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Purpose: The aim of this study was to test whether radiomics-based machine learning

can enable the better differentiation between glioblastoma (GBM) and anaplastic

oligodendroglioma (AO).

Methods: This retrospective study involved 126 patients histologically diagnosed as

GBM (n = 76) or AO (n = 50) in our institution from January 2015 to December 2018.

A total number of 40 three-dimensional texture features were extracted from contrast-

enhanced T1-weighted images using LIFEx package. Six diagnostic models were

established with selection methods and classifiers. The optimal radiomics features were

separately selected into three datasets with three feature selection methods [distance

correlation, least absolute shrinkage and selection operator (LASSO), and gradient

boosting decision tree (GBDT)]. Then datasets were separately adopted into linear

discriminant analysis (LDA) and support vector machine (SVM) classifiers. Specificity,

sensitivity, accuracy, and area under curve (AUC) of each model were calculated to

evaluate their diagnostic performances.

Results: The diagnostic performance of machine learning models was superior to

human readers. Both classifiers showed promising ability in discrimination with AUC

more than 0.900 when combined with suitable feature selection method. For LDA-

based models, the AUC of models were 0.986, 0.994, and 0.970 in the testing group,

respectively. For the SVM-based models, the AUC of models were 0.923, 0.817, and

0.500 in the testing group, respectively. The over-fitting model was GBDT + SVM,

suggesting that this model was too volatile that unsuitable for classification.

Conclusion: This study indicates radiomics-based machine learning has the potential

to be utilized in clinically discriminating GBM from AO.

Keywords: machine learning, magnetic resonance imaging, glioblastoma, anaplastic oligodendroglioma, texture

analysis
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INTRODUCTION

High-grade gliomas, the most common malignant solidary brain
tumors in adults, are traditionally classified into anaplastic
oligodendroglioma (AO), anaplastic astrocytoma (AA), and
Glioblastoma (GBM) (1, 2). According to theWHO classification,
AO was ascribed in Grade III while GBM was ascribed
in Grade IV based on their histology characteristics. The
early diagnosis of GBM and AO is clinically challenging but
necessary due to their different treatment choice as well as
the therapeutic responsiveness and patient survival (3). As for
GBM extended resection is recommended to increase patient
survival, whereas for AO this strategy lacks solid evidence (4–6).
The treatment after surgery is also different as well. For GBM,
standardized therapy after surgery recommended by NCCN
guidelines is standard brain radiation therapy (RT)+ concurrent
temozolomide (TMZ) followed by adjuvant chemotherapy
(7). While for AO, it is recommended to use fractionated
external beam RT together with neoadjuvant or adjuvant PCV
(procarbazine, lomustine, and vincristine) regarding the specific
condition of each patient (7, 8).

A glioma-specific blood biomarker for glioma has not been
identified yet. Therefore, the radiology examination is critical
for tumor detection and lesion localization. Brain magnetic
resonance imaging (MRI) plays a key role in the preoperative
diagnostic of gliomas with high image resolution on tumor
tissue. However, in some cases, MRI may be unable to
provide enough information for differentiation between GBM
and AO. The MRI characteristics of two tumors are pretty
similar when GBM is characterized by perilesional vasogenic
edema and ring-like enhancement (9–11); while AO also shows
peritumoral edema and heterogeneous enhancement (11, 12).
In this regard, the urgency of new radiological method has
been highlighted.

Given that texture analysis on images provides a more
objective information beyond naked eye assessment, quantitative
descriptions of tumor characteristics could be an option for
clinical diagnosis (13–16). Moreover, with digital parameters,
new technology, such as machine learning, can be introduced
for further statistical analysis. Machine learning, a hotspot in the
field of artificial intelligence, enables the extraction of meaningful
patterns from massive datasets and thereby achieving precise
predictions with the model built (17). Machine learning has
demonstrated outstanding performance in previous research
including segmentation of the tumor, classification of certain
types of tumor, and prediction of survival or genotype (18–
23). Although the differentiation between GBM and AO is
of high clinical relevance, the machine learning approach has
never been explored yet. In this study, we investigated the
feasibility of radiomics-based machine learning to differentiate
GBM and AO.

Abbreviations: AO, anaplastic oligodendroglioma; AUC, area under curve;

GBDT, gradient boosting decision tree; GBM, glioblastoma; LASSO, least absolute

shrinkage and selection operator; LDA, linear discriminant analysis; MRI,

magnetic resonance imaging; SVM, support vector machine; T1C image, contrast-

enhanced T1-weighted image; VOI, volume of interest.

MATERIALS AND METHODS

Study Patients
In this retrospective single-center research, we viewed medical
records in neurosurgery department to initially search for
patients histologically diagnosed with GBM or AO from January
2015 to December 2018. The medical records were reviewed
by two researchers to enroll the potentially qualified patients
and to collect relevant clinical information for our research.
The inclusion criteria for patients were: (1) with pathological
diagnosis of GBM or AO in intraoperative freezing biopsy, and
(2) with available high-quality pre-treatment MR scan performed
at our institution before surgical resection. Then the pre-
surgical MRI images of patients were exported from radiological
department though Picture Archiving and Communication
Systems (PACS) with uniform standard.

For patients before 2016, we made correction on their
pathological diagnoses based on the new World Health
Organization 2016 classification of gliomas by a senior
neuropathologist with working experience of 10 years (24). The
new standards required the presence of both IDH-mt and 1p19q
co-deletion for the diagnosis of AO, otherwise it could only
be regarded as NOS (Not Otherwise Specified) (24). Therefore,
we excluded patients based on new classification who were
with incomplete gene reports or with absent presence of both
gene expression.

Seventy-nine consecutive patients with GBM and 56
consecutive patients with AO fulfilled inclusion criteria in the
initial selection. Three patients with GBM and six patients with
AO were excluded in the following evaluation according to the
exclusion criteria, which were: (1) presence of motion artifacts
on MRI, (2) previous history of brain surgery or biopsy, (3)
previous history of intracranial diseases, such as subarachnoid
hemorrhage, cerebral infarction, etc. Based on this strategy, a
study cohort was built consisting of 76 GBM patients (mean age:
46.5 years) and 50 AO patients (mean age: 47.1 years).

All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The institutional review board
approved this retrospective study. The written informed consent
was obtained from participants enrolled in this study. The
written informed consent was necessary before radiological
examination (written informed consent for patients <16 years
old was signed by parents or guardians) for each patient. The
patients agreed to undertake examination when needed and were
informed that the statistics (including MR image), which could
be used for academic purpose in the future, would be stored
in our institutional database. The Ethics Committee of Sichuan
University and radiology department of our institution have
approved for statistics export and utilization for this study.

MR Image Acquisition
The current study focused on the conventional MR sequences.
The suitable sequence should be chosen first for two reasons,
that the descriptions on features boundary were vague in some
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FIGURE 1 | Two examples of contrast-enhanced MRI images. (A–C) Patient with GBM in (A) parasagittal, (B) axial, and (C) coronal view. (D–F) Patient with AO in (D)

parasagittal, (E) axial, and (F) coronal view. GBM, glioblastoma; AO, anaplastic oligodendroglioma.

sequences, and that features from all sequences would bring too
much burden on classifiers. After initial evaluation on images and
consultation with senior radiologists, the contrast-enhancedMRI
sequence was the only one used to perform texture analysis in
this study.

The MR scans were performed in the radiology department
of institution. The contrast-enhanced MRI sequences were
obtained with a 3.0T Siemens Trio Scanner using a MPRAGE
sequence with the following imaging parameters: TR/TE/TI =
1900/2.26/900ms, Flip angle = 9◦, slice thickness = 1mm,
axial FOV = 25.6 × 25.6 cm2 and data matrix = 256 ×

256. Intravenous injection of gadopentetate dimeglumine (0.1
mmol/Kg) was taken as contrast agent for patients. Multi-
directional data for contrast-enhanced MRI were collected
during the interval time of 90-250s. Figure 1 shows two examples
of contrast-enhanced MRI images.

Human Readers Assessment
To test whether machine learning could outperform human
readers, the diagnostic performance of them was compared.
A senior neurosurgeon and a senior radiologist independently
made diagnosis based on contrast-enhanced T1-weighted
images, which were presented randomly, regarding classification
as GBM or AO. Both readers were blinded to patient information

and pathology reports. Then, the accuracy, sensitivity, and
specificity were calculated for further analysis.

Texture Feature Extraction
The texture features of tumor tissue were extracted by two
researchers using the LIFEx package under the supervision of a
senior radiologist (25). Disagreements between researchers were
recorded and adjudicated by consulting senior radiologists and
neurosurgeons. The volume of interest (VOI) was drawn on T1C
images by contouring the outer margin of tumor tissues slice
by slice. The peritumoral edema band and adjacent structure
invasion were separated from the primary tumor with the
difference in contrast enhancement. For the lesions with multiple
(>2) enhancement foci, ROI was only performed on the biggest
one for those with clear boundary, and on tumor-confirmed area
for those with vague boundary. After the ROI delineation, texture
features were calculated automatically with default setting.

A total of 40 three-dimensional (3D) texture features
were calculated from two orders. In the first order, texture
features were calculated from shape histogram-based matrix and
histogram-based matrix. In the second or higher order, features
were calculated from gray-level co-occurrence matrix (GLCM),
gray-level zone lengthmatrix (GLZLM), neighborhood gray-level
dependence matrix (NGLDM), and gray-level run length matrix
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(GLRLM). To avoid the interference of the lower image matrix
resolution, texture analysis performed only on the VOIs with
more than 64 voxels by default setting. All original data about
extracted features were shown in Supplementary Material 1.

To ensure the validity and reproducibility of the extraction,
the procedure was performed twice, and the difference between
two sets was examined withManny-WhitneyU-test. We adjusted
the q < 0.01 as significant (before was p < 0.05) to avoid
the interference of false-positive errors rising from a large
number of texture features. The results suggested that none
of the features were significantly different, implying that the
results could be considered reliable and reproducible (shown in
Supplementary Material 2).

Classification Model Establishment
The purpose of machine learning was to train the models
to predict whether each tumor was a GBM or AO with
radiomics parameters extracted from the tumor tissue image.
However, feature selection was necessary to eliminate statistically
insignificant features and to avoid overfitting, which contributes
to decreased running time and increased accuracy of the
resulting models (26–28). In this study, we employed three
selection methods with different selection mechanisms: distance
correlation as representative of filter models, least absolute
shrinkage and selection operator (LASSO) and gradient boosting
decision tree (GBDT) as representatives of embedded models.
Then, three datasets were generated with three different selection
methods, which were each classified separately. The list of
features selected with three different methods are shown in
Supplementary Material 3, and the explanation of the features
are summarized in Supplementary Material 4.

The next step was to choose suitable classifiers. Since linear
classifier and non-linear classifier represent the state-of-the-
art in pattern recognition, we adopted linear discriminant
analysis (LDA) and support vector machine (SVM) classification
algorithms in the current study as representatives of two
classifier types (29). This way, overall six diagnostic models were
established based on three selection methods and two classifiers.

As for the algorithm deployment, the study cohort was
randomly divided into two subsets as training group and
validation group on a proportion of 4:1. When the training on
classifiers finished, the validation group was fed to evaluate the
diagnostic performance of the models. Sensitivity, specificity,
accuracy, and area under receiver operating characteristic curve
(AUC)were calculated for both the training and validation group.
To appraise the robustness of the methods, the procedure was
repeated for 100 cycles with different and independent case
assignments. The schematic workflow from image processing to
machine learning is shown in Figure 2.

RESULTS

Patient Characteristics
Among 126 patients were enrolled in the current study, 76
patients were diagnosed with GBM, and 50 patients with AO. The
sex ratio, mean age, and time between MR scan and pathological
diagnosis were summarized in Table 1. As for the human reader

assessment, the accuracy for the neurosurgeon was 63.49%, and
for the radiologist was 66.77%. Based on the results, a strong
tendency on misdiagnosis of AO could be observed.

Diagnostic Performance of Models
The classification models exhibited promising discriminative
ability when combined with suitable selectionmethods. For LDA-
based models, all three models presented feasible performance
with the AUC in the validation groups of 0.986, 0.994, and
0.970, respectively. For the SVM-based models, the models
showed feasible performance with the AUC in the training groups
of 0.923, 0.817, and 0.500. Overfitting was observed in one
SVM-based model (SVM + GBDT), suggesting this model was
volatile in application. The value of average sensitivity, specificity,
accuracy, and AUC of training group and testing group are
summarized in Table 2.

Figure 3 represents the two-dimensional projection of the
LDA-based models, illustrating that the GBM and AO formed
distinctive clusters in the space defined by discriminant functions
1 and 2 generated by LASSO + LDA. Figure 4 shows the
examples of performance of LDA-based models in terms of the
distribution of the canonical functions in the 100 independent
training cycles in the MRI analysis. A clear negative-values
shift of the LDA function can be observed for AO, and all
positive-values shift for GBM. ROCs of all models are shown in
Supplementary Material 5.

DISCUSSION

For patients with high-grade gliomas, accurate tumor
classification is clinically important because of its close relation
with treatment strategy as well as therapeutic responsiveness
and prognosis (3). In this study, we applied radiomics-based
machine learning to pre-surgically differentiate between GBM
and AO. Six models based on three selection methods (distance
correlation, LASSO, and GBDT) and two classifiers (LDA and
SVM) were built and evaluated. Our results demonstrated that
machine learning approaches can be utilized and are clearly
superior to human reader diagnosis.

Previous studies have explored the possibility of using
machine learning for classification of brain tumor types (18, 21,
30). In the setting of gliomas, several studies have proved the
utility of machine learning to differentiate between high-grade
and low-grade glioma with high accuracy (0.80 and 0.945) (31,
32). In the setting of differentiation among specific histological
subtypes of gliomas, a computer-aided diagnosis system was
proposed and evaluated in a previous study to distinguish
GBM from lower-grade gliomas, with positive results (33). A
multicenter investigation also confirmed the feasibility of using
3D texture analysis for pediatric glioma subtype classification
(medulloblastoma, pilocytic astrocytoma, and ependymoma)
with an overall accuracy of 0.87 (34). The current study
investigated a subject that has never been explored before,
that the feasibility of radiomics-based machine learning in
discriminating GBM from AO. Diagnostic performance of six
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FIGURE 2 | The schematic workflow from image processing to machine learning.

models was assessed in the current study built on three selection

methods (distance correlation, LASSO, and GBDT) coupled

with two classifiers (LDA and SVM). In general, both classifiers
showed high diagnostic performance with AUC more than 0.900

when combined with a suitable selection method. Nevertheless,
when comparing between two classifiers, LDA-based models

had slightly better diagnostic performance than that of SVM-
based models.

The diagnostical models were established based on two types

of classifies which differ in computing mechanism considering

the performance of a certain classifier may be various in the
settings of different tumors. LDA is a representative of the linear
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TABLE 1 | Demographics of patients.

Number Sex Age, mean

(range), y

Time between MR scan and

pathological diagnosis

Human reader 1

accuracy

Human reader 2

accuracy

GBM 76 47% male, 53% female 46.5 (15–80) 6.5 days 81.58% 85.53%

AO 50 50% male, 50% female 47.1 (16–76) 7.9 days 36.00% 38.00%

All patients 126 48% male, 52% female 46.8 (15–80) 7.1 days 63.49% 66.77%

GBM, glioblastoma; AO, anaplastic oligodendroglioma.

TABLE 2 | Results of the discriminative model in distinguishing GBM from AO in the training and validation group.

Classifier Selection Method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

LDA Distance correlation 0.992 0.994 0.994 0.990 0.986 0.988 0.993 0.982

LASSO 0.997 0.997 0.993 0.998 0.994 0.992 0.980 0.995

GBDT 0.969 0.963 0.916 0.994 0.970 0.962 0.907 0.992

SVM Distance correlation 0.922 0.938 1.000 0.906 0.923 0.938 1.000 0.910

LASSO 0.831 0.868 0.972 0.826 0.817 0.831 0.935 0.798

GBDT (over-fitting) 1.000 1.000 1.000 1.000 0.500 0.623 0.935 0.798

GBM, glioblastoma; AO, anaplastic oligodendroglioma; AUC, area under curve; LDA, linear discriminant analysis; LASSO, least absolute shrinkage and selection operator; GBDT,

gradient boosting decision tree; SVM, support vector machine.

FIGURE 3 | Relationships between the canonical discriminant functions for GBM, AO and the group centroids. The two distinctive clusters formed by GBM and AO

suggest three LDA-based models have excellent discriminant ability for GBM and AO. GBM, glioblastoma; AO, anaplastic oligodendroglioma; LDA, linear discriminant

analysis; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; SVM, support vector machine. (A) Canonical discriminant

functions for Distance Correlation + LDA. (B) Canonical discriminant functions for LASSO + LDA. (C) Canonical discriminant functions for GBDT + LDA.

classifier which uses a straight line (a vector) to separates two
classes (GBM and AO in this case), while SVM, a representative
of the non-linear classifier, uses so-called support vectors to
define a polynomic hyperplane to separate classes (35). In the
settings of differentiating GBM andAO, our results showed LDA-
based models had slightly better diagnostic performance than
that of SVM-based models. However, the difference between
the models was too slight to select the superior one, specifically
given that all models investigated seemed to perform quite
comparably and variance in AUC might be partially attributed
due to the small statistical group. Therefore, limited by the small
study cohort and relatively complicated methods, our results
could only be regarded as hypothesis generation for future
larger studies.

The results also implied that feature selection methods have
impacts on diagnostic performance, especially for SVM-based

models. Current feature selection methods can be categorized
into three types depending on their selection mechanism: (1)
Filter models select features by ranking them based on certain
general characteristics such as correlation to remove irrelevant
features without using any machine-learning algorithms. (2)
Wrapper Models utilize a specific classifier to evaluate the quality
of selected features, and offer a simple and powerful way to
address the problem of feature selection, regardless of the chosen
learning machine. (3) Embedded models are similar to wrapper
models but embeds feature selection with classifier construction.
Suchmodels have the advantages of wrappermodels-they include
the interaction with the classification model, while embedded
models are far less computationally intensive than wrapper
models (28). In this study, we employed three selection methods
as representatives of different selection mechanisms: distance
correlation as representative of filter models, LASSO, and GBDT
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FIGURE 4 | Examples of performance of the LDA-based models in terms of the distribution of the canonical functions determined for the GBM and AO for two of the

100 independent training cycles in the MRI analysis. Minimal overlap is observed, suggesting high differential ability of the models. (A) Distance Correlation + LDA, (B)

LASSO + LDA, (C) GBDT + LDA. GBM, glioblastoma; AO, anaplastic oligodendroglioma; AUC, area under curve; LDA, linear discriminant analysis; LASSO, least

absolute shrinkage and selection operator; GBDT, gradient boosting decision tree.

as representatives of embedded models. There was a common set
of features selected by all three selection methods or two of the
methods, which suggested these features might be important for
the classification. For other features, it is hard to tell what extent
they influenced the algorithms, since the AUCs showed minimal
difference. However, even with feature selection, overfitting was

still observed in one model (GBDT + SVM). We are unable to
provide the exact reason but hypothesis that this model might be
overly complex to be used as a discriminative tool to differentiate
between GBM and AO.

Besides the comparison between machine learning models,
we also performed comparison between machine and human
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readers in this study. Two readers unaware of the information
on the exact number of patients were asked to make diagnosis
on GBM or AO based on MR images. The readers were
chosen from neurosurgery department or radiology department
to ensure the convincing and reliable conclusions. The results
were unexpected, considering there were only two options,
that the diagnostical accuracy on AO was even lower than
0.500. Specifically, AO was easily misdiagnosed as GBM in
human readers’ radiological assessments. The explanations
from the readers were the same that GBM and AO usually
represented similar patterns on MR images, and they prefer
to choose GBM rather than AO in these cases due to the
epidemiological reason that the incidence of GBM ismuch higher
than AO. As we mentioned before, the accurate pre-surgical
diagnosis for two types of tumor is clinical important given
the differences in surgical strategy. Therefore, it is reasonable
to draw the conclusion that the patients will benefit from
better treatment with machine learning clinical assistances.
Machine intelligence will urge the radiological practice to change
dramatically. However, we should also realize that the current
machine technology is far from replacing human readers, and a
combination of radiologist and machine might be the best choice
for the foreseeable future. Radiologists still lead the central role in
diagnosis while machine only act as assistance. This combination
virtually eliminates simple blunders, increases play level, and
provides better insight into the decision process (36).

Our study has several limitations. Firstly, it was a retrospective
single-center investigation, which may lead to a patient selection
bias and limited sample size. However, at present stage, it is
still unknowable how much data is required to establish a
predictive model, which may be answered through empirical
investigation. The number of patients enrolled in previous
studies focusing on similar topic ranged from 25 to 534 (31–
34, 37–39). Secondly, we did not perform subgroup analysis
regarding the IDH mutation status of GBM patients. Recent
studies reported machine-learning based MRI texture analysis
could be used as a new method for prediction of IDH
mutational status, which suggested that IDH mutational status
might have bearing on texture features (37, 39, 40). Thirdly,
we used conventional contrast-enhanced MRI images only
and did not use other sequences or advanced imaging tools
such as magnetic resonance spectroscopy (MRS). Contrast-
enhanced MRI sequence was chosen in this study for the clear
delineation of tumor boundaries. The combined use of other
sequences or imaging tools may enable better diagnostic ability.
Fourthly, models built in current study were not externally
validated. Since medical centers use different MRI scanners,
imaging parameters and contrast, radiomic features may change
accordingly. Therefore, the efficacy of machine learning-based
models in this study cannot be guaranteed for external datasets.
Nevertheless, we used the open-source package to perform the
image processing and texture analysis, which allows others to
reproduce the texture analysis with other datasets.

CONCLUSION

In conclusion, radiomics-based machine learning enables
differentiation between glioblastoma and anaplastic

oligodendroglioma. Our data indicate that the performance
of this approach is superior to a human reader. This method
may be a valuable addition to routine clinical practice to
improve GBM and AO differentiation. However, multicenter
investigations including larger patient cohorts and analysis
combined with other MRI sequences or imaging techniques are
warranted so that this non-invasive approach can be introduced
into routine clinical practice.
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