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Acute myeloid leukemia (AML) is the acute leukemia with highest incidence amongst

adults. Despite significant improvements in understanding the genomic landscape and

the introduction of novel drugs, long-term outcome remains unsatisfactory. Recently,

immunotherapeutic approaches have heralded a new era in cancer treatment. The

success of allogeneic hematopoietic stem cell transplantation in AML highlights the

disease’s immunoresponsiveness. Several immunotherapeutic applications are currently

under clinical evaluation and include immune checkpoint blockades, T cell-engaging

antibodies, and genetically engineered T cells. However, immunoevasive mechanisms

employed by AML blasts severely hamper our endeavors. A better understanding of

the underlying mechanisms remains a prerequisite for improving treatment efficacy.

One of the hallmarks of the cancer cells is metabolic reprogramming, introduced by

Otto Warburg’s seminal studies during the beginnings of the last century. Nowadays,

it is well established that metabolic adaptation is not just an epiphenomenon

during oncogenesis but rather a necessity for tumor development and progression.

Furthermore, accumulating data suggest an important role of aberrant tumor cell

metabolism for immune escape. AML blasts display a number of metabolic alterations

that could be linked to immunoregulation, and these include competition over substrates,

abundant release of bioactive metabolites, and an overall microenvironmental metabolic

re-modeling that favors the induction or survival of immunoregulatory cell subsets such

as regulatory T cells. In this review, we outline the immunoevasive character of the

AML blasts’ bioenergetics, set it into context with oncogenic mutations, and discuss

potentially suitable countermeasures and their limitations.

Keywords: AML—acute myeloid leukemia, immunoescape mechanisms, tumor metabolism, immunotherapy,

microenvironment

INTRODUCTION

Acute myeloid leukemia (AML) represents the most common form of acute leukemia in adults.
Despite advances in AML therapy, treatment outcome remains unsatisfactory. Immunotherapy has
heralded a new era in solid and liquid malignancies. Successful usage of allogeneic hematopoietic
stem cell transplantation for curing AML suggests its immunoresponsive nature (1). Several
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immunotherapeutic approaches are currently under clinical
investigation, including multispecific T cell-engaging antibodies
(2, 3), immune checkpoint blockades, and genetically engineered
T cells (4, 5). However, clinical efficacy of immunotherapies
is substantially hampered by AML-associated immune escape
strategies. Increasing evidence suggests that the cancer cells’
hallmark metabolic reprogramming (6) generates a permissive
environment. AML blasts display various metabolic alterations,
which we will discuss in this review together with their role in
relation to immunoevasion and potential counterstrategies.

THE IMMUNOLOGICAL SIDE OF THE
WARBURG EFFECT (IN AML)

To date, it is well established that malignant cells consume
high levels of glucose that they preferentially ferment to lactic
acid even in the presence of oxygen and a fully competent
mitochondrial oxidative phosphorylation (OXPHOS). This
phenomenon was first described by Otto Warburg in the
1920s (7) and is known as the “Warburg effect.” As of yet,
numerous functions of the “Warburg effect” have been proposed
(8). The rate of adenosine triphosphate (ATP) production
per unit glucose is 18 times lower for aerobic glycolysis as
compared to respiration. However, the absolute amount of
ATP at any given time point is similar due to the 10–100
times faster kinetics of aerobic glycolysis (9), which might
give aberrant cells a selective advantage when competing over
limited substrates (e.g., in a hypoxic environment such as
the bone marrow) (10). Furthermore, increased glycolytic flux
delivers carbon sources for anabolic processes (i.e., the de novo
synthesis of nucleotides, lipids, and proteins) required to meet
the biosynthetic demands of highly proliferative cells such as
AML blasts (8). Another suggested role of aerobic glycolysis
is to maintain the intracellular redox homeostasis by, amongst
other things, allowing the increased biosynthesis of reducing
equivalents via the pentose phosphate pathway (PPP). AML
blasts display elevated levels of reactive oxygen species (ROS)
(11) and would largely benefit from enhanced compensatory
antioxidative machinery since moderate ROS levels can drive the
disease, whereas higher ROS levels can result in cell death (12). In
addition, a proportion of glucose is directed into the hexosamine
biosynthesis pathway and promotes protein glycosylation, which
is involved in maintaining high levels of the anti-apoptotic
Mcl-1 (13). Similarly to numerous other malignant entities,
aerobic glycolysis is also found increased in AML (as compared
to physiological hematopoietic cells) when analyzing primary
blasts and AML-derived cell lines or when performing metabolic
imaging of the bone marrow niche (14–16) (Figure 1). Moreover,
data suggest that glycolytic activity of AML blasts at diagnosis (a
panel of six serum metabolites involved in glucose metabolism)
and expression levels of key glycolytic molecules such as pyruvate
dehydrogenase kinase can be of (negative) prognostic value
for AML (14, 15, 17). Differences between the distinct WHO
AML subtypes were not observed, suggesting effects independent
from the cytogenetic-based risk stratification. Anecdotal reports
describe clinically relevant Warburg effect-triggered systemic

alterations (i.e., hypoglycemia together with lactic acidosis) in
patients with AML (18).

Several oncogenic pathways such as HIF-1α or c-Myc have
been linked to the neoplasia’s glycolytic switch. In AML,
an internal tandem duplication (ITD) within the Fms-like
tyrosine kinase (FLT3/ITD) represents an unfavorable genetic
aberration. Recent findings suggest that FLT3/ITD promotes
aerobic glycolysis through an AKT-mediated upregulation of
the glycolytic pacemaker enzyme hexokinase 2 (HK2) (19).
Polyploidy, which can be found in most types of cancer, is
also linked to enhanced glycolysis in AML, most likely due
to an activation of PPP while directly repressing OXPHOS
(20). Homeobox (HOX) genes, in particular HOXA9, are
overexpressed in a substantial proportion of AML cases.
They drive the upregulation of the cells’ glycolytic program
via demethylases, such as the jumonji C containing H3K9
demethylase (JMJD1C), thus contributing to an aggressive
phenotype (21). Several of the aforementioned signaling
pathways yield an (over-)stimulation of the mammalian target
of rapamycin (mTOR), which acts as a master regulator of
cellular bioenergetics and which is consequently active in AML
(22). In addition to cell-intrinsic processes, microenvironmental
crosstalk such as interaction with mesenchymal stromal cells
or stromal cell-derived factor 1 (SDF1) can trigger an mTOR-
dependent metabolic rewiring toward aerobic glycolysis (23, 24).

Such AML-mediated glucose deprivation could substantially
impact the functional competence of various immune cells that
utilize glucose as an energetic substrate, including monocytes,
NK cells, dendritic cells, and, in particular, T cells, which display
an exhausted and senescent phenotype in AML patients (25).

Naïve T cells meet most of their energetic demands by
use of OXPHOS of fatty acids. However, triggering the T
cell receptor (TCR) in conjunction with CD28 co-stimulation
leads to an mTOR-orchestrated (26) rapid upregulation of
aerobic glycolysis that enables clonal expansion and distinct T
cell effector functions such as the production of INF-γ (via
posttranscriptional regulation) (27, 28). Consequently, culturing
T cells under glucose-deprived conditions severely impedes TCR
downstream signaling, proliferation, and cytokine production,
leading to an exhausted-like state (29, 30). Accordingly, highly
glycolytic tumors display an increased resilience toward adoptive
T cell therapy approaches while previous blocking of glycolysis
enhances the antitumor activity of subsequently transferred
tumor-reactive T cells (31). Consequently, bolstering the T
cells’ glycolytic competence by, for example, overexpressing
phosphoenolpyruvate carboxykinase 1 has improved their
tumoricidal activities in preclinical models (32).

In addition to depleting glucose, enhanced aerobic glycolysis
leads to an abundant production of lactic acid, thereby shifting
the overall pH. High levels of lactic acid have an inhibitory
effect on human T cells, resulting in reduced cell activation,
proliferation, and effector functions (33). This was recently
validated in murine tumor models (34). Neutralizing the lactic
acid-induced acidosis by bicarbonate application has improved
the efficacy of immune checkpoint blockades as well as of
adoptively transferred T cells in preclinical settings (35). Taken
together, the blunting of T cell responses in animal tumor models
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FIGURE 1 | Metabolic alterations in AML blasts. This schematic overview summarizes the bioenergetic rewiring in AML blasts. The black cycles represent key

metabolic enzymes. Identified genetic aberrations and/or microenvironmental components that promote (+, green) or suppress (-, red) metabolic pathways in AML

blasts are numbered 1–5 and can be found in the upper right box. Affected pathways, metabolic products, or enzymes are labeled with the according number. glu,

glucose; gln, glutamine; glu-6-P, glucose-6-phosphate; fru-6-P, fructose-6-phosphate; α-KG, α-ketoglutarate; 2-HG, 2-hydroxyglutarate; ROS, reactive oxygen

species; HK2, hexokinase 2; PFK, phosphofructokinase; G6PD, glucose-6-phosphate dehydrogenase; PK, pyruvate kinase; LDHA, lactate dehydrogenase A; PDH,

pyruvate dehydrogenase; CS, citrate synthase; IDH, isocitrate dehydrogenase; GLS, glutaminase; mTOR, mammalian target of rapamycin; PPP, pentose phosphate

pathway; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation.

has been attributed to both lactic acid accumulation (31) and
the metabolic competition of glucose (36). Interestingly, T cell-
suppressive regulatory T cells (TRegs), which are considered
important contributors to tumor-induced immunoevasion (37)
and accumulate in the peripheral blood and the bone marrow
of AML patients (38), display enhanced resilience toward lactic
acid while mainly relying on OXPHOS (and not glycolysis)
(39). Collectively, these observations suggest that the milieu
generated by aerobic glycolysis performed by malignant cells
(andmimicking inflammatory-like conditions) skews the balance
between T cell-immunoreactivity and immunotolerance toward
the latter one.

In close resemblance to effector T cells, NK cells switch toward

aerobic glycolysis upon activation in a mTOR-dependent fashion

(40). This metabolic shift represents a prerequisite for NK cells
to exert their tumoricidal functions (41). As anticipated, high
glycolytic activity in tumor tissues blunts NK-cell responses via

acidification (42). It remains to be elucidated, however, whether
and how glucose depletion might affect NK-cell function in vivo.

REACTIVE OXYGEN SPECIES

As previously exemplified for lactic acid, bioactive metabolites
can be of an immunoregulatory impact. One very well-studied
phenomenon is oxidative stress. This metabolic condition
results from the accumulation of so-called reactive oxygen
species (ROS) such as superoxide or hydrogen peroxide. Those
short-lived molecules are hyperpermeable and highly reactive.
Oxidative stress is typically found in cancer patients (43).
High ROS levels negatively impact TCR signaling, T/NK cell
activation, and viability (44, 45). Interestingly, TRegs appear more
resilient toward ROS-mediated toxicity by, amongst other things,
releasing the antioxidant thioredoxin-1 (46, 47). This further
corroborates the notion that the tumor microenvironment not
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only supports the induction of immunoregulatory cell subsets
but also endows them with survival advantages over their
immunoreactive counterparts. Oxidative stress is present in
AML patients and can correlate with the risk for disease
relapse (12, 48). Most studies suggest that the constitutive
activation of nicotinamide adenine dinucleotide phosphate
oxidase-2 (NOX2) (48) is the primary source of AML blast-
derived ROS (i.e., superoxide), with mitochondrial ROS-
production linked to OXPHOS playing a secondary role (49).
Those free radicals inactivate antileukemic T/NK cells by
triggering PARP-1-dependent apoptosis, thereby contributing to
immunoevasion (50).

Interestingly, histamine dihydrochloride (HDC) can
efficiently reduce the NOX2-dependent ROS formation by
triggering the histamine type 2 receptor that is expressed on
myeloid cells including AML blasts (51). The ability of HDC to
shield tumor-reactive lymphocytes represents a vital basis for
clinical trials testing the combination of HDC (as an indirect
antioxidant) with (T/NK cell-stimulating) low-dose interleukin-
2 (IL-2) (52). Leukemia-free survival was found to be improved,
leading to the approval of HDC and IL-2 as a maintenance
strategy and post-hoc analyses revealing that patients with
myelomonocytic or monocytic AMLmight benefit most (50, 53).

2-HYDROXYGLUTARATE: A NOVEL
IMMUNOREGULATORY
ONCO-METABOLITE

Increased D-2-hydroxyglutatarate (2-HG) serum levels were
recently identified as a novel negative prognostic marker for
AML (54). 2-HG abundance has been mainly attributed to
somatic heterozygous mutations in genes encoding for isocitrate
dehydrogenase 1 (IDH1) and its mitochondrial homolog, IDH2
(Figure 1). These mutations initially identified in gliomas are
found in up to 20% of all newly diagnosed AMLs, especially
in cases with normal cytogenetics, as well as in premalignant
proliferative diseases such as myelodysplastic syndrome (55).

IDH enzymes convert isocitrate into α-ketoglutarate (α-KG).
Beyond its role as an intermediate of the Krebs cycle, α-KG
represents a co-substrate for a number of metabolic partners,
including >60 mammalian dioxygenases and demethylases.
Mutations occur at critical arginine residues of the enzymes’
active site (R132 in IDH1 and R140/172 in IDH2). The amino
acid substitution prevents its normal catalytic function (“loss-
of-function”) and at the same time confers a neomorphic
enzymatic activity that facilitates reduction of α-KG to 2-HG
(“gain-of-function”). The rate of 2-HG production far exceeds
the rate of homeostatic clearance, leading to pathological 2-
HG accumulations.

Increasing evidence suggests that 2-HG acts as an “onco-
metabolite,” driving proliferation and differentiation arrest.
Notably, 2-HG and α-KG are structurally similar, except that
the oxygen atom linked to C2 in α-KG is replaced by a
hydroxyl group in 2-HG. This structural similarity suggests that
2-HG might exert its oncogenic effects through the competitive
inhibition of α-KG-dependent enzymes (56). Exposure to

high levels of 2-HG inhibits histone demethylase JMJD1C,
thereby altering the cells’ epigenetic profiles and resulting in
hypermethylation, which represents a hallmark of myeloid
malignancies and premalignant disorders. Furthermore, 2-
HG leads to an allosteric inhibition of prolyl hydroxylases,
which normally downregulate hypoxia-inducible factor 1α
(HIF-1α). 2-HG-mediated HIF-1α stabilization could thereby
contribute to the malignant cell’s “pseudohypoxic” response
(”Warburg” effect), as recently observed in tumors carrying
mutated IDH1 (leading to glucose depletion together with lactic
acid accumulation) (57). An additional metabolic alteration
linked to 2-HG overproduction is oxidative stress, which
can exert AML blast-promoting effects (58) and at the same
time hamper immunosurveillance. Here, redox homeostasis is
disrupted by an increased consumption of NAPDH during 2-
HG synthesis, which, amongst other functions, acts as an indirect
antioxidant (59).

In addition to promoting a pro-glycolytic and ROS-enriched
environment, recent studies indicate that 2-HG might directly
impact T cell responses. It has been shown that T cells are
capable of efficiently taking up 2-HG, further validated by 2-
HG-enriched T cells being exclusively found in samples from
patients with IDH-mutated AML (60). In the context of gliomas,
it was further shown that IDH mutations and high 2-HG
levels lead to a reduced T cell activation, proliferation, and
migration, consequently resulting in lower T cell infiltration at
the tumor site (61). Inhibitory effects of 2-HG were mediated
by interference with ATP-dependent TCR signaling and the
calcium-dependent transcriptional activity of nuclear factor of
activated T cells (NFAT) downstream of the TCR. Blocking
IDH activity has improved the efficacy of peptide vaccination
approaches in preclinical glioma models (62). Overall, reported
data on immune-related effects of 2-HG in AML remain
limited, and now that pharmacological IDH inhibitors have been
introduced in AML treatment, it will be of great interest to
evaluate their impact on the patients’ immune function.

TACKLING AMINO ACIDS

Indoleamine-2,3-dioxygenase (IDO) is a bona fide representative
of metabolic enzymes that exerts dual effects (in terms of
immunological impact) by simultaneously depleting essential
substrates and producing bioactive metabolites (Figure 2). It
catalyzes oxidation of tryptophan (trp) into kynurenine (kyn)
and can be found to be expressed in immune cells such as
macrophages and in a variety of malignant tissues, including
ovarian cancer, melanoma, or head and neck cancer (63).
Tryptophan degradation can be assessed ex vivo by measuring
tryptophan and kynurenine levels. In fact, a highly increased
kyn/trp ratio in AML patient sera indicates an enhanced IDO-
activity while negatively correlating with overall survival (64, 65).
Furthermore, it has been shown that in >50% of the cases
tested at diagnosis, AML blasts constitutively express IDO as
potentially being (co-) responsible for the observed systemic
(aforementionedmetabolic) effects (66). In addition to this, AML
blasts are capable of inducing IDO+ bystander cells, such as
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FIGURE 2 | Enhanced tryptophan-turnover in AML blasts. Increased

expression of indoleamine-2,3 dioxygenase 1 (IDO1) in AML blasts leads to

tryptophan (Trp) depletion. It is catabolized to kynurenine (Kyn), resulting in

extracellular kyn accumulation. A proportion of kyn is intracellularly converted

to kynurenic acid (Kyna) by kyn aminotransferase (Kat) or to 3-hydroxy kyn

(3-HK) by kyn 3-monooxygenase (Kmo). Subsequently, 3-HK is further

processed into 3-hydroxanthranilic acid (3-HAA) by KYNase, which is further

converted into quinolinic acid (QA) and picolinic acid (PA). The

microenvironmental shortage of Trp and simultaneous abundance of Kyn

promote activation of the aryl-hydrocarbon receptor (AhR) and the

non-derepressing 2 protein kinase (GCN2) and suppress the mammalian

target of the rapamycin (mTOR) pathway, thus skewing immune responses

away from immunoreactivity (by impeding conventional T cells) toward

immunotolerance (by reinforcing regulatory T cells/TRegs).

myeloid derived suppressor cells (MDSCs) (2). IDO-mediated
shortage of trp and the accumulation of kyn lead to T cell anergy,
proliferation arrest in the G1 cell cycle phase, and apoptosis (67).
The underlying mechanism lies in the activation of the non-
derepressing 2 protein kinase (GCN2) (67) and suppression of
mTOR signaling (68), which is triggered by tryptophan depletion
and further enhanced by kyn binding to the aryl-hydrocarbon
receptor (AhR) (69). Furthermore, it has been reported that
AML blasts promote formation of T cell-suppressive TRegs

(from conventional T cells) in an IDO-mediated fashion, further
potentiating a tolerogenic environment (70). Again, GCN2
and AhR activation have both been implicated in driving the
induction of TRegs and their immunosuppressive capacity (67,
69) (Figure 2). A phase 1b/2a trial (ClinicalTrials.gov identifier:
NCT02835729) evaluating the IDO inhibitor indoximod as
part of the maintenance regimen after standard induction and
consolidation chemotherapy is currently ongoing.

In addition to trp, arginine (arg), a non-essential amino acid,
plays an important role in regulating immune responses (71). T
cells respond toward arg deprivation with autophagy, CD3ζ chain
downregulation, and apoptosis. AML blasts express and secrete
arginine-catabolizing arginase II, whereas arginase I is only
detected at low levels (72). The arginase II in the patients’ plasma
is significantly higher as compared to healthy donor-derived
samples. Consequently, arg serum concentrations are lower in
AML patients (73). Culturing T cells in the presence of AML
patients’ plasma reduced their proliferative response toward

activating stimuli, which could be restored by arg repletion
(72). Furthermore, AML blasts promote an arginase-mediated
repolarization of macrophages toward an immunosuppressive
type 2 phenotype. Inhibition of arginase activity leads to an
enhanced in vitro cytotoxicity of antigen-specific and chimeric
antigen receptor (CAR) T cells against AML blasts (73).

Glutamine (gln) represents a key carbon source fueling
OXPHOS in AML blasts, thus supporting their rapid expansion
(Figure 1). In fact, intracellular gln levels positively regulate
mTOR activity. Inhibition of gln uptake by the SLC1A5
transporter or of its conversion to glutamate by glutaminase both
cause proliferation arrest and apoptosis of AML blasts without
affecting conventional CD34+ hematopoietic progenitors (74,
75). In fact, the glutaminase inhibitor CB-839 synergizes with
Bcl2 inhibitors (75). Moreover, targeting the FLT3 kinase inhibits
glycolysis (as mentioned previously) while rendering AML cells
dependent on gln (76). At the same time, a number of studies
suggest an important role of gln for proper T cell function,
including proliferation and cytokine production (77). However,
the exact impact of an in vivo competition over gln on AML-
directed T cell responses needs to be further elucidated based on
recent data, which shows that transient gln restrictionmight even
favor the formation of cytotoxic T cells together with antitumor
immunity (78, 79).

IMMUNOMETABOLIC
COUNTERMEASURES

Based on the well-established interconnection between tumor
metabolism and its impact on the immunometabolic fitness of
T cells, several metabolic pathways are already being assessed in
clinical and preclinical studies. Targeting mTOR as a metabolic
master regulator could represent an obvious choice in AML
(22, 23). However, the role of mTOR for T cell metabolism should
be kept in mind and might explain mixed results in terms of
promoting (80) vs. inhibiting (81) T cell functions in different
cancer models. Inhibitors of drivers of oncogenic signaling that
also control metabolic features such as mutated FLT3 or IDH
are currently under therapeutic exploitation and it will be of
great interest to study their impact on intrinsic (anti-AML)
immunity. In fact, treating AML patients with the FLT3 inhibitor
midostaurin has led to a TReg reduction (82).

Interfering with immunological checkpoints could also
represent a strategy for restoring metabolic T cell competence.
Constitutive and inducible programmed death ligand 1 (PD-L1)
is found on AML blasts (83) while patient-derived T cells display
an increased expression of its cognate receptor programmed cell
death protein 1 (PD-1) (84). Interfering with the PD-L1/PD-
1 crosstalk enhanced anti-AML immunosurveillance in murine
models and boosted the in vitro efficacy of CD33/CD3 bispecific
antibodies (3, 85). Furthermore, reports suggest that signaling via
PD-1 impedes glycolysis in T cells andmyeloid cells, contributing
to functional deficits (86). Immune checkpoint blockades could
reinvigorate T cell metabolism, but the issue of substrate
deprivation (of e.g., glucose, trp, and arg) would still remain,
substantially affecting efficacy. At this point, combining immune
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FIGURE 3 | Immunometabolic interplay in AML. Increased glycolytic activity, expression of arginase II (Arg II) and indoleamine-2,3-dioxygenase 1 (IDO1) in AML blasts

lead to glucose, tryptophan, and arginine depletion; these are required for proper T cell functionality (= competition). Stromal cells are capable of further triggering

those metabolic pathways. Aerobic glycolysis, NADPH-oxidase 2 (NOX2) activity, and IDO1 in AML blasts abundantly produce bioactive metabolites (= waste

products) such as lactate, reactive oxygen species (ROS), and kynurenine that hamper T cell responses. Increased levels of lactate, ROS, and kynurenine lead to a

preferential survival and/or induction of regulatory T cells (TRegs) and the induction of myeloid derived suppressor cells (MDSCs) (= tolerogenic cells). The PD-L1

expression of AML blasts (= immune checkpoint) could cause a state of immunometabolic anergy in T cells by binding its cognate receptor PD-1.

checkpoint inhibitors (or other immunotherapeutics) with a
direct metabolic interference could be a promising approach.
IDO and arginase inhibitors are, in fact, currently under clinical
evaluation for AML. In terms of blocking the Warburg effect,
compounds such as 2-deoxy-D-glucose display antileukemic
activity (13), but their off-target impact on T cell metabolism
(and consequently their effector functions) needs to be taken into
consideration since similar anti-glycolytic approaches have, for
example, been successfully tested in T cell-driven autoimmune
diseasemodels; these show an amelioration of symptoms partially
due to inhibition of T cell metabolism (87).

The introduction of adoptive cell transfer concepts in
AML, including TCR-gene transduced (5) and chimeric antigen
receptor (CAR) (4) T cells, allows us an ex vivo T cell re-
modeling with the aim of achieving superior resilience toward
detrimental microenvironmental cues (e.g., oxidative stress) and
of enhancing metabolic fitness. Cytokines decisively regulate
T cell metabolism; culturing T cells in the presence of IL-
15 has shown (in contrast to IL-2) to drive mitochondrial
biogenesis, skewing bioenergetic dependency away from aerobic
glycolysis and toward fatty acid oxidation (FAO). I has also
shown to endow them with an increased antioxidant capacity
(88), which translated in better in vitro and in vivo antitumor
activity (89). In addition, compounds such as the mitochondrial
fusion promoter Mdivi are currently tested in preclinical models
(90), convincingly showing that direct metabolic reprogramming
holds the potential to improve adoptive cell therapies.

Going one step further, genetic engineering could be utilized
for metabolically bolstering T cells before being adoptively
transferred. Proof of concept studies have been carried out

with TCR-transduced and CAR T cells that overexpress the
key antioxidant catalase (91, 92). In addition, CAR construct
design has been shown recently to determine the T cells’
metabolic profiles. CAR T cells carrying a CD28 signaling
domain preferentially perform aerobic glycolysis, while 4-1BBζ

CAR T cells meet their energetic demands via FAO (93).
These 4-1BB-triggered metabolic adaptations are paralleled by
enhanced mitochondrial biogenesis, spared respiratory capacity
(and thereby better metabolic adaptability), and memory cell
formation, which is in line with recent reports suggesting that
4-1BB promotes in vivo CAR T cell longevity (94).

CONCLUSION

Taken together, increasing evidence suggest an intimate link
between the AML blasts’ bioenergetics and T cell immunity.
Taking into consideration the current emergence of immune-
based therapeutic approaches (in AML), which include immune
checkpoint blockade, T cell-engaging multispecific antibodies,
and genetically modified T cells, it is essential to mechanistically
understand the immunometabolic crosstalk for developing
the means to improve T cell function. As of today, several
mechanisms promoting immunometabolic escape have been
described for AML: competition (with immune cells) over
critical nutrients such as glucose or amino acids, increased
metabolic byproducts such as ROS that negatively impact
immune function, microenvironmental metabolic remodeling
that endows immunoregulatory subsets (such as TRegs) with
survival advantages, and expression of checkpoint ligands that
impair the immune cells’ metabolic competence, such as the
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ability to utilize certain nutrients (Figure 3). For the future it
will be important to shape the AML milieu into one that is
more favorable for T cells and to combine immunotherapies
with metabolic interventions. Importantly, similarities between
AML and T cell metabolism should be kept in mind in order
to prevent potential counterproductive off-target effects. Using
such combinations in a well-thought-out manner may enable the
improvement of modern AML therapy.
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