catheter placement, tumor location,
tumor size, infusion rate, infusion frequency, drug type
and concentration, and brain anatomy can all contribute
to differential CED responses. When working with these
parameters, it is often a balance between increasing the drug

distribution profile within and around the tumor and limitations
on the physical implementation of CED. For instance, increasing
flow rates will undoubtedly increase the distribution of drug
within and around the tumor while also reducing total infusion
time for the patient. However, backflow, or the tendency of the
infusate to travel back up between the catheter and the tissue,
is directly impacted by the infusion rate (77). Thus, oftentimes,
multiple catheters have been used to better distribute and
increase infusion overall at lower rates, but this can be limited
by surgical access and anatomy. As such, design of catheters
has been a major area of research in CED. For instance, the
development of a stepped catheter design which allows CED
flow rates as high as 5 µL/min in mice (78) increases flow
while limiting backflow. Other new catheter designs include
hollow-fiber, multi-port, ultrafine, and balloon-tipped. Lewis
et al. recently reviewed the history and evolution of catheter
design for CED (79). Catheter placement and infusion rate
varies among the clinical trials. This is due, in part, to the more
personalized approach to catheter placement necessitated by the
limitations presented by an individual tumor anatomy within
the brain. Further, not only are catheters placed within tumors or
resection cavities, but also within the surrounding parenchyma.
This variability makes it difficult to compare parameters across
clinical trials using CED. To aid in some of the ambiguity of
the treatment, clinical imaging is often used in conjunction
with CED. Intraoperative MRI is the primary modality. By
incorporating a contrast agent into the infusate or as a drug
conjugate, drug distribution can be monitored and analyzed in
real-time and post-treatment (80, 81).

As mentioned, infusion rates are arguably one of the most
important components to CED. We will discuss later how the
infusion rate is responsible for mathematically driving drug
distribution. Interestingly, while this is such an important factor,
it is highly variable in clinical trials to date, ranging from
0.5 µL/min to (73, 82–102) 66 µL/min (Table 1). Further, the
infusion time changes substantially between independent trials.
Some trials infuse for days while others only for a few hours.
Some infusions are continuous while others cycle. Lastly, the total
volume infused varies from 2 to 108mL which is unsurprising
given the variance in flow rates and time intervals. This lack
of standardization might be one of the reasons that CED
has been unable to acquire clinical success, and part of the
lack of standardization is that we still do not have a holistic
understanding of how CED is affected by and exerts effects on
the brain and tumor tissues.

Catheter placement is one of the most important steps
in planning a CED intervention. Mathematical modeling and
software have aided in this planning. Onemajor factor in catheter
placement is anatomical location of the tumor or location to be
infused. Certain structures such as white matter tracts, ventricles,
and ependymal surfaces have been known to cause failure of
CED because of the impact they have on drug distribution
(104, 105). The anisotropy of white matter tracts causes drug
to preferentially flow through this bulk fluid pathway away
from areas of therapeutic interest. Ventricles and ependymal
surfaces can also act as sinks for the infusate, diminishing the
Vd/Vi ratio.
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TABLE 1 | Completed clinical trials of CED for human gliomas.

Source Drug (concentration) Flow rate Complications Success/failure rate Catheter placement

Laske Tf-CRM107 (0.1–>1 ug/ml) 0.5 uL/min increasing over 4 h to

max of 4–10 ul/min for a total of

5mL Infusion volumes increased

up to 180mL Infusions every 4–6

weeks until change seen

Reactive changes and edema (1

patient)

9/15 patients >= 50% decrease in tumor

volume

1 to 3 catheters at selected sites in the tumor

Laske Tf-CRM107 (0.67 ug/ml) Up to 0.20 mL/h per catheter for

4–5 days until 40mL delivered

Second treatment 10 weeks

after initial infusion

8/44 cerebral edema

3/44 seizure

Median survivial time 37 wks and mean

survival time 45 weeks

2 catheters at selected sites in the tumor

Wersall mAb 425 4 ml/h for 1 h 6/18 headache Total median survival from diagnosis 39

week and from the start of mAb 18.5 week

Expected median survival 24 week from

start of therapy

3 to 4 catheters in the tumor-bed tissue

Rand IL-4 pseudomonas exotoxin

(0.2µg/ml up to 6µg/ml)

0.3–0.6 mL/h over a 4–8 day

period (total infusion volume

30–185mL)

2/9 hydrocephalus

3/9 cerebral edema

6/9 showed decreased enhancement after

infusions but only one survived—the other

tumors recurred

1 to 3 catheters at selected sites in the tumor

based on shortest possible route. When three

were used, middle inserted into center of tumor

and other two placed on opposing side

adjacent to largest volume of white matter

Voges HSV-1-tk 0.025, 0.05, 0.1, 0.2, 0.4 mL/h,

each at 2 h infusion time followed

by 0.6 mL/h until final volume

reached (30 or 60mL)

– Median survival time after infusion 28.1

weeks and median time to progression 8

weeks

Intracerebral

Weber IL-4 pseudomonas exotoxin

(6µg/ml for 40ml, 9µg/ml

for 40ml, 15µg/ml for

40ml, or 9µg/ml for 100ml)

6.94 µL/min for 40mL groups

and 17.36 µl/min for 100mL

group. Delivered over 96 h.

26/31 seizures 10/31 (32%)

cerebral edema (of those 10, 5

(50%) were serious)

Overall median survival 8.2 months with

median survival of 5.8 months for GBM

(highest 6-month survival for 6µg/ml ×

40ml and 15µg/ml × 40ml)

1 to 3 catheters placed intratumorally

Lidar Paclitaxel (3 patients 7.2

mg/6mL, all others 3.6

mg/6.6mL)

0.3 mL/h or 5 days in 24 h

periods 20 cycles

2/15 edema

1/15 hydrocephalus

Median survival of 7.5 months 1 catheter placed intratumorally

Patel Cotara (0.5–3 mCi/cm3 ) 0.18 mL/h through each catheter

over 1 or 2 days (total volume

4.5–18mL). After infusion,

0.5mL diluent flush infused at

0.18 ml/h. 39 received first

infusion, 16 received a second

infusion

10/51 brain edema (20%) – 1 to 2 catheters near or at center of enhancing

tumor

Kunwar (103) IL-13-PE38QQR

(0.25–2µg/mL for

intratumoral and

0.25–1µg/mL for

intraparenchymal)

Intratumoral−0.4 or 0.54 mL/h

for 48–96 h total

Intraparenchymal−0.75 mL/h for

96 h to 6 days total

27 headache (53%)—catheter

placmt

6 aphasia (12%)—catheter

placmt

21 headache (41%)—CED of

drug 10 aphasia (20%)—CED of

drug

– 1–2 for intratumoral and 1–3 catheters for

intraparenchymal. One cohort with intratumoral

placement followed by resection and then

intraparenchymal administration. One cohort

with intraparenchymal placement after tumor

resection

(Continued)
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TABLE 1 | Continued

Source Drug (concentration) Flow rate Complications Success/failure rate Catheter placement

Vogelbaum

(91)

IL-13-PE38QQR (0.25 or

0.5µg/ml)

0.750 mL/h divided by # of

catheters for 96 h

5 deep vein thrombosis (23%)

3 peripheral edema (14%)

3 aphasia (14%)

3 convulsion (14%)

– 2 to 4 catheters placed intraparenchymally

Sampson TP-38 (25, 50, or

100 ng/mL)

0.4 mL/h for 50 h in each

catheter (40mL total)

Reflux and ineffective delivery in

majority of patients (7/16 leak

into subarachnoid space, 2/16

lead into ventricle, 4/16 pooling

in necrotic area resection cavity,

3/16 successful infusion)

Overall median survival after therapy 28

weeks (20.1 for patients with residual

disease and 33 for patients without

residual disease)

2 catheters placed to target residual tumor or

deep white matter adjacent to areas of

previously resected tumor

Carpentier CpG-ODN 0.333 mL/h for 6 h (2mL infused

total)

Seizure (5/31) Median progression free survival 9.1

weeks and median overall survival 28

weeks

2 catheters placed intracerebrally

Kunwar (88) IL-13-PE38QQR (0.5µg/ml)

vs. Gliadel wafers

0.75 mL/h over 96 h 10/183 brain edema

39/183 aphasia

Median survival 36.4 weeks compared to

35.4 weeks for gliadel wafers (for GBM

confirmed group)

2–4 catheters placed intraparenchymally

Bruce Topotecan (0.02, 0.04,

0.0667, 0.1, or 0.133

mg/mL)

200 µl/h in each catheter for

100 h (40mL total)

5/18 headache

5/18 seizure

Median progression free survival 23 weeks

and median overall survival 60 weeks

2 catheters placed into enhancing tumor or

adjacent brain

Desjardins Polio-rhinovirus chimera 500 µl/h over 6.5 h (3.25mL

total)

– Median overall survival 12.5 mths

compared to 11.3 mths historical and 6.6

mths NOVO-TTF-100A treatment group

1 catheter placed intratumorally

Vogelbaum

(96)

Topotecan (0.067 mg/mL) 0.396 mL/h over 96 h total

(38mL total)

– – 2 catheters each with 4 microcatheters; 1

placed intratumorally and 1 placed

intraparenchymally
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Last, the drug that is delivered is extremely important to
outcomes with CED and planning of infusions. Normally,
when trying to deliver a drug through the vasculature and
BBB, an advantage is to have it be as small as possible and
potentially lipophilic so that it can pass through more easily
and have a greater presence at the tumor site. CED bypasses
the BBB completely, so this problem is now reversed; the
drug is already where it needs to be, the issue is having it
stay there. One study that examined this effect used topotecan
and compared intracerebral delivery to intraperitoneal delivery
using a rat glioma model (106). The authors found that
the topotecan delivered systemically was able to cross the
BBB, but there was a higher concentration of the topotecan
in the brain and around the tumor when delivered via
CED. They also observed a significant decrease in the tumor
size of the CED group compared to the systemic delivery
group. Because of this, drugs should have higher molecular
weights and be hydrophilic if possible. Raghavan et al. (107)
provide an interesting perspective into many of these clinical
obstacles as well as relevant clinical scenarios in which CED
could be improved upon. Some recent clinical studies with
CED are highlighted in Table 1 with discussion of some of
these parameters.

CED Increases Drug Distribution in
Interstitial Spaces
CED is governed by classical mass transport equations
accounting for diffusive and convective flux. The changes
in fluid velocity driven by CED and its impact on drug transport
are best understood from this mathematical point of view. The
main focus of CED is on the drug concentration profile that
can be developed. This is based on the mass transport equation,
which describes the change in concentration of a species over
time. The general equation is dependent on diffusion and
convection characteristics and is given by:

∂c

∂t
= D∇2c− v · ∇c+ R (1)

Where the change in concentration over time ( ∂c
∂t ) is solved from

the diffusive component (D∇2c), convective component (v · ∇c),
and rate of any reactions taking place. In other words, transport
of a species (the infusate) depends on whether it is passively
diffusing, being driven by a pressure differential (bulk flow),
or being replenished or depleted by chemical reactions. In the
tumor microenvironment, the pressure differential between the
tumor and normal tissue creates a convective force throughout
the interstitial space. Depending on the species being transported
by this flow, there will also be diffusion taking place (as the
concentration gradient spreads out) as well as reactions between
the species and surrounding cells. With regards to CED, the
concentration profile is often modeled as a sphere radiating
outward from the catheter tip. In this context, the mass transport

equation can be written with spherical coordinates:

∂c

∂t
= D

(

1

r2
∂

∂r

(

r2
∂c

∂r

)

+
1

r2sinθ

∂

∂θ

(

sinθ
∂c

∂θ

)

+
1

r2 sin2θ

∂2c

∂ϕ2

)

− vr
∂c

∂r
−

vθ

r

∂c

∂θ
−

vϕ

rsinθ

∂c

∂ϕ
+ R (2)

Where r denotes the radius of the sphere from the catheter tip, θ
an angle around the tip from the z axis, and ϕ an angle orthogonal
to θ. Together, these describe the change in concentration of
infusate over time in a spherical volume.

In order to solve for the convective component of the mass
transport equation, the velocity of the infusate must be known.
This can be solved from the generalized Navier-Stokes equation,
which defines fluid flow rate based on the properties of that fluid
and the surrounding space.

ρ
dv

dt
+ ρv · ∇v = −∇P + µ∇2v+ ρg (3)

In this equation, the first term describes the change in velocity of
the fluid over time, the second term is the convective component
of the velocity, ∇P defines the pressure gradient, µ∇2v is the
viscous or diffusive component and ρg is the effect gravity has
on the velocity. Together, these terms can be used to solve for
the velocity profile of a fluid. Again, because CED theoretically
supplies a spherical distribution of infusate at the location of
the catheter tip spherical coordinates can be used, similar to
Equation 2.

In regards to the fluid flow within the tumor
microenvironment, Navier-Stokes can be simplified with
the assumption of incompressible, creeping flow and being
a Newtonian fluid to the Stokes equation. This can then be
transitioned to Darcy’s law by assuming viscous forces are linear
with velocity. Darcy’s law describes fluid moving through a
porous medium, such as flow through the interstitial space of
the brain parenchyma. This is especially useful in the context of
glioblastoma as the pressure differential from the tumor causes
flow through the interstitial space. Darcy’s law is given by:

q = −
k

u

(

1p

1x

)

(4)

With this equation, the average velocity of the IF can be calculated
based on the pressure differential (1p), permeability of the
parenchyma (k), viscosity of the fluid (µ), and a characteristic
length of tissue through which the fluid is flowing (1x). It is
important to note that this gives a superficial velocity, not a
discrete profile of the flow rate. This velocity can then be paired
with the mass transport equation to solve for concentration of
a drug over time. It is important to note, however, that this
concentration profile cannot be solved without considering the
convective component which is directly tied to the interstitial
flow rate that the procedure is causing as well as the impact that
the surrounding tissue is causing.

One last term to consider is the Péclet number:

Pe =
L∗v

D
(5)
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Where L is the characteristic length, v is the flow velocity,
and D is the mass diffusion coefficient. This term is a ratio
of the convective component to the diffusive component for
a given system. For a Péclet number less than one, diffusion
dominates whereas a number greater than one means convection
will dominate. This is important especially in the context of CED,
where the main goal is to increase the convective component,
by increasing the v in Equation 5, in order to obtain a larger
distribution volume to the tissue. Under normal circumstances,
the Péclet number in the interstitial space will be close to
one, meaning that diffusion and convection components are
about equal.

In the context of CED, the positive pressure induced inside
the tumor from the catheter(s) would increase the pressure term
in Darcy’s Law, causing the velocity of the infusate through the
interstitial space to increase. This velocity would also depend on
the permeability of the parenchyma and tumor tissue, as the flow
would have to travel through these media, and on the viscosity
of the infusate. If the permeability of the tissue is higher there
will be less resistance to flow, resulting in a higher flow rate as
shown by Equation 4. A lower viscosity would similarly cause an
increase in flow velocity, as a less viscous fluid is less resistant to
deformation through shear stress. Once flow rate is determined,
it can be used in the mass transport equation (v in Equation 1)
to describe the convective component of drug delivery and in
the Péclet number to describe how convection and diffusion are
contributing. The transport of this mass is also affected by the
diffusion coefficient of the drug and the reactions between the
infusate and surrounding cellular environment. Together, these
equations describe the drug concentration inside and around
the tumor.

Advanced Mathematical Modeling
The equations laid out in the preceding section comprise the
fundamental mathematical principles that govern CED, but they
have been used well before this to study fluid flow and transport
in brain and other tissues (108–110). Since Bobo et al. first
proposed CED, there have been numerous mathematical models
trying to predict drug transport, as there are obvious clinical
benefits of doing so. Early models such as that by Morrison et
al. (111, 112) took into account catheter diameter, volumetric
inflow rate, hydraulic flow through tissue, and deformation of
the tissue and were used to model backflow. Subsequent models
have built off and adapted these precursors such as Raghavan
et al. (113), which reformulated and extended the model by
Morrison et al. more accurately predicting backflow surrounding
a cylindrical catheter based on changes in volumetric flow
rate. However, more complex analytical models have been
and are being created that incorporate factors such as tissue
edema, fluid pathways, tissue and tumor heterogeneity, and
other structural and biophysical mediators to more accurately
simulate in vivo conditions (114–120). These models have
recognized and accounted for the role that interstitial flow
and structural pathways play in the CED paradigm. When
examining these mathematical models, consideration of whether
they are modeling CED intraparenchymally or intratumorally is

important to their application. Clinically, CED can be applied
into tumors alone, into tumor+parenchyma, or into resected
tumor cavities or surrounding parenchyma alone. Each of
these tissues presents its own set of physical parameters and
challenges to planning and treatment implementation. Most
of the referenced models look at perfusion into the brain
tissue and not the tumor itself, which has major limitations
on the results owing to the differences in mechanical and
biophysical properties.

Clinically, some mathematical models have been successful.
Sampson et al. (121) tested an algorithm to predict patient-
specific drug distributions in a retrospective study of a CED
clinical trial. The algorithm aids in placing catheters such that
drugs will be delivered successfully to specific anatomical regions
of the brain. The software works by first delineating fluid-filled
volumes and surfaces using a T2-weighted MRI to describe the
anatomy of the brain. Manual segmentation of edematous brain
regions is then performed so as to not confound the algorithm.
Using infusate volume and catheter dimensions, length of
backflow (flow back up the outside of the catheter) is calculated
and then cross-referenced to any segmented surface or cavity that
is within this length. If detected, the software gives a warning
of potential poor catheter placement and the catheter can be
repositioned. Once verified that backflow will not occur, the fluid
distribution is calculated based on the mass transport equation
(Equation 1) and Darcy’s law (Equation 4). The result is a patient-
specific 3D profile of the drug concentration. Rosenbluth et al.
(122) later refined this approach by integrating diffusion tensor
imaging to include more anatomical information. Rosenbluth
et al. also developed an autosegmentation tool for use with
CED (123).

The use of such software offers the ability to simulate drug
distribution prior to application and has helped to enhance
the reproducibility of drug delivery. However, these therapeutic
approaches are still not offering the expected curative outcomes
for many diseases, particularly in glioblastoma. One reason for
this may be the focus on distribution volume of the drug (in
terms of reducing backflow and creating more targeted zones
of delivery) instead of the direct impact CED has on the flow
pathways within the brain. Further, there currently exists no
model of CED that incorporates the naturally-occurring fluid
flow within the tissue which will have a major impact on the
resultant flows from an imposed pressure gradient.

CED DIRECTLY CONTRIBUTES TO
INCREASED IFF

The main focus of CED to date has been on delivering efficacious
concentrations of drug in and around the tumor or resection
site, but the downstream impact of this extrinsic force has not
been considered. CED not only is an effort to bypass the BBB,
but also to overcome the heightened intratumoral interstitial
pressures. It is this same heightened pressure that drives IF
flow at the tumor border into the surrounding parenchyma
(61). The interstitial pressure in normal brain tissue is 0.8
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mmHg, whereas it is 7 mmHg when a tumor is present
(124). This increased interstitial pressure can lead to issues
with CED. As mentioned, it can cause increased efflux of
the CED-administered treatment back up the catheter track,
reducing total delivered dose and hence, decreased clinical
efficacy (80). Because CED introduces an additional hydrostatic
pressure compared to a relatively normal pressure in adjacent
tissue, IF flow will be induced or increased although we
still don’t know the downstream consequences as illustrated
in Figure 3.

Like interstitial pressure, IFF rates are higher in tumor-bearing
tissues as at border regions; though it can be nearly static in some
regions of the tumor (63). Heightened interstitial or bulk flows
can also affect CED success. In regions with low resistance to flow
or along bulk fluid paths, drugs may move very quickly through
the tissue reducing residence time around invaded tumor cells
that are being targeted. The complex heterogeneity of tumors
coupled with the anisotropy of the brain makes this balance
complicated in application of flow.

CED is most often performed post-surgical resection,
however, in some cases and oftentimes in canine glioma,
CED is performed with the tumor in place. The inherent
biophysical differences in these tissues makes exact modeling
difficult, especially IF flow due to its dependence on the matrix
permeability and fluid viscosity, both affected by therapeutic
intervention. For instance, radiation therapy has been shown
to degrade extracellular matrix in other tissues which will

increase permeability of the extracellular matrix (125). As
CED is most often performed on patients who have already
received numerous rounds of standard of care and potentially
experimental treatments, it can be difficult to generalize
parameters based on healthy or even initially diagnosed patients.
Strategies to use clinical imaging to identify these other
properties can aid in these efforts for patient-specificity and
potentially improve outcomes by identifying these parameters.
Importantly, we can link the known CED derived transport to
IF flow to better understand and model the effects of these
changes in patients.

IF Flow Can Drive Tumor Invasion
The effects of IF flow on cancers in general was recently reviewed
by Munson and Shieh (126). In glioma, two groups have shown
that this IF flow causes glioma cells to invade (126–128). The
flow is thought to mediate mechanisms whereby the tumor cells
actively invade the healthy tissue and may contribute to the
diffusive nature of these tumors which makes them particularly
difficult to cure.

Two proposed mechanisms by which flow could be mediating
tumor invasion in the brain include autologous chemotaxis
and cellular mechanotransduction (127). Autologous chemotaxis
is the process by which a cell migrates in the direction of
autologous chemokine gradients formed by IF flow carrying
secreted protein upstream of the cell body (129). In glioma,
the receptor, CXCR4, and its ligand, CXCL12, have been

FIGURE 3 | Illustration of fluid flow resulting from tumor (blue arrows) and potential effects on flow when introducing CED (orange arrows). Without CED, the tumor

causes interstitial flow from its border into the surrounding parenchyma, affecting cells located there. With CED, this interstitial flow will be increased but it is not known

if this will create new pathways of flow or just increase existing ones, or what the downstream impact of this increased flow will be on the resident cells.

Figure not to scale.
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implicated in this mechanism in rat and patient glioma cells
(127, 130). Mechanotransduction is the process by which cells
sense and react to mechanical changes in their environment
via extracellular matrix binding proteins. These cues can be
induced by forces such as shear stress, compressive stress, or
tensile stress (54). IF flow results in localized shear stress at
the cell surface which directly signals to cytoskeletal binding
proteins leading to glioma cell migration (128). One of the
major receptors implicated in this mechanism is CD44 (127,
131), but other matrix-binding proteins may also be involved
in mechanotransduction in the glioma microenvironment. Both
CXCR4 and CD44 are highly upregulated in glioma, which
further enhances the importance of studying flow in conjunction
with these cancers. Paths of invasion within the brain occur
in perivascular spaces around blood vessels (132), along white
matter tracts (38), in perineuronal spaces, and along the
meningeal layers lining the brain. Coincidentally these are
regions with increased preferential bulk flow as shown by Geer
and Grossman in their seminal work using convection-infused
dye as a surrogate for heightened tumor pressure and tumor
cells. Though these regions are subject to bulk flow as opposed
to interstitial flow, much of the IF flow that is moving within
the brain extracellular space eventually drains toward and along
these major conduits, thus linking IF flow, bulk flow, and
invasive pathways.

Recently, Cornelison et al. showed that CED therapy (at
1 µL/min) in a GL261 mouse model increased invasion of
glioma cells, mediated by CXCR4. By blocking CXCR4 with
AMD3100 this invasive response was effectively eliminated,
suggesting that CED therapy could be more efficacious by
considering the impact of fluid flow. This was the first
direct proof in vivo that CED could lead to increased
invasion. Interstitial flow in other tissues can also alter the
surrounding tissues (55, 133). Interestingly, in the brains
bearing GL261 tumors, not only was CXCR4 phosphorylation
increased in the tumor cells with CED, but there was also
observably more p-CXCR4 in the surrounding parenchymal
tissue, implicating neuroglial cells have a role in possibly
other flow-related signaling. These findings could have major
implications on the outcome of the CED procedures, and
potentially offer some partial explanation into why CED has not
been shown to statistically significantly increase patient survival
in clinical trials.

CHALLENGES AND OPPORTUNITIES OF
CED: FOCUS ON IFF

We contend that a vital component to successful CED treatment
is recognizing inherent fluid flow and pathways within the
brain and their impact. Though these therapies have been
implemented for decades, very few studies exist that probe
the inherent contributions of the brain to CED outcomes (as
opposed to CED on brain outcomes, or more often, tumor
outcomes). We propose that not only are these conduits acting
as passive sinks, but that the bulk fluid flow that moves along
white matter tracts and within ventricles are active conduits

for bulk movement of drug. Not only are these more obvious
locations privy to this type of flow, but also the perineuronal
or perivascular or glymphatic pathways as well. These more
microscopic bulk flows offer pathways of fluid movement that
can just as easily transport drug away from the tumor and
quickly out of the brain. Increases in IF flow may be a good
thing in this regard as keeping therapies within the interstitial
spaces of the brain where they move more slowly through
the complex extracellular space may offer opportunities to
access more invasive cells or exert effects longer. Regardless,
coupling and appreciating that there are multiple flows occurring
along multiple length scales within the tissue is integral to
success of a therapy that aims to alter flow. In our imaging
studies, we found that though IF flow velocities were fairly
consistent between animals, the intratumoral heterogeneity was
high, especially in terms of direction of flow (63). Perhaps
imaging flow within tissues may offer insight into CED
based therapy distribution and outcomes that are not clearly
apparent by simply observing the anatomy of tumor and
surrounding brain.

These inherent flow pathways within the brain and natural
or abnormal flows that develop due to a tumor are important
when determining the appropriate design elements that are
implemented. For instance, the design of catheters could
account for these flow pathways by understanding the natural
forces that they may be feeling beyond flow and could
be designed to take advantage (coupled with placement) of
inherent flows to minimize issues with backflow. Drug design
and development could also take advantage of IF flow by
carefully sizing particles based on the known properties of
the tissue and the effect of the specific rate of IF flow
within those tissues. Use of in vitro models of IFF in the
brain (127) coupled with potential CED-based therapies could
offer insight before implementation in the brain. Further, a
major advance would be to continue to develop imaging
modalities that can yield the parameters needed to best model
fluid flow and drug distribution within individual tumors,
allowing the complex computational models to better predict
therapeutic delivery.

An appreciation of IF flow is also important due to its
biological impact. As we mentioned, it has been shown that
only a 10-fold increase in interstitial flow compared to normal
physiological flow can trigger glioma cell invasion in vitro and
in vivo. This response is troubling in the context of CED as the
introduction of higher flowsmay lead tomore invasion, or trigger
specific invasion in already invaded tumor cells. The impact of
magnitude is not yet known as IFF responses have only been
studied as an on-off mechanism. A strong understanding of how
tumor cells respond to heightened flows over a range is important
to an understanding of the implications of CED and perhaps
implementation of therapies (such as CXCR4 inhibitors or CD44
inhibitors) that can attenuate these responses. Additionally, the
effect on surrounding tissues is totally unstudied, but important
for a strong comprehension of how drugs may be interacting
within the extracellular spaces both with other cells and with
the matrix. These changes could limit drug distribution through
cellular uptake and matrix binding.
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In theory, CED should be a very effective treatment, if not
curative. It removes many of the mysteries facing systemic
delivery: known drug concentration in the tumor, defined
delivery profiles, increased distribution to access invasive cells,
and in situ and personalized treatment of patient tumors.
However, in clinical trials—there has been no statistically
significant difference between CED and the standard treatment
modalities. This is perplexing, and we propose that there
is still something we are not accounting for. Though IFF
is likely not the complete picture, a better knowledge and
appreciation for the inherent flows within these tissues seems

one logical step to better understanding outcomes of a
flow-based therapy.
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