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The p53 gene family network plays a pivotal role in the control of many biological

processes and therefore the right balance between the pro-apoptotic and pro-survival

isoforms is key to maintain cellular homeostasis. The stability of the p53 tumor

suppressor protein and that of oncogenic 1Np63α, is crucial to control cell proliferation.

The aberrant expression of p53 tumor suppressor protein and oncogenic 1Np63α

contributes to tumorigenesis and significantly affects anticancer drug response. Recently,

we demonstrated that TRIM8 increases p53 stability, potentiating its tumor suppressor

activity. In this paper, we show that TRIM8 simultaneously reduces the level of the

pro-proliferative 1Np63α protein, in both a proteasomal and caspase-1 dependent way,

thereby playing a critical role in the cellular response to DNA damaging agents. Moreover,

we provided evidence that 1Np63α in turn, suppresses TRIM8 gene expression by

preventing p53-mediated transactivation of TRIM8, therefore suggesting the existence

of a negative feedback loop. These findings indicate that TRIM8 exerts its anticancer

power through a joint action that provides on one hand, the activation of the p53 tumor

suppressor role, and on the other the quenching of the oncogenic 1Np63α protein

activity. The enhancement of TRIM8 activity may offer therapeutic benefits and improve

the management of chemoresistant tumors.

Keywords: TRIM8, p53, 1Np63α, chemoresistant tumors, caspase-1, proteasome

INTRODUCTION

p63 proteins are key transcription factors belonging to the TP53 gene family. They are involved in
cell growth, proliferation, apoptosis, and differentiation, playing an essential role in epithelial stem
cell biology and development (1). Alternative promoter usage of TP63 gene results in two main
groups of proteins: the TA isoforms, which contain an N-terminal Trans Activation domain (TA)
and the 1N isoforms, which lack it (2, 3). For this reason, the 1N isoforms were initially thought
to act as dominant-negative isoforms until a second TA domain (TA2) was identified that accounts
for their transactivation potential (4). Both TA and 1N isoforms can be alternatively spliced to
generate different carboxy-terminal proteins, including α, β, γ, δ, and ε isoforms (3). The TAp63
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isoforms possess a p53-like anti-oncogenic activity and due to
their potent pro-apoptotic activity are expressed at very low levels
and have a relatively short half-life, whereas the pro-proliferative
1Np63 proteins are much more stable than TAp63. TA and
1Np63 proteins degradation is mostly proteasome-dependent
and regulated by several distinct post-translational modifications,
namely phosphorylation, ubiquitylation, ISGylation, and
SUMOylation (5–9).

In vitro and in vivo evidences support the oncogenic role of
the N-terminally truncated 1Np63α isoform (10–12). Indeed,
unlike p53, the p63 gene is rarely mutated in human cancers and
1Np63α is overexpressed in different types of tumors indicating
that it provides a selective growth advantage to cancer cells.
Enhanced expression of 1Np63α is now considered a diagnostic
marker and an indicator of poor prognosis (13–16). Moreover,
in Squamous Cell Carcinoma (SCC), where 1Np63α drives
proliferation and blocks apoptosis, it has recently been shown
that the Fibroblast Growth Factor Receptor 2 (FGFR2) is the
crucial mediator of 1Np63 oncogenic functions (17).

1Np63α can function both as a transcriptional activator
and as a transcriptional repressor of several genes within
the p53 network by simply preventing p53 occupancy at the
shared p53-Responsive Elements (p53-RE) (18, 19). Accordingly,
overexpression of 1Np63α in SCCs shuts down the p53-driven
transcriptional program. Therefore, a balance between p53 and
1Np63α protein levels is pivotal to control cell proliferation,
death, and differentiation.

The functional cross-talk between p53 and Tripartite motif
(TRIM) E3 ubiquitin ligases that can lead to an increased or
decreased degradation of p53, is known to play a key role in
tumor progression and chemoresistance (20).

In particular, we have recently demonstrated that the human
TRIM8 protein, is able to potentiate p53 tumor suppressor
activity (21). TRIM8 protein, as all the members of this family,
is characterized by the presence of a RING domain, one or two
B-box motifs and a coiled-coil region. TRIM8 contains a Nuclear
Localization Signal (NLS) and localizes in nuclear structures
not yet characterized, whose formation is dependent on coiled-
coil and C-terminus domains, suggesting that these domains
provide the protein-protein interface for the recruitment of
other proteins to the subcellular compartments. TRIM8 was
reported to be a tumor suppressor in glioma and renal cell
carcinoma (22–24). In stress condition, TRIM8 interacts with
p53 tumor suppressor protein displacing MDM2 binding to
p53, thus resulting in p53 stabilization and G1 cell cycle
arrest (21).

Consistently with our previous findings and given the
structural and functional relationship between p53 and p63, we
hypothesized that TRIM8 could also be involved in the control of
1Np63α protein stability.

Here we show evidence that TRIM8 promotes 1Np63α
destabilization both in a Caspase 1-dependent and proteasomal
ways, but only in a functional p53 background. Reduction of
TRIM8 cellular levels results in an increase of 1Np63α stability,
promoting a strong boost in cell proliferation and increased
chemoresistance. Taken together, our data indicate that TRIM8
simultaneously increases p53 stability and reduce the level of the

pro-proliferative 1Np63α protein, thereby playing a critical role
in the cellular response to DNA damaging agents.

MATERIALS AND METHODS

Cells, Drugs and Treatments
The human embryonic kidney 293-T-Rex CAT and 293-T-
Rex 1Np63α cells were generated and cultured as reported in
Sbisà et al. (25). Briefly, the human embryonic kidney Flp-In
T-Rex-293 cell line from InvitrogenTM was used to generate
stable 1Np63α and CAT (Chloramphenicol acetyltransferase)
as control expression cell lines. The Flp-In T-Rex-293 cell line
contains two stably, independently integrated plasmids, which
allowed us to integrate the cDNAs corresponding to1Np63α and
CAT into a transcriptionally active region of the genome. The
expression of 1Np63α and CAT was induced by the addition of
tetracycline to the culture medium.

The human colon cancer cell lines HCT116p53wt and
HCT116p53−/−, the human lung carcinoma H1299 cell line, the
human breast cancer MCF7 cell line, the human osteosarcoma
U2OS and human keratinocyte HaCaT cell lines were all cultured
in Dulbecco’s modified Eagle’s medium (D-MEM) plus 10% fetal
bovine serum (FBS), L-Glutamine (2mM), penicillin (100 U/ml),
and streptomycin (100µg/ml) at 37◦C, 5% CO2.

Nutlin-3 10µM (Cayman), Cisplatin 7.5µM (Sigma), and
UV rays (20 J/m2) were used for 24 h, in order to induce cell
cycle arrest. Cicloheximide (CHX) (Sigma) was used at the final
concentration of 100µg/ml. MG132 (Sigma) was used for 4 h at
the final concentration of 10µM. Z-VAD-FMK (Sigma) was used
for 24 h at the final concentration of 20 µM.

TRIM8-shRNAs (TR300821-OrigeneTM):
TI303277) TGATAAGACGGAGGATGTCAGCTTCATGA
TI303278) AACCTGAAGCTCACCAACATCGTGGAGAA
TI303279) TAAGATCGGCCACCTGAACTCCAAGCTCT
TI303280) CGCAAGATTCTCGTCTGTTCTGTGGACAA;
p53 shRNAs (TR320558-OrigeneTM):
TI379448) CAGCCAAGTCTGTGACTTGCACGTACTCC
TI379449) CCGGACGATATTGAACAATGGTTCACTGA
TI379450) CTCCTCAGCATCTTATCCGAGTGGAAGGA
TI379451) CTCAGACTGACATTCTCCACTTCTTGTTC
Human p63 siRNA (Dharmacon): CGACAGTCTTGTACA

ATTT.

Transfections
Cells were plated 24 h before transfections. At the time of
transfections (70–80% cell confluence), 200 µl of DMEM
medium without serum were incubated with Trans-LT1
Mirus transfection reagent (Tema Ricerca) for 5min at room
temperature. Then, the recombinant vectors or their control
empty version were added to the medium containing the
transfection reagent and incubated at room temperature for
20min and subsequently added to the cell cultures for 48 h.

Cell Proliferation Assays by MTT Reduction
2 × 105 cells were plated in six-well plates. After transfections
and/or treatments, 250 µl of MTT solution (final concentration
0.5µg/ml) was added to the cells for 4 h at 37◦C. The medium
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was then removed and the reduced blue formazan crystals
were suspended in isopropanol prior to reading the absorbance
at 580 nm.

Protein Extraction and Western Blot
Analysis
Cells were plated in 100mm culture dishes at a density of 1
× 106 cells/ml. After treatments, cells were lysed, and proteins
were extracted as previously described (25). Briefly, cells were
lysed with RIPA buffer [50mM Tris-HCl pH 7.5, 150mM NaCl,
1% Nonidet P40, 0.5% sodium deoxycholate, 0.1% SDS, protease
inhibitors cocktail tablets (Roche)] for 1 h on ice. Then the
lysates were clarified by centrifugation at 13,200× g at 4◦C,
aliquoted and stored at −20◦C. Twenty micrograms of the total
proteins in 2X SDS-PAGE sample buffer were heated at 95◦C for
2min and submitted to 12% SDS-PAGE. Separated proteins were
electroblotted onto Nitrocellulose filter.

For immunoblotting, the following primary antibodies were
used: p53 specific DO-1 (Santa Cruz, California, USA 1:300),
p63 specific H-137 (Santa Cruz, California, USA 1:500), TRIM8
specific C-20 (Santa Cruz, California, USA 1:200), Anti-
FLAG (Sigma, 1:2000), Anti-HA (Bethyl Laboratories, 1:1000),
Anti-MDM2 (Calbiochem, Ab-2 2A10 1:200) Anti-Actin Ab-1
antibodies kit (Calbiochem, 1:2000). Bound primary antibodies
were visualized using LumiLight Western Blotting Substrate
(RocheTM) on a UVITEC Cambridge Camera. Each experiment
was repeated three times, one representative immunoblot
of which is presented in the figures. In Supplementary
figures is reported the densitometry analyses representing the
average of three independent biological replicates with the
standard deviations.

Co-immunoprecipitation and Western Blot
Analysis
Co-Immunoprecipitation experiments were performed by
lysing cells in RIPA buffer with 10% glycerol in order to
stabilize protein-protein interactions. Protein complexes
were then immunoprecipitated using appropriate antibodies.
Complexes were analyzed by western blotting using appropriate
antibodies, anti-p53 DO-1 (Santa Cruz Biotechnology), anti-
p63 H-137 (Santa Cruz Biotechnology), and anti-FLAG
(Sigma). Bound primary antibodies were visualized using
Lumi-Light Western Blotting Substrate (RocheTM) on a UVITEC
Cambridge Camera.

RNA Extraction, Reverse Transcription and
qRT-PCR Analysis
Total RNA was extracted from cell lines using the RNeasy
Plus Mini kit (Qiagen R©) and according to the manufacturer’s
instructions. Purified RNA was then quantified using the
NanoDropTM 1000 Spectrophotometer (Thermo Scientific) and
RNA quality was determined by running aliquots on the 2100
Bioanalyzer (Agilent Technologies).

Reverse transcription of 500 ng of total RNA was performed
using QuantiTect R© Reverse Transcription kit (Qiagen R©),
according to the manufacturer’s instruction. The real-time PCR

reactions were performed on Applied BiosystemsTM 7900HT, as
described by the manufacturer. The reaction mixtures contain
2x TM Master Mix Buffer, PDAR System Target 20x FAM
(TaqMan R© Gene Expression Assays), 1 µl cDNA template and
water. Cycle threshold (Ct) values were obtained graphically,
automatically by the instrument for TRIM8, p21 (also known as
CDKN1A), ADA, CCND3, and FbW7. The Normfinder applet
for Microsoft Excel was used to determine the most stable
housekeeping gene for MCF-7 and HCT116 cells used in this
study from a panel of three reference genes (ACTB, GAPDH, and
HPRT1). Normfinder analyses indicated that the glyceraldeyde
3P-dehydrogenase (GAPDH) was the most stable housekeeping
gene in samples used in qRT-PCR experiments and therefore
it was used as our internal standard in qPCR experiments.
Reactions without cDNA were included as negative control. The
relative gene expression for each experiment was calculated using
the non-treated sample as a calibrator.

The data reported represent the average of at least three
independent experiments and are shown with their standard
deviations. In this study, a p-value of <0.05 was considered to
be statistically significant.

Chromatin Immunoprecipitation (ChIP)
Assay
293 T-rex CAT and 293 T-rex 1Np63α cells were treated as
previously described in Sbisà et al. (25).

Twenty-four hours after induction, proteins were crosslinked
to DNA in living nuclei and chromatin immunoprecipitation
assay was performed as described in D’Erchia et al. (26).

Five micrograms of the following antibodies were used: p63
antibody H-137 (Santa Cruz), acetylated H4-histone antibody
(UpstateTM) or unrelated control anti-Flag antibody (Sigma).

DNA fragments were analyzed by PCR using specific primers
for the TRIM8-p53RE1 identified in the TRIM8 intron 1.

Luciferase Reporter Assay
2 × 105 human p53-null H1299 cells were plated in 6-well plates
24 h before transfection (60–80% confluency).

pGL-3 basic recombinant vector containing the p53-RE1
of the TRIM8 gene was transfected together with the empty
pcDNA3 expression vector or with pcDNA3 containing
wt 1Np63α, or its mutant version 1Np63αR279Q, plus
pRLSV40 (Promega).

Transient reporter assays were performed as previously
described in D’Erchia et al. (26). Forty-eight hours after
transfection, cells were lysed in Passive Lysis buffer 1X
(Promega) and the luciferase assay was performed using the
Dual Luciferase assay system (Promega), according to the
manufacturer’s instructions.

Transfection efficiency was determined by renilla activity. The
data reported represent the average of at least three independent
experiments and are shown with their standard deviations.

Cell Cycle Analysis
After treatments, the total cell population, including floating
and adherent cells, was harvested, washed twice with 1×
PBS, treated with 6,25µg/ml RNase A, 50µg/ml propidium
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iodide (PI), NP40 0.1% at room temperature for 1 h.
The cells were analyzed in a FACScalibur; cell cycle and
apoptosis analyses were performed using ModFit analysis
software (Becton Dickinson).

Statistical Analysis
Results in graphs represent the average of at least three
independent experiments and are all expressed as mean ±

standard deviation.
Statistical analysis was performed by using Student’s t-test. P

< 0.05 was considered to be statistically significant.
Imaging data were analyzed in the program Image J.

RESULTS

TRIM8 Induces the Destabilization of the
Oncogenic 1Np63α Protein
In this study, we sought to investigate the effects of the TRIM8
protein on 1Np63 isoforms and in particular, on the oncogenic
1Np63α, the main p63 isoform involved in cancer development.
To this aim, TRIM8 and p63 isoforms were overexpressed
in U2OS cells, bearing a low level of endogenous p63. As
shown in Figure 1A and Supplementary Figure 1A, TRIM8
induced a dramatic reduction of exogenously transfected
1Np63α but not 1Np63β or 1Np63γ. The same result was
obtained on endogenous 1Np63α in MCF7 cells (Figure 1B
and Supplementary Figure 1B). Moreover, as expected, TRIM8
overexpression induced p53 stabilization (21), but was ineffective
on TAp63α (Figure 1B and Supplementary Figure 1B).
Functional assays (MTT reduction and cytofluorimetric analysis)
showed that the increase of TRIM8 protein levels resulted in a
decrease of cell proliferation with the arrest of the cells in G1
(Figure 1C). The percentage of apoptotic cells, as expected, was
insignificant (subG1 in Figure 1C) (21). Conversely, TRIM8
depletion, by specific short hairpin RNAs (shRNAs) resulted in
an increase of cell viability and entry in S-phase (Figures 1D,E).
Accordingly, we found an increase of 1Np63α and a reduction
of p53 levels by immunoblot analysis upon TRIM8 depletion
(Figure 1D and Supplementary Figure 1C).

To quantify the effect of TRIM8 on 1Np63α stability we
performed a time-course experiment using cycloheximide
(CHX) in MCF7 cells transfected with pcDNA3 empty vector
(control) or pcDNA3-TRIM8. As shown in Figure 2A and
Supplementary Figure 2A, TRIM8 dramatically decreased
1Np63α protein half-life. To identify which domain of
TRIM8 was responsible for 1Np63α destabilization, we
transfected constructs encoding different TRIM8 deletion
mutants lacking the RING domain (TRIM8-1RING), the
B-boxes domain (TRIM8-1BB), the coiled-coil domain
(TRIM8-1CC) or the RFP (RING-Finger Protein-like) domain
(TRIM8-1RFP) in control and 1Np63α overexpressing
MCF7 cells. Immunoblot analysis revealed that only the
TRIM8-1RING mutant was unable to reduce endogenous and
overexpressed 1Np63α protein levels as well as to promote
p53 stabilization and activation and MDM2 degradation, as
previously reported (21) (Figure 2B, compare lane 1 with lane
5 and lane 7 with lane 11 and Supplementary Figure 2B).

Accordingly, TRIM8-1RING mutant did not cause the
reduction of MCF7 cell proliferation thus demonstrating that
the RING domain is absolutely required for TRIM8-dependent
control of 1Np63α stability and activity (Figures 2B,C).
Moreover, following TRIM8 transfection, the expression
of two 1Np63α target genes associated to cell cycle
progression, ADA and CCND3 (19, 27) dramatically dropped
(Supplementary Figures 3A,B).

Altogether, these data strongly demonstrate that TRIM8
induces the destabilization of the oncogenic 1Np63α protein
and that the RING domain of TRIM8 is necessary to mediate
this process.

p53-Dependent Effect of TRIM8 on
1Np63α Destabilization
To evaluate whether the effect of TRIM8 on 1Np63α
stability was p53 dependent, we investigated the effect
of TRIM8 overexpression on 1Np63α stability in p53-
null cells (HCT116 p53−/−, H1299 p53−/−) or p53
wild type cell lines (HCT116 p53+/+, MCF7), expressing
1Np63α, and TRIM8 proteins (Supplementary Figure 3C).
Interestingly, TRIM8-dependent 1Np63α destabilization
was observed only in a p53 wild type cells and not in
p53-null and in p53-mutated background (Figure 3A and
Supplementary Figures 4A,B), indicating that 1Np63α
destabilization by TRIM8 was p53-dependent. Moreover,
we observed that in MCF7 cells (expressing high 1Np63α
protein levels), TRIM8 overexpression did not destabilize
1Np63α when p53 was silenced with specific p53-shRNA
(Supplementary Figure 4C) thus definitely confirming the
importance of p53 in this process.

Next, we tested whether TRIM8-mediated 1Np63α
destabilization occurred by a caspase or proteasome-dependent
pathway. MCF7 cells were co-transfected with 1Np63α
and TRIM8 and treated either with the Caspase Inhibitor
Z-VAD-FMK or with the proteasome inhibitor MG132. As
shown in Figure 3B and Supplementary Figure 5A, both
MG132 and Z-VAD-FMK treatments prevented 1Np63α
degradation upon TRIM8 overexpression (compare lane
3 with lane 4 and 5, respectively). Remarkably, TRIM8
induced proteasome-dependent MDM2 destabilization
(compare lane 2 with lanes 3 and 5 in Figure 3B and
Supplementary Figure 5A). Furthermore, the mutant
1Np63α YVEA in which the Caspase-1 site is mutated
(28), was resistant to TRIM8 overexpression, endorsing the
hypothesis that TRIM8 induces 1Np63α destabilization
by both the proteasome and caspase1-dependent pathways
(Figure 3C and Supplementary Figure 5B).

Remarkably, the mutant 1Np63α-K637R, in which the
sumoylation site is mutated (5), and the mutant 1Np63α-
K193/194R, that is resistant to Itch-mediated degradation
(29) were both sensitive to TRIM8 overexpression (Figure 3D
and Supplementary Figure 5C). Conversely, the mutant
1Np63α-K494R/K505R (30) was resistant to TRIM8
overexpression. These lysines have been shown to be
involved in ubiquitin-mediated degradation following
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FIGURE 1 | TRIM8 induces 1Np63α destabilization. (A) U2OS cells were transiently co-transfected with 1Np63α, 1Np63β, or 1Np63γ constructs (20 ng) and

increasing amount of HA-TRIM8 expression plasmid (10, 20, and 40 ng). Western Blot (WB) analysis was performed on cells extracts with the indicated antibodies

and β-actin was used as loading control. (B,D) WB of the indicated proteins in MCF7 cells transfected with pcDNA3-FLAG control vector, pcDNA3-FLAG-TRIM8,

unspecific shRNA (control), or four specific TRIM8-shRNAs. WB of β-actin was conducted as loading control. (C,E) Cell proliferation was measured by MTT reduction

in MCF7 cells 48 h after transfection with pcDNA3-FLAG control vector, pcDNA3-FLAG-TRIM8, unspecific shRNA (control), or four specific TRIM8-shRNAs. Data are

shown as the average with a standard deviation of three independent experiments (*p < 0.05). Flow cytometric analysis of MCF7 cells transfected with pcDNA3-FLAG

control vector, pcDNA3-FLAG-TRIM8, unspecific shRNA (control), or four specific TRIM8-shRNAs. Data are shown as the average with standard deviation of three

independent experiments (**p < 0.01).

nuclear-cytoplasmic shuttling of 1Np63α upon MDM2
action, suggesting that nuclear export of 1Np63α is
required for TRIM8 mediated regulation (Figure 3D and
Supplementary Figure 5C). Once exported to the cytoplasm
by MDM2, p63 is targeted for degradation by the Fbw7 E3-
ubiquitin ligase (30). To test if FbW7 is involved in 1Np63α
degradation upon TRIM8 overexpression, we silenced FbW7

expression in U2OS by using specific sh-RNAs (30). The
silencing of FbW7 was confirmed by qPCR experiments
(Supplementary Figure 5D). As shown in Figure 3E and
Supplementary Figure 5E, FbW7 knockdown induced a
partial recovery of 1Np63α protein levels upon TRIM8
overexpression, suggesting that Fbw7 may be involved in
TRIM8-induced 1Np63α degradation although we could not
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FIGURE 2 | The RING domain of TRIM8 is necessary to mediate 1Np63α destabilization. (A) Half-life of endogenous 1Np63α protein in MCF7 cells transfected with

empty pcDNA3-FLAG or pcDNA3-FLAG-TRIM8 expression vectors for 48 h and treated with cycloheximide (CHX) (100µg/ml) for the indicated times (minutes). Data

are shown as the average with standard deviation of three independent experiments (**p < 0.01). (B) Both the endogenous and ectopic levels of 1Np63α protein

were assessed by immunoblotting with the indicated antibodies in the MCF7 cell line transfected for 48 h with pcDNA3-HA control vector, pcDNA3-HA-TRIM8, or with

TRIM8-deletion mutants, lacking the two B-boxes (TRIM8-1BB), the coiled coil domain (TRIM8-1CC), the RING domain (TRIM8-1RING), or the RFP domain

(TRIM8-1RFP). (C) Cell proliferation was measured by MTT reduction in the MCF7 cell line, expressing endogenous 1Np63α and transfected for 48 h with pcDNA3-HA

control vector, pcDNA3-HA-TRIM8, or with TRIM8-deletion mutants, lacking the two B-boxes (TRIM8-1BB), the coiled-coil domain (TRIM8-1CC), the RING domain

(TRIM8-1RING), or the RFP domain (TRIM8-1RFP). Data are shown as the average with standard deviation of three independent experiments (**p < 0.01).

detect a direct interaction between TRIM8 and 1Np63α by
co-immunoprecipitation (Figure 3F).

1Np63α Negatively Regulates TRIM8
Expression
Next, we sought to determine if also the pro-oncogenic 1Np63α
isoform was able to regulate TRIM8 expression, as it has been
shown for p53 (21). Thus, we transfected both MCF7 cells
(p53wt) and HCT116 (p53−/−) cells with 1Np63α expression
vector. As shown in Figure 4A and Supplementary Figure 6A,
western blot experiments and qPCR analyses demonstrated
that 1Np63α overexpression dramatically repressed TRIM8
expression in both cell lines. Conversely, 1Np63β and γ

overexpression did not influence at all TRIM8 expression in
MCF7 cells, while induced only a slight decrease of TRIM8
mRNA and protein levels in p53-null HCT116. The depletion of

endogenous 1Np63α in MCF7 (p53wt) and HCT116 (p53−/−)
cells by specific small interfering RNA (siRNA) increased TRIM8
transcript levels, indicating the possible repressive action of
1Np63α on TRIM8 in a more physiological setting (Figure 4B
and Supplementary Figure 6B).

Next we tested whether 1Np63α was able to bind the
p53-Responsive Element (RE) that we identified within
intron 1 of TRIM8 (21). Luciferase reporter assays showed
that 1Np63α overexpression repressed TRIM8 p53-RE
(Figure 4C). Transcriptional repression was dependent
on functional 1Np63α since the DNA binding defective
mutant 1Np63αR279Q was unable to repress the reporter
construct (31) (Figure 4C and Supplementary Figure 6C).
In vivo binding of 1Np63α to this p53RE was verified by
Chromatin Immuno-Precipitation (ChIP) experiments in
a 293T-rex stable cell line expressing 1Np63α under the
control of a tetracycline-inducible promoter. Interestingly,
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FIGURE 3 | p53-dependent effect of TRIM8 on 1Np63α destabilization. (A) p53 null HCT116-p53(–/–) and H1299 cells and p53wt HCT116-p53wt and MCF7(p53wt)

cells were transiently co-transfected with 1Np63α (20 ng) and an increasing amount of HA-TRIM8 expression plasmid (10, 20, and 40 ng). WB analysis was

performed on cells extracts with the indicated antibodies. (B) MCF7 cells were transiently transfected with the indicated recombinant vectors for 48 h and treated with

the caspases-inhibitor Z-VAD-FMK (20µM for 24 h) or with the proteasome inhibitor MG132 (10µM for 4 h). WB analysis was performed on cells extracts with the

indicated antibodies. The endogenous level of 1Np63α in MCF7 cells is shown in lane 1; transfected 1Np63α (shown in lane 2) is about 24 folds higher than

endogenous level. (C) MCF7 cells were transiently co-transfected with pcDNA3-FLAG or pcDNA3-FLAG-TRIM8 constructs together with 1Np63α or mutant 1Np63α

YVEA for 48 h. WB analysis was performed on cells extracts with the indicated antibodies. (D) U2OS cells were transiently co-transfected with mutant 1Np63α

constructs (K637R; K193/194R; K494/505R) (20 ng) and increasing amount of HA-TRIM8 expression plasmid (10, 20, and 40 ng). WB analysis was performed on

cells extracts with the indicated antibodies. (E) U2OS cells were transiently co-transfected with the indicated recombinant vectors for 48 h. WB analysis was

performed on cells extracts with the indicated antibodies. (F) Co-immunoprecipitation of 1Np63α and TRIM8. HCT116-p53(–/–) were co-transfected with the

indicated plasmids and treated with MG132 for 4 h at the final concentration of 10µM. Cell lysates were immunoprecipitated with anti-p63 or anti-p53 (control). The

immunoprecipitated complexes were analyzed by western blotting with the indicated antibodies.

we found that 1Np63α bound as well as p53 the same
RE in TRIM8 gene with the opposite effect: repression for
1Np63α and activation for p53. Indeed, the recruitment of
1Np63α on p53RE was paralleled by a decrease in histone
H4 acetylation (Figure 4D and Supplementary Figure 6D).
These results further support the repressive role of 1Np63α on
TRIM8 gene expression indicating the existence of a negative
auto-regulatory loop.

Based on these results we tested whether there was a
competitive action between p53 and 1Np63α on TRIM8
promoter. To this aim, p53 and 1Np63α were transfected
in MCF7 cells alone or together in different ratios. TRIM8
mRNA expression levels were evaluated by RT-qPCR. As shown
in Figure 4E and Supplementary Figure 6E, when p53 was
overexpressed alone, TRIM8 expression increased, but when
p53 was overexpressed along with 1Np63α, TRIM8 mRNA
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FIGURE 4 | Repressive role of 1Np63α on TRIM8 gene expression. (A) Western Blotting with the indicated antibodies in MCF7 and HCT116-p53(–/–) cells

transfected with pcDNA3-control vector, pcDNA3-1Np63α, pcDNA3-1Np63β, or pcDNA3-1Np63γ. WB of β-actin was conducted as loading control. RT-qPCR of

TRIM8-mRNA in MCF7 and HCT116-p53(–/–) cells transfected with pcDNA3-control vector, pcDNA3-1Np63α, pcDNA3-1Np63β, or pcDNA3-1Np63γ. Data are

shown as the average with standard deviation of three independent experiments (**p < 0.01). (B) RT-qPCR of TRIM8 -mRNA in MCF7 and HCT116-p53(–/–) cells

transfected with unspecific siRNA (scramble) or specific siRNA–1Np63α. Data are shown as the average with a standard deviation of three independent experiments

(**p < 0.01). The level of endogenous 1Np63α and TRIM8 in the same cells were measured by western blotting reported below. WB of β-actin was conducted as

loading control. (C) Luciferase reporter assay. H1299 cells were co-transfected with plasmids expressing 1Np63α or its mutated form (1Np63αR279Q) and

pGL3-Basic-TRIM8-p53RE luciferase reporter. The luciferase activities were measured 48 h after transfection. Data are shown as the average with standard deviation

of three independent experiments (**p < 0.01). The levels of exogenously expressed protein were controlled by western blotting. (D) Schematic map of the human

TRIM8 genomic region containing the putative p53RE (TRIM8-p53RE) with the related sequence. Below, the in vivo recruitment of 1Np63α and acetylated H4 histone

to TRIM8-p53RE present in the TRIM8 gene by Chromatin-immunoprecipitation assay. DNA fragments were analyzed by PCR using specific primers. (E) RT-qPCR of

TRIM8-mRNA in MCF7 cells transiently co-transfected with p53 and an increasing amount of 1Np63α expression plasmid. Data are shown as the average with

standard deviation of three independent experiments (*p < 0.05; **p < 0.01). WB analysis was performed on cells extracts with the indicated antibodies. WB of

β-actin was conducted as loading control.

expression decreased along with the increase of 1Np63α

protein levels indicating that 1Np63α may compete with

p53 for the control of TRIM8 gene expression. Similar
results were obtained in HCT116 p53−/− cells indicating

that 1Np63α not only competes with p53 but is able to
suppress TRIM8 gene expression in a p53-independent way
(Supplementary Figure 7).

TRIM8 Deficit Impairs 1Np63α Response
to Cellular Stress
It has been widely reported that in response to UV irradiation
or to chemotherapy treatments as cisplatin, which lead to p53
activation, 1Np63α protein levels decreases (25, 32). To test
the effects of TRIM8 deficit on 1Np63α stability and activity
after UV irradiation, Nutlin-3, or Cisplatin treatments, MCF7
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FIGURE 5 | Inhibition of TRIM8 negatively affects the response to cellular stresses. (A) WB of the indicated proteins in MCF7 cells transfected with control unspecific

shRNA or TRIM8-specific shRNAs and treated with Nutlin-3 (10µM), Cisplatin (7.5µM), UV rays (20 J/m2 ), or untreated cells. WB of β-actin was conducted as

loading control. (B) Flow cytometric analysis of MCF7 cells transfected with control unspecific shRNA or TRIM8-specific shRNAs and treated with Nutlin-3 (10µM),

Cisplatin (7.5µM), UV rays (20 J/m2 ), or untreated cells. (C) WB of the indicated proteins in MCF7 transfected with empty pcDNA3-HA or the recombinant

pcDNA3-HA-TRIM8 vectors and treated with Nutlin-3 (10µM), Cisplatin (7.5µM), UV rays (20 J/m2 ), or untreated cells. WB of β-actin was conducted as control. (D)

Flow cytometric analysis of MCF7 cells transfected with empty pcDNA3-HA or the recombinant pcDNA3-HA TRIM8 vectors, and treated with Nutlin-3 (10µM),

Cisplatin (7.5µM), UV rays (20 J/m2 ), or untreated cells. Data are shown as the average with standard deviation of three independent experiments (**p < 0.01).

cells were transfected with control shRNA (scramble) or specific
TRIM8 shRNA and treated with UV, Nutlin-3, or Cisplatin for
24 h. Immunoblot experiments demonstrated that Nutlin-3,
Cisplatin, and U.V. induced an increase in p53 and TRIM8
protein levels and a decrease of 1Np63α protein (Figure 5A
and Supplementary Figure 8A). TRIM8 was also up regulated
at the transcriptional level (Supplementary Figure 8B, lanes
with control shRNA). As a result, p21 mRNA levels increased
(Supplementary Figure 8C) with concomitant reduction of
cell proliferation (Figure 5B and Supplementary Figure 8D,
lanes with control shRNA). Coherently, the expression of
the 1Np63α-target genes ADA and CCND3, decreased
(Supplementary Figure 9A, lanes with control shRNA).
Depletion of TRIM8 by specific shRNA caused a strong 1Np63α
stabilization (Figure 5A and Supplementary Figure 8A)
followed by the reduction of p21 mRNA, the increase of
ADA, CCND3 mRNA levels (Supplementary Figures 8C, 9A)
with a significant increase of percentage of the cells in S-
phase (16.3 vs. 48.6% in Figure 5B, untreated samples) even

under Nutlin-3, Cisplatin, or U.V. treatments (Figure 5B).
On the other hand, TRIM8 overexpression in cells subjected
to Nutlin-3, Cisplatin, or U.V. irradiation induced 1Np63α
destabilization that was concomitant with the increase of
p53 and p21 and the down-regulation of ADA, CCND3
mRNA levels (Supplementary Figure 9B) resulting in
an increase of the percentage of the cells in G1-phase
and the arrest of cell proliferation (Figures 5C,D and
Supplementary Figures 10A,B).

Similar results were obtained also in different cell
lines expressing wild type p53 as HCT116 and U2OS
(Supplementary Figures 11–14).

Altogether these experiments indicate that inhibition of
TRIM8 negatively affects the response of the cells to UV
exposure, Nutlin-3, and Cisplatin treatments underlying the
critical role played by TRIM8 in mediating the p53-dependent
cell cycle arrest in response to DNA damage and that
TRIM8 mediated down-regulation of 1Np63α is essential in
this context.
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FIGURE 6 | p53-dependent effect of TRIM8 on 1Np63α destabilization. Under stress condition, p53 activates the expression of TRIM8, which in turn binds p53 and

displaces MDM2 inducing p53 stabilization. TRIM8 simultaneously reduces the level of the pro-proliferative 1Np63α protein. We could hypothesize that MDM2, before

being itself degraded, could mediate 1Np63α translocation to the cytoplasm, where proteasomal degradation mediated by the E3 ubiquitin ligase Fbw7 could occur.

Moreover, TRIM8-stabilized p53 mediates 1Np63α destabilization through the Caspase-1 pathway.

DISCUSSION

The levels of proteins such as p63 and p53 that control
fundamental cellular processes, including gene expression and
cell proliferation, must be critically regulated. The destabilization
of p63 proteins is isoform-dependent. TAp63 isoforms are
generally less stable than 1N variants that are known to be
target for regulated ubiquitination and proteolysis (33, 34).
So far, several ubiquitin E3-ligases controlling p63 proteins
have been identified. Nedd4 was the first E3 ligase to be
identified as acting on p63 (35). Itch is a Nedd4-like ubiquitin
E3 ligase that directly binds and ubiquitinates both TA- and
1N-p63α isoforms promoting their proteasome degradation
(29). WWP1 (WW domain containing E3 ubiquitin protein
ligase-1), the homolog of Itch and Pirh2 (p53-induced RING-
H2) can also bind both TAp63α and 1Np63α promoting
their proteasome mediated degradation (36). Following DNA
damage or during keratinocyte differentiation, MDM2 binds
to 1Np63α promoting its translocation to the cytoplasm,
where it is ubiquitylated by the E3 ubiquitin ligase Fbw7
and directed to proteasome degradation (30). Finally,
p53 was shown to be able to associate with and target
1Np63α into a Caspase1-dependent protein degradation
pathway (28).

In our study, we demonstrate that TRIM8 overexpression
induces the destabilization of 1Np63α, but not of the β

and γ isoforms, by both proteasome and caspase-dependent
mechanisms. The presence of a Sterile Alpha Motif (SAM) only
at the C-terminal of only the alpha isoform, suggests that this
domain may be involved in the regulation of 1Np63α stability
mediated by TRIM8. Indeed the function of this domain is not
limited to oligomer formation but can be variable depending on
different protein interactions. On the other hand, the TAp63α
isoform, despite owing the SAM domain, is resistant to TRIM8
effect, possibly due to the reduced accessibility of its three-
dimensional structure (6). Further studies may help to establish
if the SAM domain in combination with post-translational
modifications is necessary for 1Np63α destabilization upon
TRIM8 overexpression.

We have previously demonstrated that TRIM8 induces p53
stabilization (21) and now we show evidence that one of the
roles played by TRIM8-stabilized p53 is to mediate 1Np63α
destabilization through a Caspase-1 pathway (28) (Figure 6).
TRIM8 dramatically decreased the 1Np63α half-life in a way
that is similar to the effect of TRIM8 on the E3 ubiquitin
ligase MDM2, the main p53 negative regulator [Figure 3B,
compare lane 2 with lane 3; Caratozzolo et al. (21)]. Since
TRIM8 binds p53 and displaces the binding of MDM2 to p53
(21), we could hypothesize that MDM2 itself, before being
itself degraded, could mediate 1Np63α translocation to the
cytoplasm, where proteasomal degradation mediated by the
E3 ubiquitin ligase Fbw7 could occur. Indeed silencing of
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Fbw7 induces a partial recovery of 1Np63α protein levels
upon TRIM8 overexpression, suggesting that Fbw7 is involved
together with Caspase-1 in 1Np63α destabilization (Figure 6).
The hypothesis that TRIM8 may act itself as an E3 ubiquitin
ligase for 1Np63α, requires further investigation since we do not
find any direct interaction between the two proteins. Anyway,
we believe that these mechanisms are not redundant but rather
they may ensure a quick and efficient cellular response to DNA
damage stimuli that requires a rise in the p53 tumor suppressor
activity and a sharp decrease of the pro-proliferative 1Np63α
protein. Indeed, interactions between p53 family members
and their isoforms have a profound effect on tumorigenesis
and anticancer drug response. The most intriguing are those
between 1N and TA isoforms. In cancer cells expressing high
levels of 1Np63α, the transactivation property of p53 and
TAp63 isoforms, which induce cell cycle arrest and apoptosis,
is suppressed by the dominant-negative action of 1Np63α.
This suppression makes cells resistant to cell cycle arrest and
apoptosis, causing uncontrolled cell proliferation and tumor
formation. Moreover, 1Np63α is considered a key determinant
of therapeutic response to cisplatin in tumors expressing p53, as
it induces 1Np63α degradation and stabilization of the TAp63α,
proapoptotic isoform (37, 38). A consistent picture emerging
from the literature asserts that certain genotoxic stress, as well as
chemotherapeutic drugs, induce an apoptotic response mediated
both by destabilization of the anti-apoptotic 1N isoforms and
by the stabilization of the pro-apoptotic TA isoforms. In other
words, it seems that the execution of the p53-mediated cell
proliferation arrest and apoptosis requires the depletion of the
1Np63α isoform (15).

Interestingly, we provided evidence that 1Np63α, in turn,
suppresses TRIM8 gene expression by preventing p53-mediated
transactivation of TRIM8. Indeed, 1Np63α was found to
function as a transcriptional repressor of several genes within
the p53 network by simply preventing p53 occupancy at
the shared p53-Responsive Elements (18, 19). Therefore, the
aberrant expression of 1Np63α may promote tumorigenesis by
inhibiting the function of wild type p53. Cancer cells that fail
to execute a p53-mediated cell cycle arrest or apoptosis develop
chemoresistance, which is a major problem in cancer therapy,
particularly in those tumors where p53 is present in an inactive
form. Therefore, it is crucial to search key regulators that target
1Np63α protein degradation preserving the tumor suppressor
role of the TA isoforms.

In this context, the studies reported in this paper shed new
light on a model mechanism by which TRIM8 protein exerts
its anticancer activity through a joint action that provides on

one hand the activation of the p53 tumor suppressor role and,
on the other, the quenching of the oncogenic activity of the
1Np63α protein.

In conclusion, we found that TRIM8 promotes 1Np63α
destabilization, although not by direct interaction, and only in
a p53 wild type cellular background. Remarkably, we have shown
that TRIM8 is able to increase the cellular responses to UV,
Nutlin-3, and cisplatin in different tumor cells, thereby playing a
critical role in the outcome of DNA damaging agents treatment.

Mediated strategies to enhance TRIM8 that in turn activates
the p53 tumor suppressor function and blunt the oncogenic
activity of 1Np63α may offer therapeutic benefits and are likely
to improve the management of chemoresistant tumors.
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