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A large number of studies have presented a great deal of information about tumor and

immune system interaction. Nevertheless, the problem of tumor evasion from the immune

reaction is still difficult to resolve. Understanding the ways in which immunosuppressive

tumor microenvironment develops and maintains its potential is of utmost importance

to ensure the best use of the suppressed immune functions. The study presents a

review covering the data on tumor-associated antigens, mechanisms of tumor evasion

from the immune reactions, and search for common immunosuppressive processes of

tumor growth and normal wound healing. The study discusses the important role of

monocytes/macrophages in the regulation of immune system reactions. We suggest that

the simultaneous actions of growth factors and pro-inflammatory cytokines may result

in the suppression of the immune system. The study describes intracellular signaling

molecules that take part in the regulation of the myeloid cell functions. If the hypothesis is

proved correct, the indicated interaction of cytokines could be regarded as a prospective

target for antitumor therapy.

Keywords: monocytes, macrophages, hypothesis, inflammation, growth factors, immunosuppression, tumor,

wound healing

INTRODUCTION

The immune system can recognize malignantly transformed cells due to the antigens that
differentiate a tumor cell from the normal one. Inflammation in the tumor microenvironment
causes an accumulation of immune cells at the site. Therefore, the tumor has some mechanisms
of immune suppression in the microenvironment to evade immune surveillance. Besides, an
obscure inflammatory phenomenon associated with immunosuppression has been observed.
Immunosuppression requires no new mechanisms of action in the tumor microenvironment, but
it boosts existing normal regulatory mechanisms, such as those that participate in inflammation
resolution, wound healing, etc. Better understanding of these mechanisms is crucially important.
The paper provides evidence that the concurrent presence of pro-inflammatory cytokines and
growth factors affecting monocytes/macrophages in the tumor microenvironment may act as such
a regulatory mechanism. This combination of cytokines and growth factors can have a significant
immunosuppressive effect.

MECHANISMS OF THE IMMUNOLOGICAL RECOGNITION OF
TUMORS

Immune cells can act against tumors in different ways, such as by absorbing and presenting tumor
antigens, releasing cytokines that activate and recruit other immune cells, or directly killing tumor
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cells. This section describes the most well-studied tumor antigens
that distinguish a tumor cell from a normal one, which help the
immune system eventually eliminate the tumor. Some immune
mechanisms, such as phagocytosis, involve the recognition and
elimination of apoptotic and stressed cells. Many cell types
have a special function of efferocytosis, i.e., elimination of
apoptotic cells. They include both professional (macrophages
and immature dendritic cells) and non-professional phagocytes
(fibroblasts and epithelial cells).

Phosphatidylserines
Phosphatidylserines are phospholipid components located on
the inner (cytosolic) cell membranes. In apoptotic cells,
phosphatidylserines come out on the cell surface. As a result,
phagocytes receive the signal for the absorption of the apoptotic
cells. Phosphatidylserine can be recognized by a number of
receptors (1, 2). Some studies showed that tumor cells may have
an increased level of surface phosphatidylserines (3).

Calreticulin
Another pro-phagocyte signal is calreticulin expressed
on the cell surface. Normally, calreticulin is located in
endoplasmic/sarcoplasmic reticulum (4), in the cell nucleus
(5), and partly on the surface membrane (6). Cellular stress
induces its surface expression. In this case, calreticulin acts as a
pro-phagocyte signal binding to CD91 receptor on phagocytes,
which leads to the absorption of the target cell. Normal cells with
a low level of surface calreticulin are not destroyed because they
send anti-phagocytic signals with their surface CD47 (7). Certain
cancers present super-expression of surface calreticulin, but
most normal cells have low calreticulin levels. Enhanced CD47
expression correlates with high calreticulin expression, and that
is necessary to avoid calreticulin mediated phagocytosis (8–10).

Heat Shock Proteins (HSP) and NK-cells
Unlike normal cells, tumor ones have an elevated expression of
heat shock proteins (HSP). These proteins play a different role
in the intracellular or extracellular settings. On the one hand,
intracellular HSPs defend tumor cells from the stressful impact
of the microenvironment (11, 12), which becomes a problem
for the antitumor therapy. On the other hand, membrane and
extracellular Hsp70 have a stimulating immune effect (13–15).
Some HSPs can bind intracellular antigen peptides. Such peptide
complex may come out on the cell surface as a result of cell lysis
and other processes. APCs have surface receptors that capture the
complex and engulf it. APCs can incorporate antigens linked to
HSPs and on activation present these antigens to CD8+ T-cells,
thus promoting cytotoxic lymphocyte activity (16, 17). Moreover,
surface Hsp70 mediates cytotoxic NK functions. Surface Hsp70
was found on plasmatic membranes in different tumor cell
cultures (18) and tumors of cancer patients (19), while normal
tissues had no Hsp70 (20). Cytokine activated NKs recognize and
lyse tumor cells with surface Hsp70 (21, 22). CD94 receptor on
the NK probably participates in the Hsp70 recognition. Tumor
cell surface HLA-E serves as an inhibiting signal, whereas Hsp70
is an activating signal for different complexes of CD94/NKG2D
receptors on the NKs (23, 24).

B7-H6 and NK-cells
Tumor cell surface B7-H6 is a ligand for NKp30 activating
receptor on the NKs (25). Interaction of B7-H6 and NKp30
induces cytotoxic functions of IL-2 activated NKs (26, 27).
Generally, B7-H6 protein has not been found in normal
tissues (26), though it is expressed on the CD14+/CD16+
pro-inflammatory monocytes in sepsis (28). However, some
studies occasionally detected B7-H6 by immunohistochemistry
in normal tissues and showed no essential differences in B7-
H6 expression between a tumor and normal tissue (29, 30).
Other authors showed elevated surface B7-H6 in breast (31) and
ovarian cancers (32), melanoma (33), and glioma (34), while
normal tissues were negative of this parameter (34). Therefore,
it seems that surface B7-H6 rate may vary with the tumor
type. Some authors noted that higher expression of both surface
and soluble B7-H6 in ovarian cancer was associated with the
down regulation of the NK function (35). This fact may partly
explain the immune system failure to recognize tumor cells with
overexpressed B7-H6.

MIC A/B, NK and T-cells
Many studies indicate NKG2D as an activating receptor that
helps the immune system to distinguish tumor from normal cells.
Homodimer NKG2D is expressed on all NKs as well as CD8+ αβ,
γδ T-cells, and some NKT-cells (36–38). NKG2D receptor can
recognize highly polymorphic stress-induced molecules MICA
and MICB (major histocompatibility complex class I chain-
related protein A or B) related to MHC I (39). MICA/B proteins
are absent on the normal cells or a minor number of them
is found on the intestinal epithelial cells (40). However, these
proteins are often expressed in patients with cancer (41), such as
lung carcinoma, renal, prostate, ovarian, and colon cancer (42),
hepatocellular carcinoma (43), melanoma (44), and leukemia
(45). MICA/B expression increased in non-tumor cell lines in
various stress conditions including DNA damage (46) and viral
infection (47). Moreover, NKG2D receptor can recognize other
proteins expressed on the stressed cells, such as ULBP (UL16-
binding proteins) (48). T-cell activation requires firstly, the signal
from T-cell receptor, secondly, the co-stimulating factor CD28,
substituted by NKG2D in some cases (47). MICA orMICB ligand
interaction with NKG2D is a potent activating signal for NKs that
can result in NK recognizing and lysing the target cell (36, 49).
However, the decision of NK killing a tumor cell will be made
based on the summarized effects of the activating and inhibiting
receptors (50, 51).

Besides direct cytotoxicity, NK-cells can stimulate T-cell
response by inducing dendritic cell maturation (52, 53). Pre-
activated NKT-cells also induced DC maturation in some
experimental models (54). These mechanisms facilitate the
adaptive immune system to fight against the tumor. On the
whole, to activate the adaptive immune system, APC should
recognize the tumor and the tumor antigens should be presented
to the adaptive immune cells. DCs are considered the most
important APCs. DCmaturation is mediated by certain cytokines
produced by NK and other cells after tumor recognition and
stimulated by DAMP (Damage-associated molecular patterns)
released in stress and cell death. However, DAMP functions are
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ambiguous since they can have an antitumor effect on the one
hand, and may boost tumor development on the other hand (55).

Cancer-Testis Antigens, T-Cells
Although cancer-testis (CT) antigen expression in normal tissues
of the adults is restricted to the male germ cells, CT spontaneous
expression can be registered in tumor cells (56). Male germ
cells lack HLA-I molecules (57); they are located at the immune
privileged sites and cannot present antigens to T-cells. CT
antigen expression was detected in the thymic epithelial cells
that are responsible for negative selection of autoreactive T-
cells (58). Nevertheless, patients with cancer often develop
immune reactions to CT antigens (59), which involve both
cellular and humoral responses. At present, the number of CT
antigens includes over 200 protein families (60). The cancer
testis database presents a lot of studies that have demonstrated
immune response to these proteins with NY-ESO-1 being the
most immunogenic one (60). Correlation of low functional
activity of T-cells recognizing PRAME and an enhanced number
of immune suppressive cells was observed in CML (61), which
may explain inefficient immune response and tumor progression.

Mutant Proteins (Neoantigens), T-Cells
Many mutations occur in the tumor as a result of its genetic
instability (62, 63). Recent studies have shown that tumor
antigens appearing after the mutations of normal genes are
highly immunogenic. Quite a few examples demonstrate T-
cell recognition of mutant proteins presented in the HLA-
I context (64). On the one hand, mutations increase tumor
immunogenicity, while on the other hand, they are involved
in different pathways, including immunosuppression, that
contribute to tumor evasion from the immune surveillance.
The situation changes when immunosuppression declines due
to PD-1 or CTLA-4 blockade. The studies showed that a higher
mutation load of the tumor was associated with higher sensitivity
to the PD-1 blocker therapy in the studied cancer types (65–
68). The findings imply that tumors with a larger number of
mutations were more immunogenic. The murine sarcoma model
showed that mostly mutant neoantigens were responsible for
recognizing the tumor during anti- PD-1 and CTLA-4 treatment
(69). Personalized vaccines that induce immune response to the
mutant tumor neoantigens demonstrated an effective clinical
outcome though the trials involved a small number of vaccinated
patients (70, 71). Therefore, the tumor has a large number of
antigens to be recognized and destroyed by the immune system.

The above discussed information refers to the established
tumors. However, some authors studied the immune surveillance
of pre-malignant cells. Kang et al. introduced a genetic
construction into the livers of mice, which activated Nras
oncogene. Normal hepatocytes with the genetic construction
entered the cellular senescence program, which prevented
the tumor growth. The livers of these mice with senescent
hepatocytes were infiltrated by immune cells, expressed pro-
inflammatory cytokines, and therefore had decreased numbers
of Nras-positive cells. As a result, normal mice did not develop
any tumors. However, if monocytes/macrophages or CD4+T-
cells, but not others, were removed, these mice developed

hepatocellular carcinoma (HCC) (72). This study demonstrated
the immune surveillance even at the stage of pre-malignant cells.

MECHANISMS OF IMMUNOSUPPRESSION
IN THE TUMOR MICROENVIRONMENT

Despite the presence of tumor-associated antigens the immune
system destroys the established tumors very rarely. Tumor
microenvironment includes immunosuppressive factors as
well. We assume that it is the immunosuppression which
contributes most of all to the tumor evasion from the immune
reactions. Mechanisms of immunosuppression in the tumor
microenvironment have been studied in detail in many
profound reviews (73, 74). This section presents some of those
mechanisms. Part of them is generated by the tumor cells, while
other mechanisms are triggered by the recruited normal cells of
the tumor microenvironment. The section does not classify the
mechanisms with regards to their origin. We have found just
a vague design of immunosuppressive mechanisms hierarchy
and classification. Therefore, firstly, we describe them in general
and in the following section we will suggest a structure of the
immunosuppressive cells’ hierarchy.

Surface Expression of Ligands for Immune
Cell Inhibitor Receptors
As shown above, tumor cells express CD47 to defend from
phagocytosis induced by calreticulin (8). Surface PD-L1
expression is frequently detected on tumor cells or on the cells
of the tumor microenvironment. Binding to its PD-1 receptor
PD-L1 molecule can inhibit T-cell activation (75). Besides PD-1,
T-cells have other inhibiting receptors, such as LAG-3, which
ligands may be expressed in tumors (76). Another inhibitor
CTLA-4 is mainly expressed on regulatory T-cells (Treg) and on
the activated conventional T- cells (Tconv). CTLA-4 blockers
may enhance anti-tumor T-cell activity. The studies showed that
CTLA-4 can reduce the number of CD80 and CD86 ligands on
APCs by transendocytosis leading to the inability of APCs to
activate T-cells (77, 78).

Immunosuppressive Cells
It is now well known that quite a few of the immune cell
populations can have suppressive functions and are found in
the tumor microenvironment. The most substantially studied
lymphoid cells are Tregs and NKT-cells type II. Tumor-
associated macrophages (TAM) of M2 type and myeloid-
derived suppressor cells (MDSC) are the most studied myeloid
cells. Immature dendritic cells that cannot present tumor
antigens have a significant impact on tumor evasion from the
immune surveillance.

Secretion of Soluble Immunosuppressive
Factors
Tumor microenvironment accumulates an increased number
of immunosuppressive cytokines such as TGF-β (79) and IL-
10 (80). Multifunctional factors PGE2 (81), IL-6 (82), and
others exert their immunosuppressive functions in the settings
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of tumor microenvironment. Besides, extracellular adenosine
accumulates there and binds to its receptors on the immune
cells, which fosters suppressor activity of the immune cells
(83). Lactate presence in tumor microenvironment can stimulate
immunosuppression, as well (84).

Most tumors express at least one type of NKG2D ligands
and therefore they must be sensitive to NKG2D-dependent
immune response. However, soluble forms of NKG2D ligands
shed from the tumor cell surface and thus facilitate tumor
evasion from the immune surveillance. The serum amount of
soluble NKG2D ligands correlates with tumor progression in
some cancer types (85).

Exhausting the Nutrients in Tumor
Microenvironment
TAM and MDSC produce arginase-1 enzyme resulting in
exhausted arginine in the microenvironment. L-arginine is
an amino acid needed for T-cell proliferation and ζ-chain
synthesis of the T-cell receptor (TCR). Arginase-1 destroys
arginine, causes TCR ζ-chain impairment, and eventually blocks
activation and proliferation of T-cells (86). MDSC can exhaust
L-cysteine by consumption and engulfment. This amino acid
is important for T-cell activation. It is present in the form of
cystine in themicroenvironment. Although T-cells cannot absorb
cystine, they depend on cysteine, which is produced mainly
by mature dendritic cells and macrophages when they present
antigens. These cells absorb cystine, split it to cysteine, and
partially transfer it to T-cells. MDSCs absorb cystine but do not
transfer it to T-cells (87). Tumor cells, DCs, macrophages, and
MDSCs can produce immunosuppressive intracellular enzyme
indolamin-2,3-dioxygenase (IDO). IDO inhibiting effect on T-
cells is associated with the depletion of the essential amino acid
tryptophan and formation of suppressive tryptophan metabolites
as a result of this process (88). Therefore, antitumor immune
responses can be inhibited by a number of mechanisms.

COMMON MECHANISMS FOR WOUND
HEALING AND TUMOR
MICROENVIRONMENT

It has already been shown that the malignant process has some
similar features with wound healing (89–91). It is therefore
reasonable to search for and discuss their common mechanisms.
Wound healing is a complex process that is divided into several
phases. They have 3 major stages: inflammation, proliferation,
and tissue remodeling. It should be noted that the definition
refers mainly to skin wound healing because they were studied
most intensively. To summarize the features of this process, we
will use the term trauma healing.

1. Once the trauma has occurred, constriction of the blood
vessels and platelet aggregation develop in order to stop
bleeding. Then different inflammation related cells are recruited
to the site: neutrophils are recruited at the early phase and
monocyte/macrophages appear at the later phase. Inflammation
reaction is triggered by various cytokines and chemokines, as well
as DAMP and PAMP. Inflammatory phase is characterized by

hemostasis that prevents further damage and closes the wound.
The phase also includes chemotaxis and enhanced vascular
permeability that helps cell migration to eliminate cellular debris
and bacteria.

2. Proliferation phase develops when the wound defect is
filled with granulation tissue. Fibroblasts proliferate and produce
new collagens and glycosaminoglycans that promote wound
stabilization. Consequently new blood vessels develop and,
finally, wound edges are sealed by an immature scar.

3. Maturation phase develops when the damaged site is
restored; it reaches its maximum strength and the scar is formed.
If it is a skin wound, epithelization develops and the wound edges
are pulled together (92, 93).
Further we will discuss some mechanisms of
immunosuppression which occur at the trauma site and
during tumorigenesis. However, these mechanisms are not
necessarily the same in all types of wound healing.

The studies showed that mRNA-related PD-L1 expression
was high in normal human organs including heart, skeletal
muscles, placenta, and lungs (94). However, protein-related PD-
L1 expression was not observed in healthy subjects (95), or it
was low and increased with inflammation (96, 97). For instance,
the studies of experimental skin inflammation showed PD-L1
expression on some cells of microvessels and keranocytes though
they were not detected in healthy skin (98).

Purinergic regulation is involved in the resolution of
inflammation. This system is rather complex requiring counter-
regulatory mechanisms. We will describe it in a simple schematic
way and it may be found in the referred review in detail (99).
Normally, ATP molecules are located intracellularly and just
a small number is found in the extracellular matrix. ATP is
rapidly released into the extracellular matrix in case of cellular
stress or cell damage. ATP has chemotactic and stimulating effect
on immune cells when its high concentration accumulates in
the extracellular matrix. Enzymes split ATP on the immune
cell membranes to continue the proliferation phase. CD39
molecules can split ATP and ADP down to AMP. CD73 can
split AMP to immunosuppressive adenosine. Adenosine binds
to its receptors on a great number of immune cells and has an
anti-inflammatory effect.

Lactate accumulates in wounds in some cases (100, 101).
However, the data about its function are ambiguous: on the one
hand, experimental addition of lactate improved wound healing
(102, 103), on the other hand, high lactate concentrations have a
negative effect on fibroblast and endothelial cell viability (101).

Some authors suggest that the major Treg function is
the defense against autoimmune reactions. Besides, other
experimental studies showed that activated Foxp3+Tregs
accumulated in the skin wound site and improved its healing
(104). Similar effects were observed in healing of some other
organs (105).

Many authors consider that macrophages play a significant
role in the wound-related processes (106, 107). Back in the
1970s it was found that macrophage depletion significantly
delayed wound healing in animals (108). Similar results were
obtained in the studies on genetically modified mice where it was
possible to achieve specific depletion of macrophages in wounds
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(109, 110). The authors found that macrophage depletion was
especially critical at the inflammatory or proliferation phases
(110). At the early stage of wound healing infiltrating monocytes
and residential macrophages are affected by pro-inflammatory
cytokines, interferons, PAMP, or DAMP; they become activated
and acquire mainly pro-inflammatory phenotype M1. They
eliminate microorganisms by phagocytosis, remove dead cells
and cellular debris and produce pro-inflammatory mediators
and chemokines for additional recruitment of leukocytes. Later,
macrophages shift from pro-inflammatory M1 phenotype to
reparative M2 type in the healing process, and express anti-
inflammatory mediators and growth factors facilitating fibroblast
proliferation and angiogenesis. M1–M2 transition is of ultimate
importance for inflammation resolution and shifting balance
to tissue regeneration (111). It is worth looking in more
detail at the mechanisms which macrophages use to make
final decision of polarization to phenotype M2. So far, a
number of such mechanisms have been studied (111, 112).
We would like to identify potential polarization mechanisms
at the trauma site. And most likely, this is not just a
decrease of inflammatory mediators, RAMP and DAMP in
the microenvironment, but the presence of active counter-
regulatory mechanisms. It should be noted that IL-4 and IL-
13 cytokines, considered necessary for alternative macrophage
activation in the in vitro experiments, were not found in
the wound microenvironment in mice in vivo (113). There
is a mechanism associated with the elimination of apoptotic
neutrophils. At an early inflammatory stage, many neutrophils
are found in the wound microenvironment, which help wound
cleaning. However, if they persist for long, they may damage
surrounding tissues (114). Macrophages induce apoptosis in
neutrophils to eliminate them from the wound (115). Afterwards,
macrophages remove apoptotic neutrophils by phagocytosis
(116). Interestingly, phagocytosis of neutrophils is important for
macrophages polarization from pro-inflammatoryM1 phenotype
to reparative M2 (117, 118). However, according to the most
recent data, not all neutrophils die via apoptosis at the trauma
site, but many of them return to the vascular system (119).
Grinberg et al. discovered a counter-regulating mechanism of
restricting inflammation that functions with Toll-like receptors.
Toll-like receptor (TLR) 4 ligands and adenosine A (2A) ligands
switched macrophages from inflammatory M1 to angiogenic
M2-like phenotype (120). Immune complexes with LPS or IL-1
mediate M2 polarization, as well (121). This may imply another
type of a counter-regulating mechanism.

Though some authors noted that lactate can shift macrophage
polarization toM2 in tumormicroenvironment (84), we consider
that the mentioned mechanism may play only a supplementary
role in case of wound healing because of ambivalent lactate
features. Many studies showed that PGE2 can shift macrophage
phenotype to M2 (122). It is well known that PGE2 has pro-
inflammatory function (at the early stages of inflammation),
as well as anti-inflammatory activity (at the final stages when
PGE2 mediates wound healing) (123). In this regard, there are
doubts that PGE2 is an independent factor affecting macrophage
polarization. Perhaps its functions are associated with other
mediators currently present in themicroenvironment. Therefore,

it may be assumed that the transition from inflammation to
proliferation requires counter-regulatory mechanisms.

Besides macrophages in the trauma site, an increased number
of CD14+/HLA-DRlow/− monocytes were registered in the
peripheral blood (124, 125). A similar increase of these cells was
found in case of malignant process (126–129). The reports show
that such monocytes of cancer patients have immunosuppressive
functions and are referred to as MDSC (126, 127). They are
less studied in case of trauma; though some data indicate
that the increase in these cell numbers is associated with
the risk of secondary infections (130). MDSCs were found
in the trauma site in the mice studies (131). Another report
showed that MDSCs supported trauma healing (132). It is
highly likely that M2 macrophages and MDSCs are the same
cells of different status with similar functions since MDSC
in tumor microenvironment can differentiate into TAM (133).
Moreover, the studies on murine models showed that monocytes
accumulated in the trauma site and could present either pro-
inflammatory or anti-inflammatory functions similar to those
of M1/M2 macrophages (134–136). Therefore, it is not always
possible to distinguish these cells, and this paper will regard
monocytes, macrophages, immature DC, and monocyte-derived
MDSC as a single system of myeloid cells. There is a term of
mononuclear phagocytic system, but this paper will regard them
as monocytes/macrophages.

When comparing wound healing with the tumor process,
there arise some issues. For instance, why similar mechanisms
lead to inflammation resolution in injury, but do not stop
inflammation in tumors. And there are certain differences
between a malignant process and inflammation caused by
chronic infections (137). A vivid comparison was made for
the tumor as a “non-healing wound” (89). Another definition
may be “continuous immunosuppressive inflammation.” The
condition looks like a frozen process at some transitional stage
between inflammation and proliferation. Studying the role of
stem cells in trauma healing will help better understanding of
this phenomenon. Probably, the interaction betweenmyeloid and
stem cells has common characteristics with the “seed and soil”
hypothesis of metastases formation (138).

Wound healing involves such important stem cells as
mesenchymal stem cells (MSC), hematopoietic stem cells (HSC),
adipose tissue stem cells (ADSC), and endothelial progenitor
cells (EPC) (139). We will use the term “stem cell” to describe
their common features or indicate a certain cell type where
appropriate. It is well known that stem cells can migrate to
the trauma site (139, 140). Stem cells probably can improve
wound healing by twomajormechanisms–by secretingmediators
necessary for healing (as a result of the release of inflammatory
mediators together with the key cytokines and growth factors)
and by differentiation into the cell types necessary for the wound
closure. However, mechanisms of stem cell action in the wound
healing have not been characterized in detail, yet.

Pathologic inflammatory reaction to the trauma can disrupt
stem cell functions. For instance, polymorphonuclear cells
recruited to the site of injury caused necrosis of endothelial
precursor cells (EPC), possibly, as a result of reactive oxygen
species action (141). Therefore, it is more probable that stem
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cell functions of tissue reparation are realized mainly after
inflammatory phase and thus, stem cells should be able to control
inflammation independently. It is already well known that MSCs
have immunosuppressive functions (142, 143).

Some reports demonstrate that inflammatory cytokines
induce MSC immunoregulatory functions (144–146). In fact,
such microenvironment is observed at the inflammatory
phase of wound healing. Pro-inflammatory cytokines, toxins
of infectious agents and hypoxia can stimulate MSCs to
produce growth factors including epidermal growth factor
(EGF), fibroblast growth factor (FGF), platelet growth factor
(PDGF), transforming growth factor β (TGF-β), vascular
endothelial growth factor (VEGF), hepatocyte growth factor
(HGF), insulin-like growth factor-1 (IGF-1), angiopoietin-1
(Ang-1), keratinocyte growth factor (KGF), and stromal cell
factor-1 (SDF-1). These growth factors consequently promote
development of fibroblasts, endothelial cells, and tissue precursor
cells that build up tissue regeneration and restoration (147).

Some interesting specific features of the interaction between
stem and immune cells, particularly myeloid ones, are worth
mentioning. Numerous experiments showed that MSCs regulate
macrophage and DC functions by soluble mediators; although
intercellular contacts play an important role as well (148, 149).
For instance, MSCs inhibit macrophage phenotype polarization
to M1 type in the animal model of sepsis (150); similar results
of macrophage polarization were obtained on the rat model of
trauma (151). MSCs also inhibit DC maturation (152, 153). M2
macrophages and immature DCs are usually found in the tumor
microenvironment. The papers present several descriptions of
mechanisms of suppressive MSC effect on myeloid cells. For
example, MSCs produce PGE2 (122, 154) and interleukine-1
receptor antagonist (IL1RA) (155).

The interaction between pro-inflammatory cytokines and
growth factors that may simultaneously present at the wound site
during the transition process from inflammation to proliferation,
which, in fact, has been poorly studied so far, is also
worth being considered. That brings up a some questions:
“is simultaneous presence of pro-inflammatory cytokines and
growth factors in the microenvironment immunosuppressive?,”
and “doesn’t that give a signal for macrophage phenotype
polarization to M2 type and for inflammation resolution move
forward to proliferation phase?” No such investigations of
wound healing have been identified, although there are some
reports that partly support this possibility. Mesenchymal stem
cells, derived from the umbilical cord, suppressed monocyte
differentiation into DC leading to the phenotype that produced
IL-10. This was the result of the MSC production of Il-6
and HGF cytokines (156). A similar study generated DCs by
monocyte cultivation in the presence of IL-4 and GM-CSF.
Multipotent MSCs added into the culture stopped monocyte
differentiation and shifted the phenotype to produce IL-
10. The effect was associated with IL-6 cytokine production
by multipotent MSCs (157). It should be noted that the
mentioned culture contained IL-6 and GM-CSF; and that
could have had immunomodulating effect on monocytes. Huen
et al. found that GM-CSF stimulated alternative macrophage
activation after renal ischemic/reperfusion injury (158). GM-CSF

is regarded as a pro-inflammatory factor if no additional stimuli
are involved.

It is unclear whether the immunosuppressive effect of pro-
inflammatory cytokines and growth factors plays an essential
role in injury healing. Can it represent one of the mechanisms
triggering macrophage polarization to M2 phenotype? So far, the
data are insufficient to answer the question. But the described
mechanism seems to be of great importance in oncology, which
we will discuss below.

MONOCYTES/MACROPHAGES IN TUMOR
PROCESS

Most authors assume that macrophages play the key role in
inflammation resolution and transition to the proliferation phase
in wound healing. Since the tumor involves natural mechanisms
of immunosuppression, it is presumed that myeloid cells such
as monocytes/macrophages (including monocytes, macrophages,
immature DC, monocytic MDSC) play an essential part in
these mechanisms as well. A large number of studies proved
macrophage presence in the tumor microenvironment (159).
TAM (160) and MDSC (129) functions in the malignant process
were well described in some studies. The results of animal studies
showed that macrophage (161) or MDSC (162) depletion was
associated with the reduction of tumor burden.

However, the authors may have different understandings
of the regulatory cell hierarchy. And most likely, T-
regulatory CD4+/CD25+/FoxP3+ cells rather than
monocytes/macrophages can have the key role in tumor
immunosuppression. Regarding this assumption, it should
be noted that adaptive immunity is activated by the signals
received from the cells of the innate immunity. Treg cells
function in cooperation with APCs. Most APCs are DCs and
macrophages. Treg cells need antigen stimulation via APC to
implement their suppressive function. In turn, Treg suppressive
mechanisms function mainly as a result of their interaction with
APCs decreasing APC ability to activate effector cells (77, 163).
Therefore, macrophages and DCs probably regulate Treg
accumulation and activation; thus Treg cells depend on these
APCs. We consider that induced Tregs contribute significantly
to the tumor tolerance as compared with natural (thymic)
Tregs. Normal function of the induced Tregs in maintaining
tolerance can be seen in the lungs and intestines. Numerous
non-dangerous antigens enter the body through these organs;
the reaction to such antigens may result in more harm than
good. Immune tolerance to inhaled antigens in the lungs is
mainly mediated by T-regulatory cells, which can inhibit effector
T cells with a variety of mechanisms. The reports show that
regulatory antigen-presenting cells (macrophages and DCs) are
crucial for Treg generation and maintenance of the suppressive
microenvironment in the lungs (164, 165). Moreover, the studies
showed that DCs promote not only Treg accumulation, but,
conversely, confine Treg differentiation (166). In fact, there are
few reports of this kind regarding tumor microenvironment.
Jitschin et al. showed Treg dependence on MDSCs in vitro
(127). Hoechst et al. showed that monocytic MDSCs induce Treg
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generation in vitro (167, 168). The studies on tumor models
found that MDSCs caused tolerance to the tumor as a result of
Treg accumulation (169, 170).

In regard to the cell hierarchy, we do not insist that
monocytes/macrophages have more significant suppressive effect
on antitumor immunity than Tregs. Regarding the cell hierarchy,
there is only a suggestion that Tregs have a dependent position in
relation to monocytes/macrophages. According to these findings,
myeloid cells may be a more promising therapeutic target. Thus,
in case of effective targeting monocytes/macrophages, Tregs will
be automatically affected as well.

CYTOKINE INTERACTION IN TUMOR
MICROENVIRONMENT

This section discusses the impact of certain soluble
factors of tumor microenvironment on the polarization of
monocytes/macrophages. P53 mediates the cellular aging
program, thus protecting the cell frommalignant transformation
(171). Lujambio et al. showed that senescent stellate cells
with unmodified p53 in the liver express factors that promote
macrophage polarization to M1 phenotype. These macrophages
were able to attack aging cells in culture. At the same time,
proliferating p53-deficient stellate cells secrete factors that
stimulate macrophage polarization to M2 phenotype (172).
Another study evaluated the immuno-mediated clearance of
aging hepatocytes to prevent tumor development, a process
also called “senescence surveillance.” The study found that
“senescence surveillance” requires recruitment and maturation
of CCR2+myeloid cells, while their depletion causes HCC
growth. On the other hand, the tumor cells prevent maturation
of recruited myeloid precursors, and, in addition, these myeloid
cells become immunosuppressive (173). Besides HCC, some
other cancer types affect myeloid cells in the same mode. Lechner
et al. studied about 100 different tumor cell lines cultured in the
presence of mononuclear cells of healthy donors. The results
showed that 45 cell lines stimulated monocyte transformation
into CD33+ MDSC-like cells that could inhibit T-cells (174).
Similar results were obtained in the studies of CLL cell cultured
with the mononuclear cells of healthy donors (127).

Naturally, the question arises: “what tumor-produced factors
lead to immunosuppression of monocytes/macrophages?”
Lechner et al. studied 15 immune factors of the tumor cell
lines by RT-PCR. Cytokine mixtures were tested for their
ability to generate suppressive CD33+ cells from healthy donor
mononuclear cells in vitro. The combination of GM-CSF and
IL-6 cytokines demonstrated the highest immunosuppressive
effect, and the combinations of GM-CSF and IL-1β, PGE2,
TNF-α, or VEGF showed immunosuppressive activity, as well
(175). Pleiotropic IL-6 role in tumor immunosuppression (176)
may be reasonably explained by interaction with other soluble
factors. However, when considering GM-CSF, the situation is
somewhat more complicated. The GM-CSF immunostimulating
and regulatory functions have been discussed for long, but
the problem still remains unresolved (177, 178). The above
mentioned papers describe in detail the controversial issues

related to the problem, however, they propose only their own
subjective opinion. The issue is complicated; a number of
studies received the opposite results when cultivation of myeloid
precursors with GM-CSF led to tolerogenicity (179, 180) or DC
maturation (181). However, some authors tried to explain the
controversial effects of GM-CSF by its different concentrations.
Progenitor cells derived from bone marrow treated with a low
dose of GM-CSF may develop into tolerant immature DCs,
while the same cells treated with a higher dose of GM-CSF may
develop into a mixture of mature and immature DCs (182).
This phenomenon can be explained by the fact that the culture
with DC precursors could have included low concentrations of
pro-inflammatory cytokines, and after addition of GM-CSF in a
low dose, they had a joint immunosuppressive effect. In case of
GM-CSF high doses, the difference between GM-CSF and pro-
inflammatory cytokine concentrations was far more significant,
and therefore GM-CSF manifested its immunostimulating effect.
On the other hand, there are some in vitro studies where GM-CSF
had a suppressive effect in high concentrations, and it is more
difficult to explain that phenomenon. Though, it should be noted
that the latter studies had certain differences in the methodology
as compared with the studies where GM-CSF showed a pro-
inflammatory effect (181, 183). Nevertheless, Marigo et al. failed
to generate immunosuppressive myeloid cells when cultured
with GM-CSF only, but received them in the culture with a
combination of GM-CSF + IL-6 (184). Similar results were
achieved in some other studies. Immunosuppressive MDSC were
obtained in vitro with combinations of such cytokines as GM-
CSF+ IL-6 (185–187), GM-CSF+ IL-6+ PGE2 (188), GM-CSF
+ IL-6+G-CSF (189), PGE2+GM-CSF+ IL-4 (190), GM-CSF
+ IL-6 + IL-1β (191). Cytokine combination IL-6 + G-CSF
inhibited differentiation and activation of dendritic cells (192).
At this point it is worth remembering the suppressive effect of
mesenchymal stem cells on monocytes, which decreased after
the blockade of some pro-inflammatory cytokines and growth
factors, as it was described above in the section onwound healing.

Furthermore, one may ask the question: “is there such a
combination of cytokines in the tumor microenvironment?”
It is now assumed that tumors are often associated with
persistent unresolved inflammation; therefore, pro-inflammatory
cytokines are found in the tumor microenvironment. A
thoroughly studied HCC is a good example. We described
above the fact that HCC development is normally prevented by
inflammation and macrophages with “senescence surveillance”
(75), but myeloid cells of the tumor microenvironment become
immunosuppressive in the established HCC (173). Besides
inflammation, a certain number of growth factors appear in
the HCC microenvironment. Later, we will talk about the
results of patients’ tumor studies. M-CSF high expression
and increased macrophage distribution in peritumoral region
was associated with HCC progression (193). The enhanced
circulating TGF-β1 concentration was associated with the worse
survival rate of patients with HCC (194). Serum VEGF levels
in patients with HCC were significantly higher than those of
healthy donors (195). FGF19 expression correlated with tumor
progression and worse prognosis in HCC (196). High serum
HGF levels in patients with HCC were associated with poor
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prognosis after liver resection (197). Pancreatic cancer is also
associated with inflammation. Two experimental studies of
pancreatic cancer detected GM-CSF in patients’ tumor samples
after immunohistochemical staining (179, 180). Another review
(198) showed the important role of inflammatory cytokines and
TAM in the development and progression of pancreatic cancer
and found growth factors in the tumor microenvironment.
Multiple myeloma is an example of hematological malignancies,
which includes the enhanced rate of some growth and pro-
inflammatory factors (199–201). The studies found that HGF,
bFGF and G-CSF expressions in head and neck squamous cell
cancer were negative prognostic factors for patient survival (202).
The studies of breast cancer found cytokine G-CSF, IL-6 and IL-
17 expression in the serum of cancer patients, but not of healthy
volunteers (203). The study of serum cytokines in melanoma
reported that the concentrations of several factors (IL-1α, IL-
1β, IL-6, IL-8, IL-12p40, IL-13, G-CSF, MCP-1, MIP-1α, MIP-
1β, IFN-α, TNF-α, EGF, VEGF, and TNF-RII) were significantly
higher in patients with high-risk resected melanoma compared
to those of healthy donors. In addition, IFN-α-2 therapy led to a
significant decrease in the levels of growth factors, such as VEGF,
EGF, and HGF (204). Another paper reviews the evaluation of
serum cytokine profile in patients with several cancer types (205).
Although it pays less attention to growth factors but it shows
their presence. It is worth mentioning that the concentration
of cytokines directly in the tumor microenvironment should be
regarded as of higher importance.

We suggest a hypothesis with regards to the above discussed
data that may explain such functions of soluble factors in
tumor microenvironments. According to the hypothesis, a tumor
cell acquires some characteristics of a stem cell, including
the ability to regulate immunity in a similar way to the
interaction between mesenchymal stem cells and macrophages,
as it is described in the section on wound healing. Yet,
in case of injury, MSCs are found in the inflammatory
microenvironment, but they do not produce it. This location
stimulates them to produce growth factors. The combination
of soluble mediators (pro-inflammatory cytokines and growth
factors) promotes monocyte/macrophage immunosuppressive
activity. The process in wound healing is most likely a short-
term one and helps the transition from the inflammatory to
proliferation phase. Tumor cells are supposed to produce or
support growth factors and pro-inflammatory cytokines in an
independent manner for a long time, using this mechanism to
avoid immune reactions (Figures 1A,B, Table 1). However, it is
difficult to identify the necessary ratio of growth factors and
pro-inflammatory cytokines that leads to immunosuppression;
it may be 1:1 or even 1:5. That should be determined in the
experiments. It is yet unknown whether all pro-inflammatory
and growth factors have such effect. Most likely, these are
IL-6 and GM-CSF. It is also important to emphasize that
immunosuppression results from the combination of growth
factors and pro-inflammatory cytokines, but not from the
dominating immunosuppressive growth factors, such as TGF-
β. Therefore, it is counter-regulating mechanism that requires
two types of signaling. Undoubtedly, besides this mechanism
tumor immunosuppression involves other ones. But its role is

obviously underrated, and it has the potential of becoming a
therapeutic target.

The studies showed that different strategies of resolving
tumor-associated inflammation can adversely affect tumor
growth and development (206, 207). Yet, assuming the decrease
of inflammation should reduce immune functions seems
controversial. Our hypothesis explains such effects of reduced
inflammation by the alteration of cytokine balance.

Though unexpected, elevated levels of growth factors and
pro-inflammatory cytokines were observed in some autoimmune
diseases. However, the processes associated with these diseases
are opposite–not decrease, but excessive activation of the
immune functions–and it is difficult to detect the exact cause
of such processes. We suggest there might be mechanisms that
are hierarchically higher than immunosuppression caused by
the combined effects of inflammatory cytokines and growth
factors, such as some super-antigens, and these mechanisms can
block immunosuppression.

SIGNALING MOLECULES MEDIATING
MONOCYTE/MACROPHAGE
POLARIZATION TO THE
IMMUNOSUPPRESSIVE PHENOTYPE

The characteristics of the signaling pathways promoting
monocyte/macrophage immunosuppression are far from being
complete, though some data are already available. A more
detailed study of signaling could provide additional data for
understanding our hypothesis. At the initial stages, the signal
transmission from the receptors of growth factors and pro-
inflammatory cytokines is achieved with the “integrated” tyrosine
kinases, Jak-STAT,MyD88, TRAF, etc. Understanding the process
is rather difficult because of the fact that growth factors
such as EGF, PDGF, VEGF, M-CSF use “integrated” tyrosine
kinases, whereas colony-stimulating factors such as GM-CSF and
some pro-inflammatory cytokines, including IL-6, use Jak–Stat
signaling. Therefore, it is difficult to identify any regular patterns
at the initial stages of the signaling pathways of growth factors
and pro-inflammatory cytokines.

Cytokine IL-6, which has a dual role in the anti-tumor
immunity, activates signaling proteins Stat1 and Stat3 in addition
to its other functions. Stat1 is known for its anti-tumor activity,
whereas Stat3 is known for promoting tumor progression and
immunosuppression (208). The balance between the opposite
effects of Stat1 and Stat3 is considered to be one of the
mechanisms regulating the inflammatory status of macrophages.
Some authors believe that Stat3 activation is the key factor
responsible for the tolerance associated with tumor escape from
the immune surveillance (209, 210).

Transcription factor C/Ebpß plays an important role in the
differentiation of myeloid precursors into functional MDSC
(184). Moreover, C/Ebpß expression in myeloid precursors
was associated with immunosuppression in the murine model
of sepsis (211). Other studies demonstrated some correlation
between Stat3 and C/EBPβ expression in MDSC in sepsis
(212) and in granulocytes during “emergency” granulopoiesis

Frontiers in Oncology | www.frontiersin.org 8 October 2019 | Volume 9 | Article 1115

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ponomarev and Shubina Tumor Microenvironment and Wound Healing

FIGURE 1 | (A) Activation of the immune cells by pro-inflammatory cytokines. (B) Suppression of the immune cells by the combination of pro-inflammatory cytokines

and growth factors.

TABLE 1 | Potential common mechanism of wound healing and tumor microenvironment.

Phases ofwound

healing

Components

of wound

and tumor

microenvironment

Inflammation Potential intermediate stage Proliferation

Soluble factors in the

microenvironment of

monocytes/macrophages

Domination of pro-inflammatory

cytokines (acute inflammation). As a

result, MSCs start producing growth

factors.

Accumulation of pro-inflammatory

cytokines and growth factors.

Inflammation resolution.

Polarization of

monocytes/macrophages

M1–like phenotype Monocytes/macrophages acquire

immunosuppressive phenotype.

Transition from M1 to M2.

M2–like phenotype

Similar microenvironment in tumors Rare Very often Occasionally

(213). Kaneda et al. report that phosphoinositide-3-kinase
γ (PI3Kγ) controls the transition between suppressive and
pro-inflammatory macrophages in inflammation and tumor
microenvironment. Signal transduction through Akt PI3Kγ and
mTor signaling pathways inhibits NFκB activation and stimulates
C/EBPβ activation, thereby inducing transcriptional programs
that contribute to immune suppression during inflammation
and tumor growth (214). Earlier, Chen et al. found that mTOR
pathway is an important element in the regulation of monocyte
differentiation into TAM (215).

Some signal proteins may be mentioned, which are
presumably less likely to participate in immunosuppression
associated with pro-inflammatory cytokines and growth factors.
A number of studies presented many details of NFkB role in
TAM polarization (216), and sometimes they are controversial
(217). We will describe only some of the main issues. It is
considered that NFkB dimer consisting of P65/P50 subunits
plays a pro-inflammatory role, while the dimer comprising
P50/P50 (NFκB1, inactive status) plays an anti-inflammatory
role in the immune system. Panzer et al. showed NFkB1 role in
the resolution of renal inflammation. After induction of immune

glomerular injury in rats, mostly NF-kB P65/P50 heterodimer
complexes moved to the cell nucleus, while after inflammation
resolution mainly P50/P50 homodimers were found in the
cell nucleus (218). Enhanced P50/P50 expression supported
pro-tumor M2 phenotype of macrophages, and blocked
polarization toward M1 (219, 220). Strauss et al. found that
protein RORC1/RORγ promotes TAM and MDSC formation
during “emergency” granulomonocytopoiesis in cancer (221).
Pello et al. demonstrated that c-Myc transcriptional factor is
necessary for macrophage polarization to M2 phenotype (222).
A number of studies reported that IRF 4 transcription factor
(interferon regulatory factor) can participate in an alternative
macrophage activation (223, 224).

CONCLUSION

The paper summarizes the available data on the tumor
interaction with the immune system. Cell stress and mutations
result in emerging antigens that make a difference between a
tumor and a normal cell. Such antigens could have become
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the targets for immune system recognition. This makes it
extremely important for the tumor to have immunosuppressive
mechanisms. It is presumed that the tumor does not develop
any new mechanisms for inhibiting immune reactions but uses
the existing normal mechanisms. Therefore, we made an attempt
to draw analogies of immunosuppressive mechanisms in the
tumor microenvironment and in wound healing. At the same
time, we outlined some common features and regular patterns
of the microenvironment, which we put as the basis for our
hypothesis. Wound healing is characterized by the simultaneous
presence of growth factors and pro-inflammatory cytokines in
the MSC microenvironment during the transition stage from
inflammation to proliferation. We suggest that these cytokines
function in cooperation and thus have a regulatory effect on
monocytes/macrophages. The affected monocytes/macrophages
transfer the immunosuppressive pattern onto the cells of
the adaptive immune system. The above presented data

demonstrate that such effects of pro-inflammatory cytokines
and growth factors can be used by tumor cells to evade
immune surveillance. The described details help to explain the
phenomenon of the immunosuppressive inflammation in the
tumor microenvironment. The combined effect of growth factors
and pro-inflammatory cytokines onmonocytes/macrophages has
been poorly studied, yet. In case if this hypothesis is proved, the
cytokine interaction could become a promising therapeutic target
and have a very wide range of applications, both in oncology and
treatment of some other conditions associated with abnormalities
in the immune system.
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