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Transcriptional intermediary factor 1 γ (TIF1γ), also known as TRIM33, RFG7, PTC7,

or Ectodermin, is an E3 ubiquitin-ligase family member with a ring-box-coiled-coil

region. It can regulate TGF-β/Smad signaling in two different ways in different cellular

contexts. On one hand, TIF1γ can monoubiquitinate Smad4 to inhibit the formation of

Smad2/3/4 nuclear complexes. On the other hand, TIF1γ can function as a cofactor

of phosphorylated (p)-Smad2/3, competing with Smad4 to inhibit the formation of the

Smad2/3/4 complex. In addition, TIF1γ has been reported to play a role in transcription

elongation, cellular differentiation, embryonic development, and mitosis. As transforming

growth factor-β (TGF-β) superfamily signaling plays an important role in the occurrence

and development of cancer, and TIF1γ was reported to be involved in the regulation of

TGF-β superfamily signaling, studies on TIF1γ during the last decade have focused on

its role in the development of cancer. However, TIF1γ can function either as a tumor

suppressor or promoter in different cellular contexts, yet there are few reviews focusing

on the roles of TIF1γ in cancer. Hence, in this paper we systematically review and discuss

the roles of TIF1γ in cancer. Firstly, we review the biological features, the regulatory

mechanisms and the related signaling pathways of TIF1γ. Next, we illustrate the roles

of TIF1γ in different tumors. We then provide a tentative hypothesis that explains the

dual roles of TIF1 γ in cancer. Finally, we provide our viewpoint regarding the future

developments of cancer research focusing on TIF1γ, especially in relation to the effects

of TIF1γ on tumoral immunity.
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INTRODUCTION

Transcriptional intermediary factor 1 γ (TIF1γ), synonymous with TRIM33, RFG7, PTC7, or
Ectodermin, is an E3 ubiquitin-ligase family member with a ring-box-coiled-coil region (1). It
has been reported to play a role in transcription elongation (2, 3), DNA repair (4), differentiation
of cells (2, 5, 6), embryonic development (6–9), mitosis (10), and dermatomyositis (11–13).
As transforming growth factor-β (TGF-β) superfamily signaling plays an important role in the
occurrence and development of cancer (14–16), and TIF1γ was reported to be involved in the
regulation of TGF-β superfamily signaling (17, 18), recent studies on TIF1γ have focused on its
role in tumorigenesis (10, 19–24).

Perplexingly, TIF1γ can function either as a tumor suppressor or promoter in different cells. In
many different tumors, such as non-small-cell lung cancer, breast cancer, glioma, and clear cell renal
cell carcinoma (21, 23, 25, 26), TIF1γ acts as a tumor suppressor and its expression is decreased.
However, in B lymphoblastic leukemia, pancreatic cancer, and cervical carcinoma (10, 27, 28),
TIF1γ functions as a tumor promoter and prevents the apoptosis of tumor cells. However, there
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are few reviews focusing on the dual and contradictory roles
of TIF1γ in cancer. We therefore systematically review and
discuss the roles of TIF1γ in cancer in this paper. Firstly, we
review the biological features, the regulatory mechanisms and
the related signaling pathways of TIF1γ. Next, we illustrate
the roles of TIF1γ in different tumors. We then provide a
tentative hypothesis that explains the dual roles of TIF1 γ in
cancer. Finally, we provide our viewpoint regarding the future
developments of cancer research focusing on TIF1γ, especially in
relation to the effects of TIF1γ on tumor immunity.

THE BIOLOGICAL FUNCTIONS OF TIF1γ

TIF1γ is a 123 kDa protein consisting of 1120 amino acids
encoded by the trim33 gene, which is 118,415 bps in length and
contains 21 exons and 20 introns, encoded on chromosome 1
in humans (29). The TIF1γ protein consist of several different
domains. At the N terminus, there is a ring-box-coiled-coil
(RBCC) unit, containing a RING domain, B boxes, and a coiled-
coil domain, which is involved in the ubiquitination of Smad4
(30), TGF-beta1 receptor (TβRI) (31), and β-catenin (23), as
well as the sumoylation of SnoN1 (32). A PHD domain and
a bromodomain at the C terminus can interact with histones
3 and 4 (33, 34). Between these regions, there is a middle
linker which can interact with activated Smad2 and Smad3. The
middle linker is less well-conserved, which explains why the other
members of the TIF1γ family cannot interact with Smad proteins
[Figure 1; (33)].

THE REGULATORY MECHANISMS OF
TIF1γ

SRY-related HMG-box2 (SOX2) was reported to be involved
in the transcriptional regulation of TIF1γ and can bind to
the putative SRY-binding sites of the TIF1γ promoter, which
represses the expression of TIF1γ at the mRNA and thus
protein level (21). Furthermore, Jingushi et al. reported that
miR-629 is involved in the post-transcriptional regulation of
TIF1γ and can bind to a specific sequence in the 3′-UTR of
TIF1γ mRNA and promote the degradation of TIF1γ mRNA
(25). At the same time, miR-429/miR-200b-3p was also reported
to be involved in the post-transcriptional regulation of TIF1γ
and to be able to bind to a specific sequence in the 3′-UTR
of TIF1γ mRNA, which promotes its degradation. Additionally,
the circular RNA PTK2 can bind directly to miR-429/miR-
200b-3p to protect TIF1γ mRNA from targeting by miR-
429/miR-200b-3p (35). Moreover, Yuki et al. reported that v-
abl Abelson murine leukemia viral oncogene homolog 1(c-Abl)
tyrosine kinase takes part in the post-translational regulation
of TIF1γ and can regulate its phosphorylation at tyrosines
524, 610, and 1,048, which inhibits the interaction of TIF1γ
with Smad2/3 (36). At the same time, the Ad5 E4-ORF3
protein can promote the initial conjugation of SUMO3 to
TIF1γ, inducing its sumoylation and proteasomal degradation
[Figure 2; (37, 38)].

THE PHYSIOLOGICAL ROLES OF TIF1γ

As a transcriptional intermediary factor, TIF1γ takes part
in the transcriptional regulation of a number of genes by
interacting with other transcriptional factors. For example, TIF1γ
can promote the transcription elongation of hematopoietic
genes by interacting with FACT, p-TEFb, and the SCL
complex, and TIF1γ deficiency reduced the full-length transcript
level of these genes (2). At the same time, TIF1γ controls
hematopoiesis and the specification of the germ layer and
regulates cell growth by antagonizing TGFβ signaling (2,
7). Furthermore, TIF1γ can promote the repair of DNA
damage by interacting with Amplified in Liver Cancer 1
(ALC1) in a poly(ADP-ribose) polymerase (PARP)-dependent
manner (4).

SIGNALINGS PATHWAYS RELATED TO
TIF1γ IN CANCER

The Inhibitory Effect of TIF1γ on
TGF-β/Smad Signaling
TGF-β plays a vital role in the regulation of cellular proliferation,
differentiation, apoptosis, motility, invasion, and immune
responses (18, 39–41). Smad proteins can be phosphorylated
by TGF-β and translocate to the nucleus, which results in
the transcriptional activation of downstream target genes (32,
42, 43). Increasing numbers of studies show that TGF-β/Smad
signaling is involved in tumor growth, metastasis and the
epithelial–mesenchymal transition (EMT) (44–47). Specifically,
TGFβ/Smad signaling can function as a tumor suppressor
to inhibit tumor growth and metastasis by regulating the
downstream genes, such as p21, p53, c-myc, and snail (48, 49).
Deletions or mutations of TGFβ/Smad signaling were detected
in many cancers (48). For example, mutations of Smad2 were
found in cervical cancer, colorectal cancer and hepatocellular
carcinoma (50–52). At the same time, mutations of Smad4 are
more frequent in some cancers, such as colon cancer, gastric
cancer, and pancreatic tumors (53–55). TIF1γ can regulate TGF-
β/Smad signaling in two different ways in different cellular
contexts. On the one hand, it can monoubiquitinate Smad4
and inhibit the formation of Smad nuclear complexes (7, 30).
On the other hand, TIF1γ can function as a cofactor of
phosphorylated (p)-Smad2/3, competing with Smad4 to inhibit
the formation of the Smad2/3/4 complex (17). Additionally,
TIF1γ requires sumoylation mediated by ubiquitin carrier 9
to exert its inhibitory effect on TGFβ/Smad4 signaling (24,
37). Numerous studies have demonstrated that TIF1γ can
inhibit tumor growth, TGF-β-induced epithelial mesenchymal
transition and metastasis, and that its expression is reduced in
non-small-cell lung cancer and breast cancer [Figure 3; (21, 22,
35)]. However, FAM/USP9x can reverse the ubiquitination of
Smad4 and counteract the activity of TIF1γ in TGF-β/Smad
signaling (30). Moreover, forkhead box M1 (FOXM1) can also
counteract the activity of TIF1γ in TGF-β/Smad signaling by
interfering with the interaction between TIF1γ and Smad4 (26).
In addition, αB-crystallin can interact with TIF1γ and disrupt the
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FIGURE 1 | The structure of TIF1γ: The RBCC unit at the N terminus is involved in ubiquitination, A PHD domain and a bromodomain at the C terminus can interact

with histones 3 and 4, and the middle linker can interact with activated Smad2 and Smad3.

monoubiquitination of Smad4, which favors the formation of the
Smad2/3/4 complex and enhances TGF-β/Smad signaling (56).

The Inhibitory Effect of TIF1γ on
Wnt/β-Catenin Signaling
TheWnt signaling pathway exerts an important role in regulating
stem cell self-renewal, cell proliferation, differentiation, adhesion,
and migration (57–61). Wnt protein can protect β-catenin from
being phosphorylated by disrupting the “destruction complex” of
β-catenin (62–64), which can enable β-catenin to translocate to
the nucleus and form a complex with TCF/LEF (T-cell specific
transcription factor/lymphoid enhancer-binding factor), which
induces the expression of Wnt-targeted genes (65–67). Wnt/β-
catenin signaling can influence tumor growth and metastasis
by regulating the expression of the downstream genes, such
as c-myc, cyclin D1, and Snail (68). Increasing numbers of
studies report the dysregulation of Wnt/β-catenin signaling in
many human cancers (68). For example, increased expression
of Wnt ligands was detected in colon cancer, breast cancer and
lung cancer (53, 69, 70). Furthermore, mutations of β-catenin
were founded in colon cancer, gastric cancer, and hepatocellular
carcinoma (69, 71, 72). Moreover, TIF1γ was reported to regulate
Wnt/β-catenin signaling by interacting with and ubiquitylating
nuclear β-catenin with the assistance of protein kinase Cδ, which
degrades nuclear β-catenin and inhibits cell proliferation and
tumorigenesis in glioblastoma (23). These studies provide new
insights into the development of human cancers caused by
aberrant activation of β-catenin (Figure 4).

The Positive Effect of TIF1γ on
DHX33-NLRP3 Signaling
Nod-like receptor 3 (NLRP3) is a member of the eponymous
receptor family, which can perceive multiple types of stimulatory
molecules (73–76), such as ATP, crystalline reagents and the
microbial toxin nigericin, and form a macromolecular signaling
complex with its adaptor protein ASC and procaspase-1 to
induce inflammasome assembly (77–80). DHX33, a member of
the DExD/H-box helicase family, is a cytosolic RNA sensor that
can bind to and activate NLRP3 to oligomerize and recruit the
adaptor protein ASC and cause the cleavage of pro-caspase-1 to

the active form of caspase-1 (81, 82). Caspase-1 then transforms
pro-IL-1β and pro-interleukin (IL)-18 into their biologically
active mature secreted forms to induce inflammation (83, 84).
There is increasing evidence that the expression of the NLRP3
inflammasome is dysregulated in many cancers, such as head and
neck squamous cell carcinoma, hepatocellular carcinoma, and
colorectal cancer (71, 85, 86). Furthermore, the overactivation of

NLRP3 was related to poor survival and tumor invasiveness in
head and neck squamous cell carcinoma and breast cancer (85,
87). At the same time, NLRP3 inflammasome takes part in the
resistance to radiotherapy and chemotherapy in oral squamous
cell carcinoma and glioblastoma (88, 89). While the activation
of the NLRP3 inflammasome complex needs the assistance of
TIF1γ, TIF1γ can bind to and ubiquitinate DHX33 at lysine 218,
which helps DHX33 activate NLRP3 under dsRNA stimulation
(90). Accordingly, a knockdown of TIF1γ disrupted the dsRNA-
induced NLRP3 inflammasome activation in macrophages (90).
Furthermore, increasing numbers of studies demonstrate that
the NLRP3 inflammasome plays a vital role in the metastasis of
tumors (89, 91, 92). Taken together, these results imply that TIF1γ
might influence the metastasis of tumors via DHX33-NLRP3
signaling (Figure 5).

THE ROLES OF TIF1γ IN DIFFERENT
TYPES OF TUMORS (TABLE 1)

The Expression of TIF1γ in Tumors
The expression of TIF1γ varies in different tumors. The
expression of TIF1γ is low in most tumors, such as liver cancer,
pancreatic cancer, lung cancer, renal carcinoma, and glioblastoma
(20, 21, 23, 25, 27). However, its expression is increased in some
tumors, such as colorectal cancer and breast cancer (Table 1). At
the same time, the roles of TIF1γ also vary in different tumors. In
some tumors, TIF1γ functions as a tumor promoter and prevents
the apoptosis of tumor cells, but it also acts as a tumor suppressor
in other tumors and inhibits the growth of tumor cells.

TIF1γ in Liver Cancer
In one of our own earlier studies (20), we found that the CpG
islands in the TIF1γ promoter were hypermethylated and the
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FIGURE 2 | The regulatory mechanisms of TIF1γ: SOX2 can bind to the putative SRY-binding sites of the TIF1γ promoter and repress its expression. MiR-200c and

miR-629 can bind to specific sequences in the 3′-UTR of TIF1γ mRNA and promote its degradation. The c-Abl tyrosine kinase can regulate the tyrosine

phosphorylation of TIF1γ. In addition, the Ad5 E4-ORF3 protein can promote the initial SUMO3 conjugation to TIF1γ and induce its sumoylation.

expression of TIF1γ was reduced in hepatocellular carcinoma
(HCC), especially in samples from advanced HCC. At the same
time, the decreased expression of TIF1γ was an independent and
significant risk factor for recurrence and survival after curative
resection (20). Furthermore, the combined measurement of
TIF1γ and p-Smad2 was found to be a more powerful predictor
of poor prognosis in HCC patients. Interestingly, TIF1γ plays
a double role in HCC cells. It favors tumor growth in early-,

but not in advanced-stage HCC. However, TIF1γ inhibits the
invasion and metastasis of both early- and advanced-stage HCC.
Mechanistically, TIF1γ can suppress TGF-β/Smad signaling by
monoubiquitinating Smad4 and inhibiting the formation of the
Smad2/3/4 complex to regulate tumor growth and metastasis.
Specifically, TIF1γ can relieve TGFβ-induced growth inhibition
and favor tumor growth in early-stage HCC. In advanced-stage
HCC, TIF1γ in turn inhibits TGF-β-induced tumor invasion
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FIGURE 3 | The inhibitory effect of TIF1γ on TGF-β/Smad signaling: TIF1γ can regulate TGF-β/Smad signaling in two different ways. On the one hand, it can

monoubiquitinate Smad4 and inhibit the formation of Smad nuclear complexes. On the other hand, TIF1γ can function as a cofactor of phosphorylated (p)-Smad2/3,

competing with Smad4 to inhibit the formation of the Smad2/3/4 complex.

and metastasis. Furthermore, we confirmed that the downstream
cascades of TGF-β/Smad signaling, such as c-myc, p21/cip1,
p15/ink4b, and protein kinase B–signaling transactivation, are
also downregulated by TIF1γ (20). At the same time, another
study reported that TIF1γ can interact with TIF1α and TIF1β to
form a regulatory complex that suppresses murine hepatocellular
carcinoma (94). Furthermore, TIF1γ can also interact with
TIF1α to inhibit VL30 retrotransposons, and thus plays an
important role in retroviral restriction and antiviral defense,

which broadens what is known about the roles of the TRIM
family of proteins in the endogenous retrovirus (ERV)-derived
oncogenic regulatory network (95).

TIF1γ in Pancreatic Cancer
TIF1γ expression was reported to be decreased in pancreatic
cancer tissues (19, 27, 96). At the same time, the expression
of TIF1γ was inversely correlated with Smad 4 expression in
pancreatic cancer cell lines and the overexpression of TIF1γ
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FIGURE 4 | The inhibitory effect of TIF1γ on Wnt/β-catenin signaling: Wnt protein can protected β-catenin from being phosphorylated by disrupting the “destruction

complex,” and TIF1γ can ubiquitylate nuclear β-catenin with the assistance of protein kinase Cδ (PKC) to inhibit Wnt/β-catenin signaling.

suppressed TGFβ signaling to inhibit the growth and invasion
of pancreatic cancer cells (27). Furthermore, TIF1γ inactivation
was found to cooperate with KrasG12D activation to induce cystic
pancreatic tumors that resemble human intraductal papillary
mucinous neoplasms (19).

TIF1γ in Colorectal Cancer
TIF1γ was found to be overexpressed in colorectal cancer and
its expression levels were found to be associated with advanced
tumor stage (7, 79). Furthermore, the expression of TIF1γ
attenuated TGF-β-induced growth inhibition (7). At the same
time, increased TIF1γ expression was correlated with a loss of

Smad4 in colorectal cancer and predicted a poor prognosis for
colorectal cancer patients (79). However, another study reported
that the knockdown of TIF1γ resulted in genomic instability
and cancer progression in colorectal cancer by regulating mitotic
checkpoints (28). At the same time, TIF1γ was reported to
interact with ALC1 (Amplified in Liver Cancer 1) and is involved
in DNA repair in a Poly (ADP-ribose) polymerase 1 (PARP1)-
dependent manner (4). Furthermore, Shi et al. reported that the
loss of TIF1γ in colorectal cancer cell lines can cause resistance
to the bromodomain and extraterminal domain (BET) protein
inhibitors via MYC and TGF-β-dependent mechanisms (97).
This further implies that TIF1γ also acts as a tumor suppressor
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FIGURE 5 | Multiple types of stimulatory signals can activate NLRP3 to form a macromolecular signaling complex with its adaptor protein ASC, which causes the

cleavage of pro-caspase-1 to the active form of caspase-1, which in turn transforms pro-IL-1β and pro-interleukin (IL)-18 into their biologically active, mature secreted

forms. Furthermore, TIF1γ can ubiquitinate and assist DHX33 to interact with, and activate NLRP3 to form a macromolecular signaling complex to produce mature

IL-1β and IL-18.

in colorectal cancer. However, the underlying mechanisms that
can explain the contradictory results require further research.

TIF1γ in Breast Cancer
TIF1γ expression was reported to be slightly reduced in
human breast cancer tissues, compared to normal breast tissues.
Moreover, the overexpression of FOXM1 in breast cancer can
interact with Smad3/Smad4 and inhibit the binding of TIF1γ
to Smad4 to prevent its ubiquitination, which can attenuate

the inhibitory effects of TIF1γ on TGF-β signaling to promote
the metastasis of breast cancer (26). However, another study
reported that TIF1γ expression was increased in 35.9 % of
breast cancer patients and its expression was related to younger
age, estrogen receptor (ER) negativity, and tumors larger than
2 cm. Additionally, TIF1γ overexpression was related to poor
prognosis in breast cancer patients (22), but the contradictory

results require more thorough investigation. Furthermore, the
deletion of TIF1γ was found to enhance TGFβ-induced growth
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TABLE 1 | The dysregulated expression and target genes of TIF1γ in cancer.

Type of cancer Subtype of cancer TIF1γ expression Reasons for

dysregulation in cancer

Involved signaling

pathways

References

Liver cancer Hepatocellular carcinoma Down Hypermethylation TGF-β signaling (20)

Pancreatic cancer Pancreatic ductal

adenocarcinoma

Down – TGF-β signaling (19)

Lung cancer Non-small cell lung cancer Down SOX2

miR-429/miR-200b-3p

TGF-β signaling (21, 35)

Leukemia Chronic myelomonocytic

leukemia

Down Hypermethylation TGF-β signaling (93)

Renal

carcinoma

Renal cell carcinoma Down miR-629 TGF-β signaling (25)

Glioblastoma Glioblastoma multiforme Down – Wnt-β-catenin (23)

Colorectal cancer – Up – TGFβ/Smad4 (79)

Breast cancer – Up

Down

– TGF-β signaling (26)

(22)

Cervical carcinoma – – c-Abl TGF-β

signaling APC/C

(10, 36)

TGF-β, transforming growth factor-β; SOX2, SRY-related HMG-box2; c-Abl, v-abl Abelsonmurine leukemia viral oncogene homolog 1; APC/C, anaphase-promoting complex/cyclosome.

inhibition in breast cell lines via Smad4 inMDA-MB468 signaling
(7). In addition, TIF1γ can inhibit the EMT of mammary
epithelial cells and terminal differentiation of mammary alveolar
epithelial cells by antagonizing Smad4 (9, 47).

TIF1γ in Lung Cancer
TIF1γ was reported to be decreased in non-small cell lung cancer
(NSCLC), but the CpG islands in the TIF1γ promoter were not
found to be hypermethylated (98). Furthermore, Wang et al.
reported that the expression of TIF1γ was downregulated by the
overexpression of SOX2 in NSCLC tissues (21), and the reduced
expression of TIF1γ was associated with poor survival of the
patients (35). Furthermore, knockdown of TIF1γ was found to
promote TGF-β-induced EMT and invasion of NSCLC cells in
vitro and favor their metastasis. Conversely, the knockdown of
SOX2 attenuated TGF-β-induced EMT and invasion of NSCLC
cells. At the same time, expression of the circular RNA PTK2 was
reported to be decreased in metastatic NSCLC tissues compared
to non-metastatic NSCLC tissues, and was found to protect
TIF1γ from miR-429/miR-200b-3p-mediated downregulation
(35). Finally, the overexpression of circPTK2 was found to
promote TIF1γ expression and suppress TGF-β-induced EMT
and NSCLC cell invasion (35).

TIF1γ in Chronic Myelomonocytic
Leukemia
TIF1γ was reported to be downregulated in a subset of
chronic myelomonocytic leukemia (CMLL) patients (93, 99),
and tif1g1/1 mice were confirmed to develop a CMML-
like myeloproliferative disease with monocytic features.
Furthermore, TIF1γ was found to regulate the differentiation
of hematopoietic progenitor populations (17) and promote the
expansion of the granulomonocytic progenitor compartment. At
the same time, the response of hematopoietic cells to TGF-β is
suppressed in tif1γ1/1 mice (93). Finally, the CpG sequences of
TIF1γ were found to be hypermethylated and a demethylating
agent recovered the normal epigenetic status of the TIF1γ

promoter and the expression of TIF1γ in human cells (93),
which implies that TIF1γ is an epigenetically regulated tumor
suppressor gene in hematopoietic cells.

TIF1γ in Other Tumors
TIF1γ expression was found to be decreased and associated
with pathological stages and grades in clear cell renal cell
carcinoma, and the overexpression of TIF1γ inhibited the growth
and invasion of its tumor cells (25). At the same time, TIF1γ
expression was decreased and inversely correlated with the levels
of β-catenin Ser715 phosphorylation in primary glioblastoma
multiforme (GBM) specimens, and the overexpression of TIF1γ
inhibited the growth of GBM cells by destabilizing β-catenin
(23). However, TIF1γ can promote tumor cell survival by being
recruited by PU.1 to bind to two lineage-specific enhancers near
the Bim gene and antagonizing PU.1 function in B lymphoblastic
leukemia (B-ALL) cells (100). At the same time, TIF1γ can also
favor the proliferation of tumor cells by binding to the anaphase-
promoting complex/cyclosome (APC/C) to promote the mitosis
in HeLa cells (10). In addition, the knockdown of TIF1γ can
enhance the TGF-β-induced elongation of HeLa cells (36).

A TENTATIVE HYPOTHESIS THAT
EXPLAINS THE DUAL ROLES OF TIF1γ IN
CANCER

As presented in this review, TIF1γ can function either as
a tumor suppressor or promoter according to the different
cellular contexts. For example, TIF1γ acts as a tumor suppressor
and inhibits the tumor growth of non-small-cell lung cancer
(35). By contrast, TIF1γ act as a tumor promoter in B
lymphoblastic leukemia and can prevent the apoptosis of tumor
cells (100). The potential underlyingmechanism that causes these
contrary results remains a mystery. We hypothesized that the
different functions of TIF1γ might be attributed to inconsistent
experimental results. On the one hand, as an intermediary
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transcriptional factor, TIF1γ can regulate the transcription of
target genes. For example, TIF1γ was found to be recruited by
PU.1 to bind to two lineage-specific enhancers near the Bim
gene to antagonize PU.1 function and promote the survival B-
ALL cells (100, 101). On the other hand, as an E3 ubiquitin-
ligase family member, TIF1γ can monoubiquitinate targeted
proteins leading to their degradation. For example, TIF1γ can
monoubiquitinate Smad4 and suppress TGFβ signaling to inhibit
the growth and invasion of pancreatic cancer cells (27). However,
the mechanisms underlying the dual roles of TIF1γ in other
tumors still require further research.

PROSPECTS AND CONCLUSIONS

As TIF1γ was reported to regulate the fate and differentiation
of hematopoietic cells, increasing studies have reported on
the roles of TIF1γ in immunity (17, 102–104). Ferri et al.
reported that TIF1γ can be recruited by PU.1 to bind to
the Ifnb1 Control Element (ICE) and regulate the chromatin
structure of the interferon-β gene (Ifnb1), which suppresses its
transcription by preventing the recruitment of CBP/p300 in the
late phase of macrophage activation (105). Additionally, TIF1γ
was also reported to regulate the production and activation
of macrophages (106). At the same time, it was also reported
that TIF1γ is involved in and regulates macrophage motility
(107). TIF1γ was also reported to regulate the differentiation of

granulomonopoiesis in mice (108). Furthermore, it was reported
that TIF1γ also controls the lineage expansion of invariant
natural killer T (iNKT) cells (109). In addition, TIF1γ is involved
in the differentiation and development of T helper 17 (Th17)
cells and can decrease the production of IL-10 to regulate the
cells’ proinflammatory function (110), and numerous studies
have demonstrated that Th17 cells, macrophages, and iNKT cells
play important roles in antitumor immunity (111–117). Taken
together, it can be speculated that TIF1γ might be involved in
tumoral immunity and this question certainly merits further
investigation in future studies.

The abnormal expression of TIF1γ has been evidenced
in many kinds of tumors and plays a vital role in cancer
progression and metastasis (19, 21, 25). Furthermore, TIF1γ
might become a potential prognostic marker for cancer patients.
For example, increased TIF1γ expression predicted a poor
prognosis for colorectal cancer patients (20, 79). At the same
time, TIF1γ might become a potential therapeutic target for
cancer treatment. Abundant evidence demonstrates that TIF1γ
is downregulated and plays an important tumor suppressive
role in multiple types of cancer (19, 20, 23). Our team also
showed that lentivirus-mediated TIF1γ overexpression could
inhibit the invasion and metastasis of HCC cells in vivo (20).
However, the exact mechanisms underlying the dual roles of
TIF1γ in cancer are still unclear. Moreover, the functions of
other domains of TIF1γ, such as the B boxes and the coiled
coil domain, also remains unclear. Solving these problems
will help us better understand the conflicting roles of TIF1γ
in cancer.
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