
ORIGINAL RESEARCH
published: 11 October 2019

doi: 10.3389/fonc.2019.01045

Frontiers in Oncology | www.frontiersin.org 1 October 2019 | Volume 9 | Article 1045

Edited by:

Lei Deng,

Jacobi Medical Center, United States

Reviewed by:

Sandra Avila,

Campinas State University, Brazil

Sara Hosseinzadeh Kassani,

University of Saskatchewan, Canada

*Correspondence:

Yinyin Yuan

yinyin.yuan@icr.ac.uk

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Imaging and Image-directed

Interventions,

a section of the journal

Frontiers in Oncology

Received: 11 June 2019

Accepted: 25 September 2019

Published: 11 October 2019

Citation:

Zormpas-Petridis K, Failmezger H,

Raza SEA, Roxanis I, Jamin Y and

Yuan Y (2019) Superpixel-Based

Conditional Random Fields

(SuperCRF): Incorporating Global and

Local Context for Enhanced Deep

Learning in Melanoma Histopathology.

Front. Oncol. 9:1045.

doi: 10.3389/fonc.2019.01045

Superpixel-Based Conditional
Random Fields (SuperCRF):
Incorporating Global and Local
Context for Enhanced Deep Learning
in Melanoma Histopathology

Konstantinos Zormpas-Petridis 1,2†, Henrik Failmezger 3†, Shan E Ahmed Raza 3,

Ioannis Roxanis 3,4, Yann Jamin 1,2 and Yinyin Yuan 3*

1Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, 2 The Royal Marsden

NHS Trust, Surrey, United Kingdom, 3Division of Molecular Pathology, The Institute of Cancer Research, London,

United Kingdom, 4 Royal Free London NHS Foundation Trust, London, United Kingdom

Computational pathology-based cell classification algorithms are revolutionizing the

study of the tumor microenvironment and can provide novel predictive/prognosis

biomarkers crucial for the delivery of precision oncology. Current algorithms used on

hematoxylin and eosin slides are based on individual cell nuclei morphology with limited

local context features. Here, we propose a novel multi-resolution hierarchical framework

(SuperCRF) inspired by the way pathologists perceive regional tissue architecture

to improve cell classification and demonstrate its clinical applications. We develop

SuperCRF by training a state-of-art deep learning spatially constrained- convolution

neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×)

H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently,

a conditional random field (CRF) by combining cellular neighborhood with tumor regional

classification from lower resolution images (5, 1.25×) given by a superpixel-based

machine learning framework. SuperCRF led to an 11.85% overall improvement in the

accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a

stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that

(i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment

(p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to

p= 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma.

SuperCRF improves cell classification by introducing global and local context-based

information and can be implemented in combination with any single-cell classifier.

SuperCRF provides valuable tools to study the tumor microenvironment and identify

predictors of survival and response to therapy.

Keywords: deep learning, machine learning, conditional random fields, digital pathology, cell classification,

melanoma, tumor microenvironment
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INTRODUCTION

Cancer is a highly complex, non-autonomous disease. The
interactions between microenvironmental selective pressures
and cancer cells dictate how cancer progresses and evolves.
Accurate and spatially explicit characterization of the tumor
microenvironmental landscape including how cancer cells
interact with the extra-cellular matrix and other cellular players
such as stromal cells and immune cells within the tumoral niche,
is needed to understand the context in which cancer evolves, and
may also provide robust predictor of cancer behavior for risk-
stratification (1). More specifically the recent success of cancer
immunotherapy including the spectacular response observed in
patients with previously incurable melanoma, a highly aggressive
form of skin cancer, calls for a better understanding of the
cancer-immune interface.

In the new era of digital pathology, advanced image analysis
can objectively, consistently, and quantitatively characterize the
different components of the tumor and how they spatially
interact, and as a result assist pathologists in tasks such as tumor
grading (2). Algorithms for cell detection and classification
are key components of this process. Machine learning, and
more recently deep learning algorithms, both exploiting the
phenotypic differences in nuclear morphology between each cell
type, revolutionized the field yielding significantly better cell
detection, segmentation, and classification results (3–9).

However, even state-of-the-art deep learning algorithms can
underperform especially in cases where different cell types appear
morphologically similar. Current computed pathology tools
focus on individual cell nuclei morphology with limited abstract
local context features, whereas pathologists incorporate regional
tissue architecture (in practice, by zooming in/out), together with
cell morphological features to accurately classify cells.

Here, we hypothesize that robust tumor regional classification
from lower resolution images can provide the contextual
information that is key to further improve single cell classification
algorithms. Our aim is to introduce dependencies on global tissue
context and cell neighborhood and enhance learning results
for cell classification from deep convolution neural networks
(CNNs). Probabilistic graphical models have successfully been
applied to improve cell classification in time-lapse imaging by
taking into account the temporal context of a cell (10–15).
Probabilistic graphical models have also been used successfully in
histopathology images for pathology detection and segmentation
(16–19), disease and tissue staging (20, 21), and nuclei
segmentation (22). In our study, instead of time dependency, we
apply graphical models to introduce the spatial context of a cell
as additional information to improve single-cell classification.
A multi-resolution hierarchical framework was proposed to
mirror the way pathologists perceive tumor architecture, and
applied to whole-slide images (WSI) hematoxylin and eosin
(H&E)-stained slides of melanoma skin cancer (Figure 1A). We
demonstrated that our new system is computationally efficient
and significantly improves single cell classification. The increased
accuracy in cell classification further enabled us to shed new
light on the understanding of cancer-immune-stroma interface
of melanoma.

MATERIALS AND METHODS

Datasets
In total, 105 full-face, H&E stained section images from formalin-
fixed, paraffin-embedded (FFPE) diagnostic blocks of melanoma
skin cancer from The Cancer Genome Atlas (TCGA) were
used. We scaled all digitized (Aperio ImageScope) histology
images to 20, 5, and 1.25× magnification with pixel resolution
0.504, 2.016, and 8.064µm, respectively, using Bio-Formats
(https://www.openmicroscopy.org/bio-formats/). WSIs at 20×
magnification (representative size: 30,000 × 30,000 pixels), were
split into sub-images (tiles) of 2,000 × 2,000 pixels each, for
computational efficiency.

For the purpose of training and testing the different
parts of our system we divided the dataset into sub-
datasets, namely single-cell classification dataset, 5× sub-dataset,
1.25× sub-dataset and discovery sub-dataset (Table 1, also see
Supplementary Tables 1–4).

Single-Cell Classification Using a Spatially
Constrained Convolutional Neural Network
We used a Spatially Constrained Convolutional Neural Network
(SC-CNN) (6) for single cell classification (Figure 1E). SC-CNN
uses spatial regression in order to predict the probability of a
pixel being the center of the nucleus. The nucleus is classified
by a neighboring ensemble predictor (NEP) in conjunction
with a standard softmax CNN. We randomly initialized the
network’s layers as we have found that to perform better than
transfer learning from real-world datasets in our experiments
with pathological samples.

Superpixel-Based Tumor Region
Classification
A machine learning superpixel-based framework was
implemented in Matlab (23) to classify tumor tissue regions
and was subsequently applied to low resolution (5 and 1.25×)
images. Reinhard stain normalization (24) was applied separately
on each of the 5 and 1.25× sub-datasets to account for stain
variabilities that could affect the classification (25).

Downscaled images were segmented using the simple linear
iterative clustering (SLIC) superpixels algorithm (26), which is
designed to provide roughly uniform superpixels. Choosing the
optimal number of superpixels is important to ensure that the
superpixels capture homogeneous areas and adhere to image
boundaries. With our pathologist’s input, we visually identified a
size of superpixels that met these criteria and chose the number of
superpixels automatically based on each image’s size (Equation 1).

Ni = ceiling

(

Si

U

)

(1)

where Ni is the number of superpixels in the ith image, Si is
the size of image i in pixels, and U (here U = 1,250) is a
constant held across all images that defined a desired size of the
superpixels. This means, on average, a superpixel occupies an
area of approximately 35 × 35 pixels, equivalent to 280 × 280
mm2. We identified the superpixels belonging to each area by
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FIGURE 1 | Overview of the SuperCRF framework for analyzing H&E-stained pathological images of melanoma. (A) Major histological features of melanoma

architecture. (B) Projection of regional classification results using superpixels from various scales to the 20× magnification for the improvement of single-cell

classification. (C) Graphical representation of node dependencies (cells and superpixels) across different scales. (D) Region classification scheme using a superpixel

based machine-learning method in whole-slide images (5× and 1.25× magnification) (E) Single-cell classification using a state-of-the-art spatially

constrained-convolution neural network (SC-CNN) classifier (F) representative results of the SC-CNN cell classifier alone and combined with our SuperCRF system.

Note the misclassification of various stromal cells by the SC-CNN, which are corrected by our model.

determining whether their central points fell within the regions
annotated by the pathologist.

Overall, for the 1.25× training sub-dataset, we found 15,477
superpixels belonging in tumor areas, 6,989 in stroma areas,
141 in epidermis and 691 in lumen/white space, while for the
5× training sub-dataset we found 1,193 superpixels belonging
in tumor areas, 1,324 in stroma areas, 360 in epidermis, 506 in
lymphocyte clusters and 830 in lumen/white space.

Next, we extracted four types of features, 85 in total,
from each superpixel, including seven histogram features

(mean values of hue, saturation, and brightness, sum of
intensities, contrast, standard deviation, and entropy),
and well-established texture features [12 Haralick features
(27), 59 rotation-invariant local binary patterns (RILBP), 7
segmentation-based fractal texture analysis (SFTA) features
(28)]. Features were standardized into z-scores. The mean
values and standard deviation of the features from the
training set were used for the normalization of the test set.
A support vector machine (SVM) with a radial basis function
(RBF, γ = 1/number_of_features) was trained with these
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TABLE 1 | Summary of the data used to train and test the different parts of the SuperCRF system, as well as study the cancer-immune-stroma interface (also, see

Supplementary Tables 1–4).

Name Number of WSIs Purpose

Single-cell classification

sub-dataset

8

Training SC-CNN: 3 (348 tiles)

Training SuperCRF: 2 (84 tiles)

Testing: 3 (290 tiles)

Single-cell classification into four categories: cancer cells, lymphocytes, stromal cells,

epidermal cells

5x sub-dataset 16

Training: 10

Testing: 6

Region classification into five categories: tumor, normal stroma, lymphocyte cluster, normal

epidermis, lumen/white space

1.25x sub-dataset 58

Training: 21

Testing: 37

Region classification into four categories: tumor, normal stroma, normal epidermis, lumen/white

space

Discovery dataset 97 Study of the tumor-stroma interface. To accelerate the analysis, 50 tiles (2,000 × 2,000 pixels)

containing tumors were randomly sampled from every whole-slide image (WSI)

The values are bold for visual (illustration) purposes.

features to classify superpixels into different biologically
meaningful categories.

For the 5× sub-dataset, superpixels were classified into
five categories: tumor area, normal stroma, normal epidermis,
lymphocytes cluster, and lumen/white space. We increased the
penalty in the cost function for the epidermis and lumen/white
space classes by a factor of 10 when training the SVM, to account
for class imbalance. For the 1.25× sub-dataset superpixels
classification consisted of four categories: tumor area, normal
stroma, normal epidermis, and lumen/white space.We randomly
selected a subset of 5,000 cancer and stroma superpixels and
increased the penalty in the cost function for the epidermis and
lumen/white space classes by a factor of 10, again to account for
class imbalance (Figure 1D).

SuperCRF
Single-cell based classification approaches often assign a
class label based on the morphology of -individual cells,
regardless of their neighboring cells. However, these spatial
relationships provide important information that is used by
pathologists. Conditional random fields (CRF) are undirected
graphical models that represent efficient ways to model
dependences, by factorizing the probability density into a
specific set of conditional dependence (29). Therefore, the tumor
microenvironment can be modeled by a CRF by introducing
nodes for cells and superpixels, as well as edges whenever there
is a spatial relationship between nodes.

We excluded lymphocytes from the CRF assumption that
neighboring cells have a higher probability to share the same
class labels, since they infiltrate, in an inconsistent manner
ranging from sparse to highly dense, in tumor as well as stromal
tissue. Therefore, lymphocytes kept their label as assigned by
the SC-CNN.

Let n be the total number of cells (besides lymphocytes) in
the image and ci ∈

{

stromal, cancer, epidermis
}

, i = 1, 2, . . . , n
the input labels of the cells as assigned by the SC-CNN. Let
si, be the corresponding superpixel for a cell ci with si ∈
{

stromal, cancer, epidermis,white space
}

for 1.25× superpixels
and si ∈

{

stromal, cancer, epidermis, lymphocyte,whitespace
}

for 5× superpixels. x ∈ {c, s} comprises the nodes
of the CRF. The CRF assigns output labels yi ∈
{

stromal, cancer, epidermis, lymphocyte, white space
}

based
on the input data. The joint probability distribution over input
data and output labels, p(y1, y2, . . . , yn ⌊x1 , x2, . . . , xn) can be
modeled by factorizing the probability density into a specific set
of conditional dependence relationships (Figure 1C).

p
(

y| x
)

=

i=1
∏

n

p
(

yi |xi
)

=
1

Z
exp(

∑

E
(

xi, yi, xNi, yNi

)

) (2)

where Z is a normalizing constant, w is a weight vector and

E
(

xi, yi, xNi, yNi,
)

=
∑

8
(

xi, yi
)

+
∑

ψc

(

xNi, yNi

)

(3)

defines the energy function of the CRF.
The node potentials8

(

xi, yi
)

represent the evidence that a cell
i,with the input label xi takes the class label yi. The node potential
can be defined as 8

(

xi, yi
)

= f (xi, yi)+b, with f
(

xi, yi
)

=
{

1
0

if yi = xi
else

and b representing the bias.

The edge potentials ψc

(

xNi, yNi
)

model the probability that
neighboring cells take a similar cell label. Ni is the neighborhood
of cell i, defined as all the cells that can be found in a defined
distance. The edge potentials are defined as: ψc

(

xi, yi, xNi, yNi

)

= f
(

xi, yi
)

∗f
(

xNi, yNi

)

+ b.
The CRF was trained with stochastic gradient descent and the

decoding was applied using loopy belief propagation. The toolbox
of M. Schmidt was used to train and decode the CRF (30).

The source code for the study is available at Github (https://
github.com/Henrik86/SuperCRF).

Survival Analysis
We evaluated the prognosis value of the abundance of stromal
cells and location of lymphocytes in our discovery sub-dataset.
The ratio of stromal cells to all cells, the ratio of lymphocytes in
cancer areas to all lymphocytes, and the ratio of lymphocytes in
stroma areas to all lymphocytes were calculated for each patient.
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Patients were divided into high and low ratio groups, split at the
median value of all scores. Patients with a ratio of lymphocytes
being high inside the tumor area and low in the stroma were
categorized as the “immune infiltration” group whereas patients
with a ratio of lymphocytes being low in the tumor area and
high in the stroma were categorized as “immune excluded,” based
on the recent classification of the main immune phenotypes of

anticancer immunity that predict response to immunotherapy
(31). The number of patients belonging to neither of these two
groups (high/high n = 6 and low/low n = 5) was too small
to perform the survival analysis. Non-parametric Kaplan-Meier
estimation was used to analyze overall survival in 94 patients.
Differences between survival estimates were assessed with the
log-rank test. Finally, Cox regression models were adjusted,

FIGURE 2 | Representative examples of both superpixel and single-cell classification with or without SuperCRF. (A) Superpixels-based regional classification on

representative whole slide images (5× magnification) of melanoma. Green: tumor area, Red: stroma area, Blue: normal epidermis, Yellow: lymphocyte cluster.

(B) Representative images showing cell classification using a state-of-the-art spatially constrained-convolution neural network (SC-CNN) and four conditional random

fields (CRF) models. Note the mislabeling of many cancer and stromal cells as epidermis cells when using the SC-CNN and the gradual increase in classification

accuracy with the best accuracy achieved with the SuperCRF. Green, cancer cells; Red, stromal cells; Blue, lymphocytes; Yellow, epidermis cells.
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testing for the independent prognostic relevance of our risk
scores. To test if Breslow-thickness (the distance between the
upper layer of the epidermis and the deepest point of tumor
penetration) was contributing to a high ratio of stromal cells,
we created a multivariate model containing both stromal cells
ratio and Breslow-thickness, as well as two univariate models
containing the covariates separately. Pearson’s correlation was
used to test for linear relation between the two variables.

RESULTS

SuperCRF Improves Accuracy of Cell
Classification
First, we trained the state-of-the-art deep learning method,
spatially-constrained CNN (SC-CNN) algorithm, to detect and
classify cells in high resolution (20×) WSI into four categories:
cancer cells, stroma cells, lymphocytes, and epidermis cells. The
SC-CNN network yielded an accuracy of 84.63% over 4,059 cells
in the independent test set (Table 1, Supplementary Table 5).
Visual inspection revealed that themajority of false positives were
misclassification of stromal and cancer cells as epidermis, which
confirmed our initial motive for the incorporation of regional and
spatial information to improve classification.

Subsequently, we trained a conditional random field (CRF)
by combining the cellular neighborhood with tumor region
classification (cancer area, normal stroma, normal epidermis,
lymphocyte cluster, and lumen/white space) from low resolution
images (5 and 1.25×, Figure 1B), given by the superpixel-based
machine-learning framework. The SLIC superpixels algorithm
has previously been shown to be computationally efficient,
requiring only 3s on average to segment a single downscaled
image of 2,500 × 2,500 pixels using a 2.9 GHz Intel core i7
processor. Performance of classification using individual and
various combinations of feature sets was tested and the use of all
85 features, yielded the highest accuracy (23). It was then applied
on the two datasets of 1.25 and 5× magnification (Figure 2A)
and achieved high accuracy in regional classification (1.25× sub-
dataset: Overall accuracy 97.7% in the training set using 10-fold
cross validation and 95.7% in 2,997 superpixels annotated in the
37 images of the independent test set; 5× sub-dataset: Overall
accuracy 97.1% in the training set using 10-fold cross validation
and 95.2% in 1,798 superpixels annotated in the six images of the
independent test set).

To train SuperCRF, we first introduced dependencies on cell
neighborhood. Cells were considered neighbors in the CRF,
if they were located in a spatial proximity of 15µm (or 30
pixels), which resulted in an average of 1.3 neighbors per cell.
Subsequently, we integrated this local neighborhood with global
context by connecting the CRF single-cell nodes to the regional
classification results from superpixels. To determine the best
configuration, we trained four different CRFs and compared
their performance in terms of single-cell classification on a
test set, including three samples, 290 tiles and 4,059 single-cell
annotations (1,527 cancer cells, 676 lymphocytes, 837 normal
epidermis cells, 1,019 stromal cells).

In detail, for the first CRF we did not use any context
classification, just cell neighborhood dependencies, i.e., the

TABLE 2 | Evaluation of different conditional random fields (CRF) versions and a

state-of-the-art spatially constrained-convolution neural network (SC-CNN) deep

learning cell-classifier.

Method Accuracy (%) Precision Recall

SC-CNN 84.63 0.8756 0.8808

singleCellCRF 87.61 0.8973 0.8946

CRF1.25× 90.79 0.9248 0.9110

CRF5× 91.70 0.9298 0.9126

SuperCRF 96.48 0.9644 0.9629

The values are bold to indicate the highest achieved accuracy, precision and recall.

only edges of the CRF were between neighboring cells
(singleCellCRF). For the second and third CRF we introduced
superpixel nodes. Now, single-cell nodes are not only connected
to neighboring cells but every single-cell node is also connected
to a superpixel node. We trained a CRF for 5× superpixel
classification (CRF5×) and 1.25× superpixel classification
(CRF1.25×). Furthermore, we trained a CRF in which every
single-cell node was connected to two superpixel nodes in 5
and 1.25× resolution (SuperCRF). Already the singleCellCRF
(Accuracy: 87.6%, Precision: 89.7%, Recall: 89.5%, Table 2)
improves the classification accuracy compared to the SC-CNN
(84.6%, Precision: 87.6%, Recall: 88.1%, Table 2). However, the
use of contextual information by the introduction of superpixel
nodes, markedly improves the classification metrics (Accuracy
90.8%, Precision: 92.5%, Recall: 91.1%, Table 2) for CRF1.25×
and (Accuracy 91.7%, Precision: 93%, Recall: 91.3%, Table 2)
for the CRF5×. The SuperCRF, using nodes from superpixels in
both 5 and 1.25× resolution images, as well as the neighboring
cells, resulted in the highest classification outcome (Accuracy
96.5%, Precision: 96.4%, Recall: 96.3%, Table 2, Figures 1F, 2B,
Supplementary Tables 5–9).

SuperCRF’s Increased Accuracy of Cell
Classification Improves Confidence in
Stromal Cell Ratio as a Predictive Feature
of Survival in Melanoma
The crosstalk between cancer cells and stromal cells play an
active role in tumor invasion and metastasis, and controlling
immune infiltration and is increasingly recognized as a hallmark
of cancer (32). Tumor-stromal cell ratio has been shown to
hold prognostic and predictive information in patient with solid
tumors (31, 33, 34). Here, we demonstrate that a high stromal
cell ratio is also a predictor of poor prognosis in melanoma
using both values derived from the multivariate models of SC-
CNN and SuperCRF in our discovery sub-dataset. Yet SuperCRF
yields a significantly higher confidence in the predictive value of
the stromal cell ratio (SuperCRF: p < 0.0001, Coxph-Regression
(discretized by median): HR = 4.1, p = 0.006; SC-CNN: p =

0.039, Coxph-Regression (discretized by median): HR = 2.4, p
= 0.05, Figure 3A).

Similar regression coefficients for both stromal cells ratio
and Breslow-thickness covariates were observed between the
multivariate and the two univariate survival models (1.404 and
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FIGURE 3 | Associations between survival outcomes and SuperCRF-define risk groups in the Cancer Genome Atlas (TCGA) cohorts of patients with melanoma. (A)

Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk group classified by stromal cells ratio derived from SuperCRF (left) and using only

the SC-CNN classifier. Note the difference in the p-value using the two methods. (B) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low risk

group classified by immune phenotype based on spatial distribution of lymphocytes in different tumor compartments derived from SuperCRF.

0.171, respectively, for the multivariate model and 1.633 and
0.179 for the univariate models) of the SuperCRF. Pearson’s
correlation showed no correlation between stromal cells ratio and
Breslow-thickness (r = −0.05), overall indicating that stromal
cells ratio is independent to Breslow-thickness.

Combining Cell and Region Classification:
Location of the Immune Infiltrate Is
Predictive of Survival in Melanoma
There is increasing evidence of the value of immune infiltration
to provide prognostic information and predictors of response
in patient with melanoma [recently reviewed in (35)]. The
spatial compartmentalization of immune cells afforded by our
SuperCRF (by the cell and region classification results) was used
to define the recently-described main immune phenotypes of
anticancer immunity that predict response to immunotherapy
(31). Patients with a classified “immune excluded” phenotype,
defined by a low lymphocyte ratio inside the tumor area and
high inside the stroma area, was associated with a significantly
worse prognosis compared to “inflamed” tumors characterized
by a high ratio of lymphocytes inside the tumor and a low ratio
inside the stroma (p = 0.026, Cox PH –regression: HR = 2.57,
p = 0.032, Figure 3B). Taken together, our data is consistent
with the model of a stroma-mediated immune suppressive
microenvironment that exclude T cells from the vicinity of
cancer cells.

DISCUSSION

In this study, we implemented a framework which fuses
traditional machine learning with deep learning to model the
way pathologists incorporate large-scale tissue architecture

and context across spatial scales, to improve single-cell
classification in large whole-section slide images. Using
this approach, we demonstrated a marked 11.85% overall
improvement in the accuracy of the state-of-art deep
learning SC-CNN cell classifier. Also, the similar values
of both precision and recall and their simultaneous
increase in every step show the unbiased nature of
our approach.

Computational pathology algorithms, typically exploit the
inter-cell phenotypic differences for cell classification, yet even
state-of-art deep learning algorithms tend to underperform in
this task, mainly due to the disproportional numbers of cells
sharing similar nuclear morphological features, or due to intra-
class diversity, seen for example in tumor stroma (fatty tissue,
necrosis, vessels, muscle, fibroblasts, and associated collagen).
Whilst computers can quantify morphological differences in
a considerably more complex way, pathologists still generally
outperform computers in cell classification. An essential
reason is that they incorporate key contextual information
such as heterogeneous tissue architecture, together with cell
morphological features.

The idea that a cancer cell is dependent on its neighboring
cells and global context is comparable to the fundamental
concept in landscape ecology that a living population depends
on the existing habitats and is not equally spread on the terrain.
A particular habitat could favor the development of specific
organisms. In practice, landscape ecologists denote the habitats
from satellite images and then “ground-truth” them by detailed
small-scale sampling of the habitats of interest (36). This inspired
the design of our framework by introducing CRF dependencies
between (i) the cells and their neighbors and (ii) the cells and to
the global context (i.e., habitats from low resolution captured by
the classified superpixels).
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Our proposed framework connects deep learning and classical
image processing using probabilistic graphical models. All the
information was combined using a CRF graphical model, which
have been widely applied in image analysis for pathological
images, yet mainly for semantic segmentation (16, 17, 37, 38).
Here, (1) we introduce a new way to capture high-level spatial
context using superpixels, (2) propose a new CRF model that
introduces dependences over space and across different spatial
scales, thereby modeling multiple cells and their associated
superpixels simultaneously for more accurate classification, (3)
introduce the concept of context-specific CRF modeling, given
that the strength of dependence can be variable according
to tumor compartments. There is an increasing interest in
combining deep learning with different strategies, or “umbrella
approaches,” such as the use of traditional machine learning to
spatially explicit context used in this study, with the aim to,
not only refine and improve the overall existing deep learning
network (17, 39–41), but also facilitate biological interpretation
compared to the “black-box”-like approach of deep-learning-
only methods. However, optimizing and inventing new and
refined deep learning networks is of equal importance, as during
experimentation we observed that the better we made our
single-cell classifier baseline, the more effective our SuperCRF
approach became.

We also showed that combining cell classification with the
global context given by the region classification (both inherent
parts of the SuperCRF architecture) can open new avenues
to study the cancer microenvironment from histopathological
slides. For example, the spectacular response observed in clinical
trials of immunotherapy in patients with incurable melanoma
calls for a better understanding of the tumor microenvironment
and in particular the cancer-immune-stroma interface. Here,
our approach and its ability to look at lymphocytes within
their cellular and global context can predict melanoma patient
survival and potentially provide biomarker stratification for
immunotherapeutic approaches, by identifying the three main
types of tumor immunophenotypes including (i) inflamed
tumors which are characterized by infiltrated T Cells within
the tumor, and associated with a generally good prognosis (ii)
immune-excluded tumors, in which T cells are present but
prevented to infiltrate the tumor due to stromal interaction, and
associated with worse prognosis (and obviously (iii) immune
desert tumors). This could also potentially be extended to provide
quantitative biomarkers to characterize the immune infiltrating
response to immunotherapy. We also demonstrated that in
accordance with the immune-excluded phenotype, tumors rich
in stromal cells had a marked poorer prognosis in patients with
melanoma. With p-value lower by two orders of magnitude,
our method provide stronger predictive power than by using
deep-learning only method for cell classification.

In the future, we plan to extend our framework and include
an upward optimization step for the superpixels which may
include additional classes for cells, regions and structures in
order to provide a complete characterization of the tumor
microenvironment. This may include deriving further classes
from higher resolution images as we did for lymphocyte
clusters in this study which were difficult to visualize in

1.25× resolution images. Incorporating additional deep learning
methods should also be explored to perfect the classification
of superpixels, for example by incorporating features extracted
from a DCNN or a deep autoencoder, or to provide a potential
alternative to superpixels, which may not be appropriate for the
characterization of complicated structures, such as glands (42).

The primary aim of this study was to demonstrate proof-of-
principle that the introduction of global and local context as cell
dependencies using a probabilistic graphical model as a post-
processing step, like an “umbrella,” can significantly improve
the performance of deep learning or classical machine learning
cell classifiers based only on cell-morphology and abstract
local context information. We chose the SC-CNN architecture
as our primary cell classification step due to its state-of-the-
art performance in cell detection and classification compared
to other well-established deep learning and classical machine
learning approaches (6). Alternatively, other promising deep
learning networks could potentially be used including Inception
v3 (43), Inception v4 (44), or a VGG architecture (45).

Overall, our vision is to establish a network which will provide
a complete characterization of every component of the tumor
microenvironment where all the parts will interact with each
other like an ecological landscape. Such system has immense
potential and can be virtually transferred to any cancer type,
to provide a better understanding of the cancer-immune cell
interface, cell-stroma interactions, and predictive biomarkers of
response to novel therapies, including immunotherapy, which
has radically changed melanoma patient survival.

CONCLUSION

The novel general framework SuperCRF improves cell
classification by introducing global and local context-based
information much like pathologists do. SuperCRF can be
implemented in combination with any single-cell classifier
and represent valuable tools to study the cancer-stroma-
immune interface, which we used to identify predictors
of survival in melanoma patients from conventional H&E
stained histopathology.
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