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Objective: Endometrial cancer (EC) is the second most common gynecological cancer

worldwide. Myometrial invasion (MI) is a key event in EC dissemination. This study aimed

to evaluate FXYD5/dysadherin (FXYD5/Dys) expression in EC tissue and uterine aspirate

(UA) biopsies and to assess molecular/functional changes associated with its expression

in cellular models.

Methods: FXYD5/Dys messenger RNA (mRNA) levels were determined in EC tissue and

UA biopsies. FXYD5/Dys expression was evaluated in EC RNAseq data from The Cancer

Genome Atlas (TCGA) and GENEVESTIGATOR tools. FXYD5/Dys impact on E-cadherin

expression and cell behavior was assessed in EC Hec1a cells treated with transforming

growth factor (TGF)-β1, stably transfected with ETV5, and transiently transfected with

FXYD5/Dys small interfering RNA (siRNA) or pcDNA3-FXYD5/Dys plasmid.

Results: FXYD5/Dys was associated with EC aggressiveness, finding high mRNA

levels in tumors depicting MI > 50%, Grade 3, and intermediate/high risk of recurrence.

FXYD5/Dys was highly expressed at the tumor invasive front compared to the superficial

area. Most results were recapitulated in UA biopsies. FXYD5/Dys modulation in Hec1a

cells altered cell migration/adhesion and E-cadherin expression. TGF-β1 treatment of

Hec1a cells induced FXYD5/Dys expression. TCGA-UCEC RNAseq analysis revealed a

positive correlation between FXYD5/Dys, TGF-β1, and plasminogen activator inhibitor

(PAI)-1 mRNA levels. FXYD5/Dys induced nuclear factor (NF)-κB pathway activation

in Hec1a cells. FXYD5/Dys mRNA levels positively correlated with transcriptional

activation of NF-κB p65-regulated genes. Survival analysis revealed patient segregation

into low- and high-risk groups, the latter depicting the highest FXYD5/Dys, PAI-1,

tumor necrosis factor (TNF)-α, and TGF-β1 mRNA levels and shorter survival rates.
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Conclusion: FXYD5/Dys is a novel biomarker of EC progression related to TGF-β1

and NF-κB pathways that collectively promote tumor dissemination and result in poor

patient prognosis.
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INTRODUCTION

Endometrial cancer (EC) is the second most common
gynecological neoplasm and the fourth most frequent
women cancer worldwide. Projections for the coming years
show a trend toward an increased number of EC cases (1).
Histopathologically, EC is classified into two subtypes: Type
I or endometrioid carcinomas (EEC) and Type II or non-
EEC (NEEC) (2), with EEC being about 80% of EC cases (3).
Myometrial invasion (MI) is a key event in EC dissemination
and a critical factor to define the risk of recurrence. While
Stage IA tumors (International Federation of Gynecology and
Obstetrics, FIGO, 2009 classification) display <50% MI, Stages
IB–IV display >50% MI (deep MI), the latter associated with
poor prognosis (5-years survival rate: Stage IA, 90%, Stages
IB–IV, 78–21%) (4). Routine EC diagnosis involves preoperative
anatomopathological endometrial biopsy evaluation coupled
to imaging techniques, adjusted at evaluation of the surgical
piece. Among 75% tumors preoperatively classified as early
stage EC (FIGO Stage I), ∼20% are surgically reclassified as
advanced-stage EC (FIGO Stages II–IV). Moreover, 30% of EC
cases are diagnosed when the tumor has invaded >50% of the
myometrial wall (5). This classification is critical for therapeutic
management and greatly impacts post-surgery patient morbidity.
Currently, there are no established molecular biomarkers to
determine deep MI and/or to assist in risk stratification in a
sensitive, objective, and reproducible fashion.

Alterations in cell–cell adhesion and decreased E-cadherin
expression have been reported in EC progression (6–8).
The expression of E-cadherin and related molecules was
previously characterized in an EC cellular model of MI,
generated by overexpression of ETV5 transcription factor in
Hec1a cells (HGE cells) (9). HGE cells showed lower E-
cadherin levels and epithelial-to-mesenchymal transition (EMT)-
related molecular changes, as well as higher migratory/invasive
properties than control cells (10). Moreover, HGE cells
depicted higher expression [messenger RNA (mRNA)/protein]
of FXYD5/dysadherin (FXYD5/Dys) (10). FXYD5/Dys is a Type
I transmembrane glycoprotein, a member of the FXYD protein
family (11). High FXYD5/Dys protein expression has been
reported in several solid tumors in association to decreased
cell–cell adhesion (12) and low E-cadherin protein expression
(13–16). In addition, other E-cadherin-independent mechanisms
have been proposed; in particular, an association has been found
between FXYD5/Dys expression, nuclear factor (NF)-κB pathway
activation, and CCL-2 (NF-κB target gene) upregulation in breast
and renal cancer cell lines (17, 18). Moreover, an autocrine loop
involving FXYD5/Dys, NF-κB pathway activation, and tumor
necrosis factor (TNF) receptor 1 (TNFR1) has been suggested

(19). More recently, these evidences were confirmed in a lung
cancer model, where FXYD5/Dys expression was associated
with NF-κB pathway activation, CCL-2, interleukin (IL)-6, and
TNF-α upregulation and consequent monocyte recruitment (20).
Finally, FXYD5/Dys expression has been related to distant
metastasis and poor prognosis in various tumors (12).

The present study aimed to characterize FXYD5/Dys mRNA
levels in EC samples and to evaluate the impact of modulating its
expression upon cell behavior in established EC cell models. We
proposed a relationship between FXYD5/Dys expression and EC
tumor progression/aggressiveness.

MATERIALS AND METHODS

Chemicals
Chemicals were of analytical or tissue culture grade and
purchased from Sigma-Aldrich (St. Louis, MO, USA). Molecular
biology and electrophoresis reagents were from Thermo-Fisher
Scientific (Carlsbad, CA, USA) or BioRad (Hercules, CA,
USA). The following antibodies were used: anti FXYD5/Dys:
a) D-2 (mouse monoclonal) and b) FL-178 (rabbit polyclonal)
from Santa Cruz Biotechnology (SCBT; Santa Cruz, CA,
USA); anti E-cadherin 610181 (mouse monoclonal; Becton
Dickinson Biosciences, BD; San Diego, CA, USA); anti NF-κB
p65 (rabbit monoclonal; C22B4, Cell Signaling, Danvers, MA,
USA); anti phospho-NF-κB p65 (Ser536) (rabbit monoclonal;
93H1, Cell Signaling); anti IκB-α (rabbit polyclonal; #9242,
Cell Signaling); anti β-Tubulin (mouse monoclonal; clone
D66, Sigma-Aldrich); anti GAPDH (rabbit monoclonal; clone
14C10, Cell Signaling). Cy3-labelled anti-mouse or anti-
rabbit secondary antibodies (Sigma-Aldrich) were used for
immunocytochemistry. Horseradish peroxidase-conjugated
antimouse (Vector Laboratories Inc., Burlingame, CA, USA)
or antirabbit (Sigma-Aldrich) IgG were used as secondary
antibodies in Western immunoblotting assays.

Plasmids
The coding sequence of human FXYD5/Dys was cloned in
the pcDNA3 commercial plasmid (Thermo-Fisher Scientific) to
generate the pcDNA3-FXYD5/Dys plasmid; the whole sequence
was obtained by PCR amplification from a complementary DNA
generated by retrotranscription of total RNA from MDA-MB-
231 human breast cancer cells, followed by digestion with EcoRI
andHindIII restriction enzymes, insert purification, and plasmid
ligation. Nucleotide sequence analysis was done to confirm
correct insertion and insert coding sequence.
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Patient Samples
Endometrial tissue samples were obtained from EC patients
who underwent surgery before receiving hormonal and/or
chemotherapy treatment at Vall d’Hebron Hospital (Barcelona,
Spain) and at Hospital Italiano from Buenos Aires (Buenos
Aires, Argentina). In addition, uterine aspirate (UA) samples
from EC patients were collected (Vall d’Hebron Hospital)
(21). Both institutional review boards approved the protocol,
and a written informed consent was signed by all patients.
Samples were classified based on the 2009 FIGO staging
system. Sample collection and handling were done as previously
described (21). Supplementary Tables 1–3 show patient sample
clinical information.

Cell Culture
Hec1a and HGE cells were cultured in McCoy’s 5A medium
(Thermo-Fisher Scientific), supplemented with 10% fetal bovine
serum (FBS), as previously described (10).

EC Cell Line Treatment With Recombinant
Human TGF-β1
Hec1a cells (3 × 105 cells per well of six-well plates) were
cultured overnight, followed by treatment with 10 ng/ml of
TGF-β1 (Tonbo Biosciences, San Diego, CA, USA) in a culture
medium without FBS or vehicle (phosphate buffer saline, PBS).
After 24 h, cells were processed for total RNA/protein extraction.

EC Cell Line Transfection Studies
Downregulation of FXYD5/Dys expression in HGE was achieved
by transient transfection of a FXYD5/Dys small interfering RNA
(siRNA) (#45745, three target-specific 19–25-nt siRNAs designed
to knock down gene expression; SCBT) with Lipofectamine R©

2000 (Thermo-Fisher Scientific) following the protocol suggested
by the manufacturer. Briefly, 5 × 105 cells were seeded in
each well of a sterile six-well plate and incubated overnight.
Then, cells were transfected with 100 pmol/ml of FXYD5/Dys
or control scramble siRNA (#37007, SCBT). In addition, Hec1a
cells were transfected with pcDNA3-FXYD5/Dys or pcDNA3
(control) plasmids. Cells numbering 5 × 105 were transfected
with 1 µg of plasmid DNA with Lipofectamine R© 2000. After a
5-h incubation period, the transfection mixture was replaced by a
complete culture medium. Cells were subjected to transcript and
protein expression analysis as well as to functional tests 24–72 h
post-transfection, as specifically indicated.

RNA Extraction, cDNA Synthesis, and
Quantitative Real-Time PCR
Procedures were done as previously reported (22), with some
modifications. Total RNA was extracted from tissues and
UA biopsies and cell lines using standard protocols with
TRIzol R©(Thermo-Fisher Scientific). Synthesis of complementary
DNA (cDNA) was done with 1–2 µg of total RNA using
the SuperScriptTM III reverse transcriptase enzyme (Thermo-
Fisher Scientific). Quantitative evaluation of mRNA levels was
performed by real-time PCR (RT-qPCR) using SYBR Green R©

PCR Master Mix (Thermo-Fisher Scientific) with the CFX96
TouchTM unit (Bio-Rad). Transcript expression levels were

determined as follows: 2−1Ct, where 1Ct= Ct gene under study
– Ct housekeeping gene. GAPDH (cell lines and EC tissues) or
POLR2A (UA samples) was used as housekeeping genes. When
indicated, transcript relative expression was calculated using an
appropriate reference sample, according to the 2−11Ct method
(11Ct= 1Ct sample - 1Ct reference). Supplementary Table 4

lists the primers used in this study.

Fluorescence Immunocytochemistry
Cell monolayers were fixed with 4% paraformaldehyde, treated
with 0.1% Triton X-100, blocked with 4% bovine serum albumin
(BSA) in PBS, and placed for 1 h with specific primary antibodies,
followed by a 1-h incubation with secondary antibodies. Nuclear
cell staining was done with Hoechst 33342 (Sigma-Aldrich).
Cell preparations were analyzed in a Nikon C1 confocal laser
microscope (Tokyo, Japan). Images were evaluated using the
ImageJ software (Wright Cell Imaging Facility, Toronto, ON,
Canada) (22).

Sample Preparation, SDS-PAGE, and
Western Immunoblotting
Cell lysates were prepared in a RIPA (radio-immunoprecipitation
assay) buffer with protease inhibitors. Protein extracts (20 µg)
were electrophoresed in 10 and 12% SDS-polyacrylamide
gels and electrotransferred to nitrocellulose membranes
(Amersham Hybond ECL, GE Healthcare, Buckinghamshire,
UK). Membranes were blocked in PBS containing 5% non-fat
milk for 1 h, incubated overnight at 4◦C with specific primary
antibodies diluted in blocking solution, and for 1 h with
secondary antibodies (0.4µg/ml in a blocking solution). Assays
were developed with an ECL Western Blotting Detection Kit
(ECL, GEHealthcare) chemiluminescence system. Densitometric
analysis was done using the ImageJ software (22).

Hanging Drop Assay
EC cells were forced to grow under independent anchorage
conditions to promote the formation of cellular aggregates, as
previously reported (22). EC cells were harvested, and 20-µl
drops of 2,000 cells were plated in the lid of a p100 dish and
cultured for up to 72 h. Images were taken at 24–72 h to evaluate
cell morphology and then analyzed using the ImageJ software.

Wound Healing Assay
EC cells were subjected to the wound healing assay (22). Briefly,
2 × 105 cells per well were cultured overnight to reach 90%
confluence. Cell monolayers were scratched with a pipette tip,
washed with PBS to remove non-adhered cells, and incubated
for 48 h in a culture medium without FBS. Images were taken at
0–48 h and analyzed using the ImageJ software to determine the
percentage of wound healing closure: % wound healing closure
= (Area t0 – Area tf)/At0) × 100, where Area t0 is the area at the
initial time and Area tf is the area at the final time.

GENEVESTIGATOR® and Co-expression
Analysis
GENEVESTIGATORTM (https://genevestigator.com/gv/index.
jsp) integrates manually curated gene expression data from
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public repositories to investigate gene regulation at the
transcriptional level using a wide variety of experimental
conditions (23). In this study, the GENEVESTIGATOR R©

co-expression tool was used to find co-regulated genes
with FXYD5/Dys in three datasets: “samples” (61,060
samples), “cancer” (634 categories), and “perturbations” (4,760
perturbations), analyzed using the HS_AFFY_U133PLUS_2-
0 array. A co-expression value was calculated by Pearson’s
correlation coefficient.

Gene Expression Analysis of EC Samples
To evaluate the relationship between FXYD5/Dys mRNA
levels, E-cadherin (mRNA and protein), and NF-κB pathway
activation, transcriptomic, proteomic, and clinical data from The
Cancer Genome Atlas Uterine Corpus Endometrioid Cancer
study (TCGA-UCEC) were retrieved from the UCSC Xena
repository (https://xenabrowser.net/).

For transcriptomic analysis, RSEM-normalized RNAseq data
from Illumina GA (N = 381) and Illumina HiSeq (N = 201) were
downloaded. In addition, replicate-base normalization (RBN)-
normalized proteomic data from E-cadherin immunodetection
using reverse phase protein array (RPPA) were retrieved (N =

440 samples).
To analyze the regulatory transcription factor (TF) impact of

NF-κB p65 on EC gene expression patterns, data from GA (N =

313), GAV2 (N = 349), and HiSeqV2 (N = 155) platforms were
retrieved and compiled.

Statistical Analysis
All experiments were performed at least in triplicate. Results were
expressed as mean ± standard error (SEM). A P < 0.05 was
considered statistically significant. Variable distribution analysis
was done using Shapiro–Wilk’s normality test. Student’s t-test and
Mann–Whitney test were used to compare two groups. Analysis
of variance (ANOVA) and the Kruskal–Wallis test were used
for comparisons involving more than two experimental groups.
In some cases, the Wilcoxon signed-ranked test was applied.
Paired human samples were analyzed with paired Student’s t-test.
For correlation analysis, the Spearman correlation coefficient, ρ
(rho), was used. ROC (receiver operating characteristic) analysis
was performed to determine the potential of FXYD5/Dys mRNA
in preoperative UA as a marker of deep MI, high grade,
and intermediate/high risk of recurrence. For survival analysis,
Kaplan–Meier curves were constructed, and differences between
them were analyzed by a log-rank test. GraphPad Prism software,
version 5.01 (GraphPad Software, San Diego, CA, USA), was used
to do the analyses.

RESULTS

Expression of FXYD5/Dys in EC Samples
and Association With Clinicopathological
Parameters
FXYD5/Dys transcript levels were determined by RT-qPCR in
EC tissue samples. As shown in Figure 1A, Stage IB as well as
Stage II–Stage III tumors showed higher FXYD5/Dys mRNA
levels than Stage IA tumors (P < 0.05). In line with these

findings, in samples from the tumor invasive front, increased
FXYD5/Dys mRNA levels were found compared with paired
superficial samples (14/20, 70%; P= 0.0123) (Figure 1B). Among
Stage I tumors, higher FXYD5/Dys mRNA levels were found
at the invasive front compared to the superficial section of the
tumor (P = 0.0013) (Figure 1C).

With regard to tumor grade, FXYD5/Dys mRNA expression
levels were higher in Grade 3 than in Grade 1 and Grade 2
tumors (P = 0.0381) (Figure 1D). Based on these findings,
the relationship between FXYD5/Dys transcript levels
and the European Society for Medical Oncology (ESMO)
risk stratification system (24) was assessed, finding higher
FXYD5/Dys mRNA levels in intermediate/high-risk tumors than
in low-risk ones (P = 0.0261) (Figure 1E).

A few years ago, UA biopsies became of interest in
the evaluation of EC molecular biomarkers. Compared to
conventional tissue biopsies, UA are a reliable source for
EC biomarker assessment with high specificity and sensitivity,
capable of capturing intra-tumor heterogeneity with a low-
cost ambulatory sampling method (21, 25, 26). In order to
evaluate FXYD5/Dys’s potential as anMI preoperative biomarker,
FXYD5/Dys expression levels were evaluated in preoperative
UA biopsies from EC patients. First, a positive significant
correlation (r = 0.5321; P = 0.0412) was found between
FXYD5/Dys mRNA levels detected in UA and in tissue-paired
biopsies (Figure 1F). Next, and in line with the results obtained
from tissue biopsies, higher FXYD5/Dys mRNA levels were
detected in UA biopsies from tumors depicting MI > 50% (P
= 0.0315) (Figure 1G), Grade 3 (P = 0.0365) (Figure 1H), and
intermediate/high risk of recurrence (P = 0.0190) (Figure 1I),
compared to those with MI < 50%, Grades 1 and 2, or
low risk of recurrence, respectively. ROC analysis revealed
FXYD5/Dys as a significant predictor of MI [area under the
curve (AUC) = 0.7545; P = 0.0486, sensitivity= 70%, specificity
= 81.82%], grade (AUC = 0.8077; P = 0.0353, sensitivity =

83.33%, specificity = 69.23%), and risk of recurrence (AUC =

0.8091; P = 0.0167, sensitivity = 72.73%, specificity = 80%) in
UA. The estimated cutoff value of FXYD5/Dys expression was
0.4178. Supplementary Figure 1 shows ROC curves for the three
clinicopathological parameters.

FXYD5/Dys Expression and EC Cell–Cell
Adhesion and Migration
Taking into account results presented in the previous section
and that modulation of FXYD5/Dys expression has been
associated with an aggressive cellular behavior in breast
and renal cancer cellular models (17, 18, 27), the impact of
its knockdown upon cell behavior was evaluated. The EC
cellular model of MI HGE was used to perform these studies.
FXYD5/Dys downregulation in HGE cells was confirmed
at mRNA and protein levels by RT-qPCR and Western
immunoblotting/fluorescent immunocytochemistry, respectively
(Supplementary Figure 2).

Since FXYD5/Dys has been reported to promote cell motility
in vitro in other tumor types (17, 18, 27), the impact of its
knockdown in HGE cell migratory capacity was evaluated.
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FIGURE 1 | FXYD5/Dys mRNA expression and clinicopathological parameters in EC samples. (A–C) RT-qPCR analysis of FXYD5/Dys mRNA levels in (A) EEC

samples grouped according to FIGO stage (Stage IA, N = 27; Stage IB, N = 15; and Stages II + III, N = 15) (differences observed between Stage IA and Stage IB

tumors and between Stage IA and Stage II–III tumors; *P < 0.05, ANOVA with Bonferroni post-test), (B) paired biopsies from superficial and invasive front of EEC

samples (FIGO Stages I–III) (N = 20; P = 0.0123, paired t-test), and (C) paired biopsies from superficial and invasive front of Stage I EEC samples (N = 9; P = 0.0013,

paired t-test). (D) FXYD5/Dys mRNA levels in Grade 1, 2, and 3 EEC samples (Stages I–III). EEC tumors classified as Grades 1 and 2 were included in the same group

(Grade 1/2). Differences observed between Grade 1/2 tumors (N = 43) and Grade 3 tumors (N = 17) (P = 0.0381; unpaired t-test with Welch’s correction). (E)

RT-qPCR analysis of FXYD5/Dys expression in EC samples grouped according to risk of lymph node involvement and recurrence (low risk N = 19, intermediate/high

risk N = 32; P = 0.0261, unpaired t-test with Welch’s correction). (F) FXYD5/Dys mRNA levels assessed in UA biopsies. Correlation analysis between mRNA levels

detected in uterine aspirate biopsies and paired EC tissue (N = 15; r = 0.5321, Spearman correlation, P = 0.0412). (G–I) RT-qPCR analysis of FXYD5/Dys expression

in UA from EEC grouped according to (G) MI depth (MI < 50%, N = 11; MI > 50%, N = 10; P = 0.0315, unpaired t-test, with Welch’s correction), (H) tumor grade

(Grades 1 and 2, N = 13; Grade 3, N = 6; P = 0.0365, Mann–Whitney test), and (I) risk of lymph node involvement and recurrence (low risk, N = 10;

intermediate/high risk, N = 11; P = 0.0190, unpaired t-test with Welch’s correction).

HGE siRNA FXYD5/Dys cells depicted diminished migration
compared to HGE siRNA CTL cells (P < 0.01) (Figure 2A). In
line with these findings, HGE siRNA FXYD5/Dys cells showed

a significant decrease in the promigratory chemokine CCL-
2 mRNA levels when compared to HGE siRNA CTL cells
(P < 0.01) (Figure 2B).
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FIGURE 2 | FXYD5/Dys regulation of cell–cell adhesion and cell migration in HGE cells. (A) Left panel: Wound healing assay of HGE siRNA FXYD5/Dys and HGE

siRNA CTL cells. Representative images of cells at 0, 24, and 48 h are shown (magnification 40×). Right panel: Free-cell area quantified using ImageJ software.

Wound healing closure percentage was plotted at every time point (**P < 0.01, two-way ANOVA, Bonferroni post-test). (B) RT-qPCR analysis of the pro-migratory

chemokine CCL-2 expression in HGE siRNA CTL and HGE siRNA FXYD5/Dys cells (**P < 0.01, Wilcoxon signed rank test). (C) Left panel: Hanging drop assay of

HGE siRNA FXYD5/Dys and HGE siRNA CTL cells. Representative images of cell aggregates at 72 h are shown (magnification 100×). Right panel: Cell aggregate area

was quantified using ImageJ software, and mean cell aggregates areas (expressed as squared pixels) were plotted and compared (*P < 0.05, Mann–Whitney test). (D)

Left panel: Fluorescent immunocytochemistry of HGE siRNA FXYD5/Dys and HGE siRNA CTR cell monolayers using anti-E-cadherin monoclonal antibody (610181;

2.5µg/ml); cell nuclei are visualized using HOECHST 33342. Bar: 20µm. Right panel: Percentage of cells depicting strong fluorescence intensity quantified using

ImageJ software (*P < 0.05, Mann–Whitney test). (E) RT-qPCR analysis of E-cadherin mRNA in HGE siRNA FXYD5/Dys and HGE siRNA CTL cells (***P < 0.0001,

Wilcoxon signed rank test).
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Studies done in breast cancer tissues showed a positive
FXYD5/Dys immunostaining where cell–cell contacts had been
lost (11). In the same study, FXYD5/Dys overexpression in
liver cancer cell lines was found associated with decreased E-
cadherin protein levels and decreased Ca2+-dependent cellular
aggregation. Thus, the impact of FXYD5/Dys knockdown on
HGE cell adhesiveness and E-cadherin expression was evaluated.
Cellular aggregates formed by HGE siRNA FXYD5/Dys cells
were larger than those in HGE siRNA CTL cells (P < 0.05)
(Figure 2C). In line with this results, HGE siRNA FXYD5/Dys
cells depicted higher E-cadherin expression than control cells,
which was observed at protein (P < 0.05) (Figure 2D) and
mRNA (P < 0.0001) levels (Figure 2E). Altogether, these results
suggest a direct relationship between an HGE cell adhesive and
migratory behavior and FXYD5/Dys expression.

The effect of FXYD5/Dys expression upon cell behavior
and E-cadherin expression was also evaluated in Hec1a cells
that express high E-cadherin levels, by transient transfection
with the pcDNA3-FXYD5/Dys plasmid (Hec1a pcDNA3-
FXYD5/Dys). The transfection procedure effectiveness was
verified by RT-qPCR and Western immunoblotting analysis
(Supplementary Figure 3). FXYD5/Dys overexpression resulted
in a decreased E-cadherin expression in Hec1a pcDNA3-
FXYD5/Dys cells, evidenced by lower mRNA and protein levels
(Figures 3A,B). In agreement with these results, an in silico
analysis of the TCGA-UCEC RNAseq dataset (N = 397) showed
a negative correlation between FXYD5/Dys mRNA and E-
cadherin mRNA and protein levels (Supplementary Figure 4).
These findings could be associated to E-cadherin transcriptional
repression (28), as suggested by a higher expression of Snail
(P < 0.05) and Slug (P < 0.01) and a trend for Zeb1
transcriptional repressors (Figures 3C–E) detected in Hec1a
cells overexpressing FXYD5/Dys. With regard to cell behavior,
FXYD5/Dys overexpression in Hec1a cells was associated with
increased cell migration (P < 0.001) (Figure 3F) and decreased
cell–cell adhesion, as evidenced by a decrease in Hec1a pcDNA3-
FXYD5/Dys cell aggregate area (P < 0.001) (Figure 3G).

Relationship Between FXYD5/Dys
Expression and TGF-β1 in EC Cells
TGF-β-mediated signaling is activated in EC cells (29, 30)
and plays a key role in the initial stages of invasion
and metastasis (31). A co-expression analysis performed
using the GENEVESTIGATOR database revealed that TGF-
β1 was found between the transcripts most significantly co-
expressed with FXYD5 in three independent-sample datasets
(Supplementary Figures 5A–C, respectively). To determine the
relationship between TGF-β1 and FXYD5/Dys expression, Hec1a
cells were treated with human recombinant TGF-β1, and
FXYD5/Dys expression was evaluated. As a result, FXYD5/Dys
mRNA and protein levels increased in Hec1a upon TGF-β1
treatment (Figures 4A–C). On the other hand, Hec1a pcDNA3-
FXYD5/Dys cells exhibited increased TGF-β1 mRNA levels
compared with control cells (P < 0.05) (Figure 4D). Moreover,
an RNAseq analysis from the TCGA-UCEC cohort revealed a
positive correlation between FXYD5/Dys expression and several

TGF-β signaling genes, including TGF-β1, ZEB1, ZEB2, SNAI1,
FN1, SERPINE1 (PAI-1), and SMAD3 (Figure 4E). As an
example, correlation analyses between FXYD5/Dys and TGF-β1
and between FXYD5/Dys and PAI-1 mRNA levels are shown
(Figures 4F,G).

FXYD5/Dys Expression and NF-κB
Pathway Activation
FXYD5/Dys has been found to modulate NF-κB pathway
activation (17–20). When it is taken into account that NF-
κB has been suggested to play a key role during EC
carcinogenesis (32, 33), a relationship between FXYD5/Dys and
NF-κB activation in EC is found.

First, RNAseq data analysis from the TCGA-UCEC cohort
revealed a positive correlation between FXYD5/Dys and most
of the NF-κB pathway genes evaluated (Figure 5A). Moreover,
experiments performed in Hec1a cells revealed increased NF-
κB (P < 0.001) and decreased total protein levels of the
IκB-α inhibitor in Hec1a pcDNA3-FXYD5/Dys cells compared
to Hec1a-pcDNA3 cells (Figure 5B). These changes were
accompanied by a trend toward higher CCL-2 (P = 0.0654)
expression and increased TNF-α (P = 0.0313) mRNA levels
(Figures 5C,D), two target genes of the NF-κB pathway.
Moreover, an increase in TNFR1 mRNA levels (P = 0.0362) was
also observed (Figure 5E). In line with these results, a significant
correlation was found between FXYD5/Dys mRNA levels and
transcriptional activation of the NF-κB p65-regulated genes in
EC samples from the TCGA-UCEC study (Figure 5F) and an
increased expression of several NF-κB pathway target genes,
among them CCL-2 and TNF-α (Supplementary Table 5).

Finally, to assess the prognostic significance of FXYD5/Dys
expression and genes related to TGF-β and NF-κB pathways, a
survival analysis was done in the TCGA-UCEC study using the
SurvExpress tool. As a result of this analysis, two risk groups
(low and high risk) were defined based on the mRNA expression
levels of FXYD5/Dys, TGF-β1, PAI-1, and TNF-α (Figure 5G).
Patients included in the high-risk group were characterized by an
increased expression of the four genes and a significant lower (P
< 0.05) survival rate (Figure 5H).

DISCUSSION

An increased expression of FXYD5/Dys has been related to
metastasis and poor prognosis in several tumors. In some tumors
and cell lines, FXYD5/Dys overexpression significantly correlated
with a decreased E-cadherin expression, leading authors to
propose that FXYD5/Dys would promote metastasis through
a negative modulation of E-cadherin expression/functions
(13–16). In addition, FXYD5/Dys expression has been shown to
induce in vitro changes in cell morphology and to in vivo promote
metastasis in cell lines and tumors that do not express E-cadherin
(17). The present study aimed to characterize FXYD5/Dys
expression in EC. RT-qPCR studies in EC tissue samples revealed
an association between increased FXYD5/Dys mRNA levels
and several EC clinicopathological parameters. Among them,
tumors with deep MI showed higher FXYD5/Dys mRNA
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FIGURE 3 | Modulation of FXYD5/Dys expression in Hec1a cells and changes in cell migration. (A) RT-qPCR analysis of E-cadherin mRNA expression in Hec1a cells

transiently transfected with pcDNA3 empty plasmid (Hec1a pcDNA3 cells) or pcDNA3-FXYD5/Dys plasmid (Hec1a pcDNA3-FXYD5/Dys cells) (**P<0.01, Wilcoxon

Signed Rank Test). (B) Immunodetection of E-cadherin by Western immunoblotting of Hec1a pcDNA3 and Hec1a pcDNA3-FXYD5/Dys cell protein extracts using anti

E-cadherin monoclonal antibody (610181, BD; 0.125 µg/mL). GAPDH (anti GAPDH monoclonal antibody 14C10; 1:1000) was used as loading control. C-E.

RT-qPCR analysis of E-cadherin transcriptional repressors Snail (C) (*P<0.05), Slug (D) (**P<0.01) and Zeb1 (E) (P=0.055), Wilcoxon Signed Rank Test). (F) Left

panel: Wound healing assay of Hec1a pcDNA3 and Hec1a pcDNA3-FXYD5/Dys cells. Representative images of cells at 0, 24 and 48 h post transfection are shown

(magnification 40X). Right panel: Free-cell area was quantified using ImageJ software and the wound healing closure percentage was plotted at every time point

(**P<0.01, ***P<0.0001, Two-way ANOVA, Bonferroni post-test). (G) Left panel: Hanging drop assay of Hec1a pcDNA3 and Hec1a pcDNA3-FXYD5/Dys cells.

Representative images of cell aggregates at 48h are shown (magnification 100X). Right panel: Cell aggregates area was quantified using ImageJ software and mean

cell aggregates areas (expressed as squared pixels) were plotted and compared (**P<0.01, Mann Whitney test).

levels, even in Stage I tumors. Moreover, the tumor invasive
front had higher FXYD5/Dys mRNA levels than the superficial
tumor section, suggesting an involvement of FXYD5/Dys in
tumor dissemination. In addition, FXYD5/Dys expression
was higher in Grade 3 tumors than in Grade 1 and Grade 2

tumors, as observed in other cancers (34, 35). Consequently,
intermediate/high-risk tumors showed higher FXYD5/Dys
mRNA levels than low-risk tumors. In addition, FXYD5/Dys
mRNA levels detected in preoperative UA reproduced tissue
biopsy results and demonstrated the diagnostic potential of
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FIGURE 4 | Association between TGF-β1 and FXYD5/Dys expression. (A) RT-qPCR analysis of FXYD5/Dys expression in Hec1a cells treated with 10 ng/ml TGF-β1

for 24 h. Controls were incubated with vehicle (**P < 0.01, Wilcoxon signed rank test). (B) Western immunoblotting of Hec1a protein extracts using FXYD5/Dys

monoclonal antibody (sc-166782; 2µg/ml). β-Tubulin was included as loading control (monoclonal antibody D66; 0.5µg/ml). (C) Representative images of fluorescent

immunocytochemistry analysis of FXYD5/Dys protein expression (anti-FXYD5/Dys polyclonal sc-98246; 2µg/ml); cell nuclei were stained with HOECHST 33342, bar:

20µm. (D) RT-qPCR analysis of TGF-β1 mRNA levels in Hec1a pcDNA3-FXYD5/Dys and Hec1a pcDNA3 cells (*P < 0.05, Wilcoxon signed rank test). (E) Correlation

analysis between FXYD5/Dys and TGF-β pathway-related genes. A heatmap was built based on Pearson r correlation values for each gene. (F) Correlation analysis

between TGF-β1 and FXYD5/Dys mRNA levels in EC samples from the TCGA-UCEC cohort (Pearson correlation, r = 0.4966, N = 444). mRNA levels are expressed

as log2(x + 1) were x is the RSEM normalized expression value. (G) Correlation analysis between PAI-1 and FXYD5/Dys mRNA levels in EC samples from the

TCGA-UCEC cohort (Pearson correlation, r = 0.2886, N = 444). mRNA levels are expressed as log2(x + 1) were x is the RSEM normalized expression value.

FXYD5/Dys transcript evaluation for MI, grade, and risk
of recurrence.

Results on FXYD5/Dys expression in EC patient samples
suggest its role in EC progression. To further address this

hypothesis, modulation of FXYD5/Dys expression was done in
EC cell models. Firstly, FXYD5/Dys downregulation in HGE
cells resulted in lower cell migration and decreased CCL-2
mRNA levels, in agreement with previous findings (17, 18).
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FIGURE 5 | FXYD5/Dys expression and NF-κB pathway activation. (A) Correlation analysis between FXYD5/Dys and NF-κB pathway related genes. A heatmap was

built based on Pearson r correlation values for each gene. (B) Evaluation of NF-κB pathway activation by Western immunoblotting. A representative image of p65 total

and phosphorylated protein forms and IκB-α total protein form is shown. Antibodies: NF-κB p65 (monoclonal C22B4 # 4764, 1:1000 dilution), phospho-NF-κB p65

(Ser536) (monoclonal 93H1 # 3033, 1:1000 dilution) and IκB-α (polyclonal # 9242, 1:1000 dilution); GAPDH (anti GAPDH monoclonal antibody 14C10; 1:1000). C-E.

RT-qPCR analysis of CCL-2 (C) (P=0.0654), TNF-α (D) (P<0.05) and TNFR1 (E) (P<0.01) (Wilcoxon signed-rank test) in Hec1a pcDNA3 and Hec1a

pcDNA3-FXYD5/Dys cells. (F) Correlation analysis between FXYD5/Dys mRNA levels and transcriptional activation of genes regulated by p65. Regulatory impact of

p65 transcription factor on tumor specific gene expression patterns from EC samples from the TCGA UCEC study. P65 regulatory impact to gene expression in each

tumor is represented as a linear model tvalue, a positive t-value indicates p65 up-regulates its target genes and a negative t value indicates p65 down-regulates its

target genes. FXYD5/Dys mRNA levels are expressed as Log2(x+1) were “x” is the RSEM normalized expression value. *** P<0.0001 (Spearman correlation,

r=0.6927, N=81). G and (H) SurvExpress tool used to evaluate the impact of FXYD5/Dys, PAI-1, TGF-β1 and TNF alpha mRNA levels upon EC patients survival. This

analysis was performed using gene expression and survival data of EC samples from the TCGA UCEC study (N=332). A Prognostic Index was estimated by beta

coefficients multiplied by gene expression values of the four genes included in the analysis. Then, EC samples were divided in “Low Risk” and “High Risk” groups

according to their Prognostic index values. (G) Box plots generated by SurvExpress showed the mRNA expression levels of FXYD5/Dys, PAI-1, TGF-β1 and TNF

alpha. The P value from a t test of the difference between Low and High Risk groups was also calculated for each gene; FXYD5/Dys P= 3.80 e-03; SERPINE1 P=

2.05 e-08; TGF-β1 P=1.47 e-24; TNF P=3.79 e-10. Low-risk was in green and High-risk was in red, respectively. (H) Kaplan-Meier survival curves were constructed

to evaluate the impact of FXYD5/Dys, PAI-1, TGF-β1, and TNF alpha mRNA levels (Low and High Risk groups) upon EC patient survival (*P<0.05, Log-Rank test).
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Also, FXYD5/Dys knockdown was associated with an increase in
HGE cell–cell adhesiveness, evidenced in the formation of larger
cell aggregates and increased E-cadherin expression, suggesting
an inverse relationship between both proteins. On the other
hand, FXYD5/Dys overexpression in Hec1a cells resulted in
increased cell migration and decreased cell adhesive capacity;
at the molecular level, these changes were associated with a
decreased E-cadherin expression, accompanied by increased
mRNA levels of Snail, Slug, and ZEB1, in agreement with
previous reports in tumor samples (6, 36). The results obtained
after Hec1a EC cell modulation of FXYD5/Dys expression are in
line with results obtained in EC patient samples showing higher
FXYD5/Dys transcript levels in invasive EC (MI > 50%) and at
the invasive tumor front, as well as in Grade 3 tumors. Altogether,
these findings lead us to propose that an increased FXYD5/Dys
expression could promote cell migration and dedifferentiation,
in part through E-cadherin downregulation, in EC cells, thus
facilitating MI and tumor dissemination.

A co-expression analysis using three global expression
studies identified TGF-β1 as one of the molecules most
significantly co-expressed with FXYD5/Dys. Moreover, TGF-β1
induced an increase in FXYD5/Dys expression in Hec1a cells,
and FXYD5/Dys overexpression increased TGF-β1 expression.
Furthermore, an association was found between elevated
mRNA levels of FXYD5/Dys and several TGF-β genes in
the TCGA-UCEC cohort. Altogether, these results lead us
to propose an autocrine and/or paracrine regulation loop
between FXYD5/Dys and the TGF-β1 pathway, in which TGF-
β1 produced by the tumor microenvironment or by tumor
cells could induce FXYD5/Dys expression in the tumor cell.
FXYD5/Dys could then activate TGF-β1 expression, leading to
sustained pathway activation.

Our results revealed that overexpression of FXYD5/Dys in
Hec1a cells induced the NF-κB pathway, leading to activation
of NF-κB target genes, as well as of TNFR1, in line with
previous studies (19). In addition, TCGA RNAseq data analysis
revealed a correlation between FXYD5/Dys mRNA levels with
transcriptional activation of NF-κB p65-regulated genes in
EC. FXYD5/Dys expression has been associated with NF-κB
pathway activation in cancer models (17), and more recently, it
has been shown to consequently induce macrophage/monocyte
recruitment mediated by CCL-2/CCR2 (20). Elevated infiltration
of macrophages (37, 38) and lymphocytes (39–42) has been
found in EC tissues compared to normal tissues. Moreover,
macrophage infiltrationwas associated with poor prognosis in EC
(37, 38, 43). Also, low preoperative LMR (lymphocyte–monocyte
ratio) values were associated with shorter survival rates (44).
Moreover, high monocyte counts were associated with advanced
stage, deep MI, lymph node metastases, and decreased survival at
the time of recurrence (45). An RNAseq data analysis performed
by us on the TCGA-UCEC cohort revealed a positive correlation
between FXYD5/Dys and CD68 (monocyte/macrophagemarker)
(P < 0.0001) and CD163 (macrophage activation marker)
(P < 0.0001) (data not shown). Altogether, these results
lead us to propose FXYD5/Dys as a potential inflammation
mediator in EC, facilitating monocyte recruitment to the

tumor microenvironment and eventually promoting cancer
progression, through NF-κB pathway activation.

Survival analysis revealed the potential use of the combined
expression of FXYD5/Dys, PAI-1, TGF-β1, and TNF-α
transcripts as a predictor of EC patient survival outcome.
However, even when the results showed statistical significance,
an independent survival analysis should be carried out in an
independent cohort of patients in order to obtain more robust
findings. One possible cause of these findings may relate to
the disparity in the percentages of death and censored events
in the cohort analyzed. The population included 247 EC
patients, from which 33 (13%) experienced the event (death)
and 214 (87%) were classified as censored events. Moreover,
the clinicopathological characteristics of the cohort showed
a predominance of tumors depicting favorable prognostic
factors, evidenced by 80% of cases with endometrioid histology,
66% with FIGO Stage I tumors, 62% with tumors having
MI < 50%, and 62% with histologic Grade 1 or 2. Since our
findings demonstrate an association between higher FXYD5/Dys
mRNA levels and advanced FIGO stage, deep MI, and high
histological grade, the survival analysis results could be justified,
at least in part, by the characteristics of the studied cohort.
However, additional molecular mechanisms underlying the EC
pathogenesis (FXYD5/Dys-related and non-related) should not
be ruled out. Thus, FXYD5/Dys would exert its action through
various molecular mechanisms highly associated with EC
progression, which has a negative impact on patients’ prognosis.

Altogether, results here presented lead us to propose
FXYD5/Dys as a biomarker of EC progression and
aggressiveness. These findings are the first evidence of
FXYD5/Dys implication in EC progression. The evaluation
of FXYD5/Dys expression may contribute to current tools for EC
management, in addition to deepening the molecular basis of EC.
Additional prospective studies will further help in confirming
the diagnostic/prognostic value of FXYD5/Dys in EC.
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