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Background: Glioma is the most common primary brain tumor with a dismal

prognosis. It is urgent to develop novel molecular biomarkers and conform to

individualized schemes.

Methods: Differentially expressed pseudogenes between low grade glioma (LGG)

and glioblastoma multiforme (GBM) were identified in the training cohort. Least

absolute shrinkage and selection operator (LASSO) regression and multivariate Cox

proportional hazards regression analyses were used to select pseudogenes associated

with prognosis of glioma. A risk signature was constructed based on the selected

pseudogenes for predicting the survival of glioma patients. A pseudogene-miRNA-mRNA

regulatory network was established and visualized using Cytoscape 3.5.1. Gene

Oncology (GO) and signaling pathway analyses were performed on the targeted genes

to investigate functional roles of the risk signature.

Results: Five pseudogenes (ANXA2P2, EEF1A1P9, FER1L4, HILS1, and RAET1K)

correlating with glioma survival were selected and used to establish a risk signature.

Time-dependent receiver operating characteristic (ROC) curves revealed that the risk

signature could accurately predict the 1, 3, and 5-year survival of glioma patients. GO

and signaling pathway analyses showed that the risk signature was involved in regulation

of proliferation, migration, angiogenesis, and apoptosis in glioma.

Conclusions: In this study, a risk signature with five pseudogenes was constructed

and shown to accurately predict 1-, 3-, and 5-year survival for glioma patient. The risk

signature may serve as a potential target against glioma.

Keywords: glioma, pseudogene, risk signature, nomogram, ceRNA

INTRODUCTION

Glioma is the most common primary brain tumor and has a dismal prognosis, among which
glioblastoma multiforme (GBM, WHO grade IV) is the most aggressive type with a median
survival of 12–18 months and a 5 year-survival of 5% (1, 2). The standard treatment for glioma
patients involves maximal surgical resection, followed by radiotherapy and chemotherapy with
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drugs such as temozolomide (TMZ). Unfortunately, the efficacy
of these treatments is limited and the prognosis of glioma
patients is still poor. TMZ resistance occurs in some patients
during treatment, which is attributed to certain intrinsic and
extrinsic factors, such as tumormicroenvironment, heterogeneity
of glioma, glioma stem cells and the sensitivity of glioma
cells to chemotherapeutic drugs (3, 4). In addition, some low-
grade gliomas can evolve into secondary GBM after undergoing
surgical resection, radiotherapy, or chemotherapy (5). Therefore,
the treatment for glioma is very complicated, and novel
molecular biomarkers should be identified to conform to
individualized schemes.

With the development of high-throughput sequencing
technologies, non-coding RNAs have been discovered and
proven to be involved in multiple cellular programs as
well as many pathological processes, such as cancer (6).
Increasing evidence suggests that non-coding RNAs can serve as
biomarkers and therapeutic targets in cancer (7). Pseudogenes
were previously considered as “genomic fossils,” but recent
studies have confirmed their involvement in various biological
functions (8). Some pseudogene RNAs, belonging to long non-
coding RNA (lncRNA) with more than 200 nucleotides in
length, act as RNA sponges for miRNAs and regulate gene
expression via competing endogenous RNA (ceRNA) networks
(8, 9). For example, the pseudogene PTENP1 regulate the
function of PTEN through decoying PTEN-related miRNAs
and competing for these miRNAs (10). In breast cancer,
upregulation of PTENP1 expression can inhibit proliferation,
metastasis and tumorigenicity of breast cancer cells, and
enhance chemosensitivity through functioning as a sponge
for miRNA-20a (11). Several studies have also demonstrated
that pseudogene transcripts have histological specificity and
contribute to tumorigenesis. It has been reported that 440
pseudogenes are transcribed in breast cancer, and 309 of them
are differentially expressed in different breast cancer subtypes
(8). The functions of pseudogenes in glioma have also been
reported. PTENP1 is found to be downregulated in glioma
tissues, causing inhibition of both proliferation and invasion
of glioma cells (12). The annexin A2 pseudogenes (ANXA2P1,
ANXA2P2, and ANXA2P3) are significantly upregulated in
glioma and are associated with adverse outcome of glioma
patients (13).

In this study, we identified five pseudogenes in the
TCGA dataset and constructed a risk signature based on the
five pseudogenes for predicting survival of glioma patients.
Additionally, a nomogram was established integrating the
risk signature and clinical features (age and glioma grade).
Time-dependent receiver operating characteristic (ROC) curves
and calibration curves were used to evaluate its efficiency
and indicated a good performance for predicting 1-, 3-, and
5-year survival of glioma patients. Furthermore, competing
endogenous RNA (ceRNA) regulatory networks consisting of
3 pseudogenes (ANXA2P2, EEF1A1P9, and FER1L4), their
bindingmicroRNAs (miRNAs) and target genes were established.
Finally, we investigated the biological functions and pathways
related to the risk signature to provide novel strategies for
glioma treatment.

MATERIALS AND METHODS

Data Set for the Study
Pseudogenes were downloaded from the HUGO Gene
Nomenclature Committee (HGNC, https://www.genenames.
org/). Expression data of pseudogenes and miRNA target genes
as well as glioma patient clinicopathology and survival data
in The Cancer Genome Atlas (TCGA) were downloaded from
GlioVis (http://gliovis.bioinfo.cnio.es/) GBMLGG (RNA-seq)
platform (14). In the GlioVis platform, RNA-seq data processing
is based on the normalized count reads from the pre-processed
data (sequence alignment and transcript abundance estimation)
with log2 transformation after adding a 0.5 pseudocount.
Samples in the TCGA database with detailed information of
age, gender, WHO grade, survival time, and status were enrolled
and were randomly divided into a training cohort (accounting
for 70%) and validation cohort (accounting for 30%) using
the “caret” package in R language (15). The training cohort
was used to select pseudogenes and establish a prognostic risk
signature in glioma, and the validation cohort was used for
internal validation.

Differentially Expressed Pseudogene
Profiles
Principal component analysis (PCA) was used to assess
expression distribution of available pseudogenes between low
grade glioma [LGG, World Health Organization (WHO) grade
II and III] (16) and glioblastoma (GBM) in the TCGA database.
Differentially expressed pseudogenes were generated using R
language (limma package, R version 3.5.2) between LGG
and GBM samples in the training cohort. Pseudogenes with
| log2(fold-change) | ≥ 2 and false discovery rate (FDR) < 0.05
were considered as differentially expressed pseudogenes.

Identification of a Prognostic Pseudogene
Signature
Univariate Cox models were used to assess the association
between pseudogenes and glioma patient’s overall survival (OS)
from data in the training cohort. P < 0.05 was considered
statistically significant. Least absolute shrinkage and selection
operator (LASSO) regression was performed to filter the
pseudogenes which were significant in univariate Cox analysis.
LASSO regression can filter and select appropriate variables
according to the best value of lambda, so as to eliminate over-
fitting problems in the risk signature (17, 18). Subsequently,
multivariate Cox regression analysis was used to further select
pseudogenes by a step function in R programming language. The
multivariate Cox regression analysis results were visualized in
a forest plot. A risk signature was established according to the
regression coefficient-weighted pseudogene expression and a risk
score formula was constructed as follows (19):

risk score =

N∑

i=1

(Expi∗Coei)

In the formula, N is the number of selected pseudogenes, Expi
is the expression value of each pseudogene, and Coei is the

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 1059

https://www.genenames.org/
https://www.genenames.org/
http://gliovis.bioinfo.cnio.es/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. A Five-Pseudogenes Signature in Glioma

multivariate Cox regression coefficient. Glioma patients were
divided into low-risk and high-risk groups according to the
median risk score value, and the performance of the prognostic
risk signature was measured by Kaplan-Meier and ROC curve
analyses. To better predict the 1-, 3-, and 5-year survival of
glioma patients, the risk signature and several clinicopathological
factors were incorporated, and a nomogram was established
based on the results of the multivariate analysis by using the rms
package in R language. The ROC curve and calibration curve
were used to assess the efficiency of the nomogram.

Construction of the
Pseudogene-miRNA-mRNA Regulatory
Network
miRNAs binding to pseudogenes were identified using the
dreamBase database (http://rna.sysu.edu.cn/dreamBase/index.
php) (20). miRNA target genes with at least one strong
experimental method (reporter assay or western blot) were
extracted from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/
php/index.php) (21). Pearson analysis was performed to calculate
expression correlation between pseudogenes and miRNA target
genes. Target genes with | r | ≥ 0.4 were selected and
Cytoscape 3.5.1 was used to construct pseudogene-miRNA-
mRNA regulatory networks.

Bioinformatics Analysis
Target genes with | r | ≥ 0.4 in the TCGA dataset (GBMLGG
platform) were selected for functional analysis. Gene Oncology
(GO) and KEGG pathway analyses were performed to analyze
the selected target genes via the DAVID website (https://david.
ncifcrf.gov/) (22). GO terms with FDR <0.001 and KEGG
pathways with P < 0.001 were selected for charting. To validate
the biological processes and signaling pathways, Metascape
(http://metascape.org/gp/index.html#/main/step1) was adopted
(23). Bar chart, bubble chart, and correlation heatmaps were
mapped using R programming language.

Statistical Analysis
Quantitative data were presented as the mean ± standard
deviation. Statistical differences between two groups were
examined by the Wilcoxon test. All statistical tests were
conducted using R programming language. P < 0.05 was
considered statistically significant.

RESULTS

Five Pseudogenes Were Identified and
Used for Constructing a Risk Signature for
Glioma
A total of 263 pseudogenes were included in the TCGA
dataset. Glioma patients in the TCGA dataset (GBMLGG)
with detailed clinical information (gender, age, WHO grade,
survival time, and status) were enrolled and randomly divided
into training cohort (n = 420) and validation cohort (n =

178) (Table 1). PCA was performed to explore the distribution
of these pseudogenes between LGG and GBM samples in
the training cohort and the validation cohort, respectively.

TABLE 1 | Clinicopathological characteristics of samples in the training cohort

and the validation cohort.

Clinicopathological

characteristics

No. of samples

Training cohort

(n = 420)

Validation cohort

(n = 178)

Pathological Type

Astrocytoma 121 46

Oligodendroglioma 195 87

GBM 104 45

Who Grade

Grade II 148 63

Grade III 168 70

Grade IV 104 45

Age, Years

Average value 48 47

Range 14–89 18–87

Gender

Male 234 114

Female 186 64

In the training cohort, GBM is distributed on the left side,
while LGG is gathered on the other side (Figure 1A). Similar
result was also observed in the validation cohort (Figure 1B),
indicating different distributions and functional roles of
the pseudogenes in LGG and GBM. Considering the grade
dependence in glioma, we chose differentially expressed
pseudogenes between LGG and GBM for further study, which
can reflect the distinct characteristics of LGG and GBM. Fifteen
differentially expressed pseudogenes were identified in the
training cohort, including seven upregulated pseudogenes and
eight downregulated pseudogenes in GBM (Figure 1C). The
15 pseudogenes were all correlated with glioma prognosis
according to univariate Cox analysis (Supplementary Table 1, P
< 0.0001). To select appropriate parameters for constructing a
risk signature, LASSO regression was used and 9 pseudogenes
were identified (ANXA2P2, EEF1A1P9, FER1L4, HILS1,
HSPA7, RAET1K, RPL13AP3, RPS2P32, and TPTE2P1)
(Figures 1D,E). Finally, multivariate Cox regression analysis
was performed on the nine pseudogenes, and five pseudogenes
(ANXA2P2, EEF1A1P9, FER1L4, HILS1, and RAET1K) were
retained using the “step” function (Figure 1E). Information
about the five pseudogenes was obtained through the
dreamBase database and is listed in Table 2. EEF1A1P9
was a protective factor (HR < 1), and ANXA2P2, FER1L4,
HILS1, and RAET1K were defined as risk factors (HR > 1) in
glioma (Figure 1F).

The Five Pseudogenes Were Prognostic
Biomarkers in Glioma
To confirm the prognostic value of the five pseudogenes, we
performed Kaplan-Meier analysis in the training cohort. As
shown in Figure 2, higher expression of ANXA2P2, FER1L4,
HILS1, or RAET1K resulted in poorer patient prognosis than
that in the lower expression group (Figures 2A–D, P < 0.0001).
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FIGURE 1 | Screening pseudogenes used for constructing the risk signature for glioma. Principal components analysis of pseudogenes between glioblastoma (GBM)

and low grade glioma (LGG) in the training cohort (A) and the validation cohort (B). (C) Heatmap showed the pseudogenes differentially expressed between LGG and

GBM in the training cohort (| log2(fold-change) | ≥ 2 and FDR < 0.05). (D) Log (Lambda) value of the 15 pseudogenes in LASSO model. (E) The most appropriate log

(Lambda) value in the LASSO model. (F) Multivariate Cox regression analysis was performed and five pseudogenes (ANXA2P2, EEF1A1P9, FER1L4, HILS1, and

RAET1K) were selected to construct the risk signature.

On the contrary, patients with higher expression of EEF1A1P9

had favorable prognosis (Figure 2E, P < 0.0001). Combined with

multivariate Cox regression analysis, these results suggest the

potential values of the five pseudogenes as prognostic biomarkers

for glioma patients.

Construction of the Prognostic Risk
Signature With Five Pseudogenes in
Glioma
Based on multivariate Cox regression analysis, the five
pseudogenes (ANXA2P2, EEF1A1P9, FER1L4, HILS1, and
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TABLE 2 | Information on the five pseudogenes identified by dreamBase.

Pseudogene Ensembl ID Genome location Gene type

ANXA2P2 ENST00000435128 chr9:33624274-33625293 processed_pseudogene

EEF1A1P9 ENST00000514975 chr4:105484698-105486080 processed_pseudogene

FER1L4 ENST00000615531 chr20:35558866-35607494 transcribed_unitary_pseudogene

HILS1 ENST00000545329 chr17:50171514-50171936 transcribed_unitary_pseudogene

RAET1K ENST00000403651 chr6:150000090-150005157 transcribed_unprocessed_pseudogene

FIGURE 2 | Kaplan-Meier survival curves for the five pseudogenes in glioma. (A–D) High expression level of ANXA2P2, FER1L4, HILS1, and RAET1K indicated

poorer prognosis in glioma patients (P < 0.0001). (E) Glioma patients with higher expression level of EEF1A1P9 had favorable prognosis (P < 0.0001).

RAET1K) were integrated to establish a risk signature in the
training cohort. The risk scores were calculated using the formula
mentioned in the methods, as follows: risk score= (0.2279 ×

expression level of ANXA2P2) + (−0.2170 × expression level of
EEF1A1P9) + (0.1056 × expression level of FER1L4) + (0.1232
× expression level of HILS1) + (0.1448 × expression level of
RAET1K). Patients in the training cohort were divided into low-
risk (n = 210) and high-risk (n = 210) groups according to the
median risk score. The K-M curve showed poorer prognosis in
the high-risk group than low-risk group (Figure 3A, P < 0.0001).
The ROC curve was used to evaluate the efficacy to predict 1-,
3-, and 5-year survival in glioma patients. The areas under curve

(AUC) for 1-, 3-, and 5-year survival were 0.897, 0.939, and
0.876, respectively (Figure 3B). As shown in Figure 3C, with
the increase of risk scores, the expression level of EEF1A1P9
decreased, whereas the expression levels of ANXA2P2, FER1L4,
HILS1, and RAET1K were upregulated. Meanwhile, the number
of patient deaths increased.

Validation of the Prognostic
Five-Pseudogene Risk Signature
The validation cohort was applied to assess the performance
of the five-pseudogene risk signature. Glioma patients in the
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FIGURE 3 | Characteristics of the five-pseudogene risk signature in the training cohort. (A) Survival curves for high-risk and low-risk groups classified by the risk

signature in the training cohort. (B) ROC curves for the 1-, 3-, and 5-year survival according to the five-pseudogene risk signature in the training cohort. (C) Glioma

expression profiles of the five pseudogenes, risk score distributions and patient survival in the training cohort.

validation cohort were divided into low-risk (n = 89) and high-
risk (n = 89) groups according to the median risk score. The
K-M curve showed patients in the low-risk group had a favorable
prognosis (Figure 4A, P < 0.0001). AUCs for 1-, 3-, and 5-year
survival were 0.862, 0.933, and 0.912, respectively (Figure 4B). In
agreement with the results in the training cohort, the expression
level of EEF1A1P9 were downregulated and other genes were
upregulated with an increase in risk scores; correspondingly, the
number of patient deaths increased (Figure 4C).

Construction of a Nomogram Integrating
the Risk Signature and Clinicopathological
Factors
To confirm the prognostic value of the risk signature, univariate
and multivariate Cox regression analysis were conducted in
the training cohort, and showed that the risk signature with
five pseudogenes was independently associated with overall
survival of glioma (Table 3). Considering clinical relevance and
prognostic value of age and grade, a nomogram based on the risk
signature, age and glioma grade was established in the training
cohort. The validation cohort was used to assess its efficiency.
As the nomogram shows, the incidences of 1-, 3-, and 5-year
survival can be estimated according to the point total, which is

the sum of the points in each item (Figure 5A). The AUCs for the
1-, 3-, and 5-year incidences of survival in the training cohort
were 0.917, 0.95, and 0.881, respectively (Figure 5B). In the
validation cohort, the AUCs of the 1-, 3-, and 5-year incidences
of survival were 0.874, 0.942, and 0.94, respectively (Figure 5C).
Calibration curves for estimating 1-, 3-, and 5-year survival
showed that there were good correlations between the prediction
and observation in both the training cohort (Figure 5D) and
validation cohort (Figure 5E). These results suggest that the
nomogram can accurately predict 1-, 3-, and 5-year survival of
glioma patients.

Associations Between the Risk Signature
and Clinicopathologic Features in Glioma
To explore the relationships between the risk signature and
clinicopathologic characteristics, we investigated the levels of risk
score in different cohorts stratified by glioma grade, age, IDH
status, and MGMT promoter status. In different grades, GBM
(WHO grade IV) had higher risk scores than LGG (Figure 6A, P
< 0.0001). Age is a risk factor for glioma patient survival. Glioma
patients were therefore divided into two groups according to
age (>60 and ≤60). As shown in Figure 6B, the risk scores of
patients>60 of age weremuch higher than patients with age≤60.
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FIGURE 4 | Evaluating the efficacy of the five pseudogenes risk signature in the validation cohort. (A) Survival curves for high-risk and low-risk groups classified by the

risk signature in the validation cohort. (B) ROC curves for the 1-, 3-, and 5-year survival according to the five-pseudogene risk signature in the validation cohort. (C)

Glioma expression profiles of the five pseudogenes, risk score distributions and patient survival in the validation cohort.

TABLE 3 | Univariate and multivariate analysis of the risk signature and clinical

prognostic factors in the training cohort.

Variable Univariate analysis Multivariate analysis

HR P-value HR P-value

Risk score 2.7181 <0.0001 2.7780 <0.0001

Age 1.0663 <0.0001 1.0263 0.0003

Grade

LGG Reference Reference

GBM 8.8504 <0.0001 1.7329 0.1001

Gender – –

Female Reference

Male 1.1086 0.5227

For IDH status, risk scores decreased in patients with an IDH
mutant compared with patients with wildtype IDH (Figure 6C, P
< 0.0001). The risk scores of patients with a methylated MGMT
promoter were lower than patients without MGMT promoter
methylation (Figure 6D, P < 0.0001).

The relationships between the risk signature and glioma
patient survival in LGG, GBM and groups stratified by age (>60
and ≤60) were also explored. Kaplan-Meier curves showed that

the patients with high risk scores had poorer prognosis than
patients with low risk scores in LGG (Figure 6E, P < 0.0001).
Although there was no statistical difference between high-risk
group and low-risk group in GBM, the tendency of the two
curves was obvious (Figure 6F, P = 0.0807). In regard to groups
stratified by age, the survival time of patients with low risk scores
were longer than the patients with high risk scores whether in the
≤60 years old age group (Figure 6G, P < 0.0001) or in the group
with age >60 (Figure 6H, P < 0.0001).

Pseudogene-miRNA-mRNA Regulatory
Networks
Pseudogenes can positively or negatively regulate gene expression
by functioning as miRNA decoys. Thus, pseudogene-expressed
RNA is also known as competing endogenous RNA (ceRNA)
(24). Potential miRNAs binding to the six pseudogenes were
identified using the dreamBase database and are listed in
Supplementary Table 2. miRNA target genes with at least one
strong experimental method (reporter assay or western blot) were
extracted from miRTarBase database. Pearson analysis was used
to calculate expression correlation between each pseudogene and
its miRNA target genes. Target genes with | r | ≥ 0.4 were
picked up and listed in Supplementary Table 3. Ultimately, three
pseudogenes (ANXA2P2, EEF1A1P9, and FER1L4), together
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FIGURE 5 | Nomogram for predicting the survival rate of glioma patient. (A) A nomogram was established based on the risk signature, age, and grade for predicting

survival of glioma patient. ROC curves were used for evaluating the efficiency of the nomogram. (B) AUCs for predicting 1-, 3-, and 5-year survival were 0.917, 0.95,

and 0.881, respectively, in the training cohort. (C) AUCs for predicting 1-, 3-, and 5-year survival were 0.874, 0.942, and 0.94, respectively, in the validation cohort.

Calibration plot of observed and predicted probabilities for the nomogram in the training cohort (D) and validation cohort (E).

with 72 microRNAs and 322 targeted genes were used to
construct the pseudogene-miRNA-mRNA regulatory networks
and visualized using Cytoscape (Figure 7).

The Pseudogenes (ANXA2P2, FER1L4, and
EEF1A1P9) Were Highly Correlated With
Important Regulatory Genes in Glioma
To better present the correlation between pseudogenes and
their miRNA target genes, correlation heatmaps were conducted.
ANXA2P2 was positively correlated with genes that are related
to glioma proliferation, invasion and angiogenesis, such as
ANXA2, CD44, IL6, MMP14, MMP9, and VEGFA (Figure 8A).

FER1L4 was positively correlated with SNAIL1, IGF2BP1, and
HOXA5 (Figure 8B). On the contrary, EEF1A1P9 was negatively
correlated with CD44, IL6, MMP9, MMP14, VEGFA, NEK2, and
PCNA, but positively correlated with PTEN (Figure 8C). These
results indicate the three pseudogenes might play important roles
in glioma occurrence and progression.

Functional Analysis of the
Five-Pseudogene Risk Signature
To investigate the functional roles of the risk signature, related
genes with | r | ≥ 0.4 were used for GO and KEGG pathway
analyses via DAVID. We discovered that the signature was
functionally associated with biological processes that are related
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FIGURE 6 | Association between the risk signature and different cohorts stratified by glioma grade, age, IDH status and MGMT promoter status. (A) Risk scores in

GBM were higher than that in LGG (P < 0.0001). (B) Patients >60 years old had higher risk scores than patients ≤60 years old (P < 0.0001). (C) Risk scores in IDH

mutation samples were lower than IDH wildtype samples (P < 0.0001). (D) Risk scores in MGMT promoter methylated samples decreased compared with samples

(Continued)
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FIGURE 6 | with the MGMT promoter unmethylated (P < 0.0001). (E) K-M survival curves indicated the high-risk group had adverse outcome in LGG (P < 0.0001).

(F) K-M survival curve for the high-risk group and low-risk group in GBM (P = 0.0807). Patients in the high-risk group had poorer prognosis than patients in the

low-risk group independent of age ≤60 (G, P < 0.0001) or age >60 (H, P < 0.0001).

FIGURE 7 | Construction of pseudogene-miRNA-mRNA regulatory networks. Pseudogenes together with binding miRNAs and target genes related to the three

pseudogenes with | r | ≥ 0.4 were used to construct the pseudogene-miRNA-mRNA regulatory networks. Blue diamonds represented pseudogenes, which are

located at the cores of the networks. Red ellipses and green rectangles stand for binding miRNAs and target genes, respectively.

to tumor apoptosis, proliferation, migration, and angiogenesis,
such as regulation of cell proliferation, cell migration, apoptosis,
response to hypoxia, and angiogenesis (Figure 9A, FDR <

0.001). Correspondingly, several KEGG pathways including focal
adhesion, apoptosis, the PI3K-AKT signaling pathway, cell cycle,
HIF-1 signaling pathway and ECM receptor interaction were
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FIGURE 8 | Pseudogenes (ANXA2P2, FER1L4, and EEF1A1P9)-related genes in glioma. (A–C) The heatmaps showed some representative genes highly correlated

with the three pseudogenes (| r |≥ 0.4).

identified (Figure 9B, P < 0.001). To further confirm these
results, Metascape was performed on the related genes. As shown
in Figure 9C and Supplementary Table 4, similar terms such as
angiogenesis, response to hypoxia, regulation of cell adhesion,
focal adhesion and PI3K-Akt signaling pathway were also
obtained. Collectively, these results indicate the risk signature
is correlated with the function of proliferation, migration,
angiogenesis, and apoptosis in glioma.

DISCUSSION

Glioma is one of the most aggressive brain tumors without
effective treatment. Current research shows that lncRNAs are
extensively involved in glioma formation and progression, and
can serve as promising therapeutic targets (25). As a special
group of lncRNAs, pseudogenes are remnants of their parental
genes that lost their ability to encode proteins (9). It has been
reported, based on supervised analysis, that 71 pseudogenes
were found differentially expressed among GBM subtypes
(classical, mesenchymal, neural, and proneural), indicating their
potential roles in glioma (26). In our study, we screened out
five pseudogenes (ANXA2P2, EEF1A1P9, FER1L4, HILS1, and
RAET1K) that were differentially expressed between LGG and
GBM and were associated with the prognosis of glioma patients.
Among the five pseudogenes, ANXA2P2 is a pseudogene of
ANXA2 and is located on chromosomes 9 (13). The expression
level of ANXA2 is positively related to ANXA2P2 expression,
and both are significantly upregulated in diffuse glioma, as well
as mesenchymal subtype of GBM. Moreover, high expression
level of ANXA2P2 is associated with adverse outcome of
glioma patients (13). Our findings are consistent with this and
indicate ANXA2P2 can be a candidate therapeutic target for
glioma. FER1L4 is a pseudogene located on chromosome 20
(27, 28), and it is downregulated in gastric cancer, lung cancer
and hepatocellular carcinoma tissues (28–30). It also has been
reported that FER1L4 can inhibit proliferation and metastasis
in lung cancer and hepatocellular carcinoma via regulating

the PI3K/AKT signal pathway and enhance chemosensitivity
of ovarian cancer through the MAPK signal pathway (29–31).
However, a recent study shows that FER1L4 is upregulated in
glioma and promotes glioma proliferation and tumorigenicity
(32). In support of this, our findings also suggest that higher
expression of FER1L4 predicts unfavorable prognosis in glioma
patients. For the remaining three pseudogenes (EEF1A1P9,
HILS1, and RAET1K), there are few reports on their biological
functions at present. In our study, we show that EEF1A1P9 has
an HR < 1, indicating it is a protective factor in glioma, and
higher expression level of EEF1A1P9 is associated with better
prognosis. On the contrary, higher expression levels of HILS1
and RAET1K indicate an adverse outcome in glioma. Thus, the
three pseudogenes might be used as prognostic biomarkers in
glioma, and future studies will be performed to explore their
biological functions.

Accumulating evidence suggests vital roles for pseudogenes in
multiple cellular processes and various cancers. Mechanistically,
some pseudogenes with specific miRNA target sites are capable
of regulating gene expression via acting as ceRNAs (10).
In this study, we constructed the pseudogene-miRNA-mRNA
regulatory networks to show the relationships of the pseudogenes
(ANXA2P2, FER1L4, and EEF1A1P9) along with their binding
miRNAs and target genes. The three pseudogenes highly correlate
with expression levels of several target genes, such as IL6,
MMP14, MMP9, VEGFA, and SNAIL1 that participate in glioma
development (33–35). To explore the biological functions and
signaling pathways of the risk signature, GO and pathway
analysis were performed on these target genes, many terms
associated with glioma progression were obtained, such as
regulation of cell proliferation, cell migration, apoptotic process,
response to hypoxia, angiogenesis, focal adhesion, the PI3K-AKT
signaling pathway, cell cycle, and HIF-1 signaling pathway.

A prior report that constructed another signature with six

pseudogenes (SP3P, ANXA2P3, PTTG3P, LPAL2, CLCA3P, and

TDH) for prediction of glioma patient survival (36). However,
our study made some innovations and also showed better
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FIGURE 9 | Functional roles of the six-pseudogene risk signature. Gene oncology (A) and KEGG pathway (B) analyses were performed on the related target genes

via DAVID. (C) Metascape was used to confirm the functional and pathway analysis in biological processes, KEGG, and Reactome pathways.
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performance for predicting survival of glioma patients. Firstly,
LASSO regression was used to identify pseudogenes, so as
to avoid over-fitting problems. Secondly, we constructed the
pseudogene-miRNA-mRNA regulatory networks and uncovered
the functional roles of the risk signature in glioma based on
the highly correlated genes. Thirdly, we established a nomogram
based on the risk signature and clinicopathological factors (age
and grade) that more accurately could predict the 1-, 3-, and 5-
year survival for glioma patients. Even with the above advantages,
there were some problems remaining. Firstly, the data were
downloaded from the TCGA database with limited numbers
of patients. Secondly, the nomogram was established based on
the five pseudogenes, with some clinical factors of glioma not
taken into account, such as surgical resection, radiotherapy and
chemotherapy. Thirdly, internal validation was used to evaluate
the efficiency of the risk signature rather than external validation,
because of unavailability to get integrated data of the five
pseudogenes from other databases, such as the REMBRANDT
and Gravendeel datasets. In future studies, we may collect more
glioma samples and detailed clinical information to validate the
five-pseudogene signature.

In conclusion, we identified five pseudogenes associated with
glioma patient survival. By combining the five pseudogenes, a
risk signature was established and validated to be competent to
predict the 1-, 3-, and 5-year survival of glioma patients. The
risk signature was correlated with glioma grade, age, IDH, and
MGMT promoter status. Furthermore, the pseudogene-miRNA-
mRNA regulatory networks were constructed. In light of the

targeted genes, GO and KEGG pathway analyses showed that
the risk signature might be involved in regulating biological
processes and signaling pathways related to glioma progression.
Taken together, the risk signature in our study may serve as a
prognostic biomarker for glioma.
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