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A mutation in the isocitrate dehydrogenase 1 (IDH1) gene is the most common mutation

in diffuse lower-grade gliomas (LGGs), and it is significantly related to the prognosis

of LGGs. We aimed to explore the influence of the IDH1 mutation on the immune

microenvironment and develop an IDH1-associated immune prognostic signature (IPS)

for predicting prognosis in LGGs. IDH1 mutation status and RNA expression were

investigated in two different public cohorts. To develop an IPS, LASSO Cox analysis

was conducted for immune-related genes that were differentially expressed between

IDH1wt and IDH1mut LGG patients. Then, we systematically analyzed the influence of

the IPS on the immune microenvironment. A total of 41 immune prognostic genes were

identified based on the IDH1 mutation status. A four-gene IPS was established and LGG

patients were effectively stratified into low- and high-risk groups in both the training and

validation sets. Stratification analysis and multivariate Cox analysis revealed that the IPS

was an independent prognostic factor. We also found that high-risk LGG patients had

higher levels of infiltrating B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages

and dendritic cells, and expressed higher levels of CTLA-4, PD-1 and TIM-3. Moreover, a

novel nomogram model was established to estimate the overall survival in LGG patients.

The current study provides novel insights into the LGG immune microenvironment

and potential immunotherapies. The proposed IPS is a clinically promising biomarker

that can be used to classify LGG patients into subgroups with distinct outcomes

and immunophenotypes, with the potential to facilitate individualized management and

improve prognosis.
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INTRODUCTION

Gliomas are the most commonly occurring type of malignant primary tumor of the central nervous
system, which arise from astrocytic, oligodendroglial, mixed oligoastrocytic, or neuronal-glial cells,
and result in significant morbidity andmortality (1, 2). According to theWHO classification system
based on the histological type, diffuse lower-grade gliomas (LGGs) have a grade of II or III (3).
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Despite diverse natural course of this heterogeneous group,
most LGGs will gradually evolve into higher-grade gliomas and
eventually lead to death (4).

Some studies have indicated that key components of the
immune response were significantly altered in gliomas, and
subsequently led to immune evasion of tumors (5, 6). In
addition to conventional treatment methods including surgery,
radiotherapy and chemotherapy, immunotherapy is rapidly
emerging as a promising treatment modality and works
by evoking an anti-tumor immune response that inhibits
immune evasion by the tumor. A number of immune-related
parameters have been discovered to predict the outcomes
of LGG patients (7, 8). However, there is still a lack of
reliable biomarkers that can identify subsets of patients with
potential sensitivity to immunotherapy. Moreover, few studies
have systematically explored the immune microenvironment
of LGG.

Based on the molecular profiles of gliomas, the mutation
in the isocitrate dehydrogenase 1 (IDH1) gene has been
identified to facilitate patient stratification and predict prognosis,
along with other molecular markers including the 1p/19q co-
deletion, methylguanine methyltransferase (MGMT) promoter
methylation, tumor protein (TP) 53, and telomerase reverse
transcriptase (TERT) promoters (9, 10). IDH1 encodes the
cytosolic isocitrate dehydrogenase 1, an enzyme that catalyzes
the oxidative decarboxylation of isocitrate to α-ketoglutarate
and plays a critical role in cellular protection from oxidative
stress (11, 12). Further studies have found this mutation to be
present in up to 80% of LGG patients and was virtually absent in
primary glioblastomas (13). More notably, research increasingly
suggests that the IDH1 mutation conferred an immunologically
quiescent phenotype (14–17). Berghoff et al. reported that
the immunological tumor microenvironment was associated
with IDH mutation status in gliomas. They found that IDH-
mutant gliomas exhibit fewer tumor infiltrating lymphocytes
(TILs) and show reduced expression of programmed death
ligand 1 (PD-L1) protein compared to that in the wild-
type counterparts, which may be at least in part due to
differential PD-L1 gene promoter methylation levels (15). Bunse
et al. also demonstrated that IDH-mutant gliomas display
reduced T cell abundance and altered calcium signaling (17).
Hence, we performed a comprehensive analysis to further
explore the relationship between IDH1 mutation status and
the immune response based on RNA sequencing (RNA-
seq) data.

In the present study, we downloaded RNA-seq data from
The Cancer Genome Atlas (TCGA) as a training set and from
the Chinese Glioma Genome Atlas (CGGA) as a validation
set. We systematically analyzed the influence of the IDH1
mutation on the immune microenvironment, and developed
an immune prognostic signature (IPS) based on four IDH1-
associated immune genes to classify patients into subgroups
with distinct prognosis and immunophenotypes. We ascertained
an independent role of this four-gene IPS and highlighted the
potential value of the included genes to serve as therapeutic
biomarkers. Furthermore, a reliable predictive nomogram model
was designed to estimate overall survival (OS) for LGG patients.

MATERIALS AND METHODS

Gene Expression Datasets and
Immune-Related Genes
The RNA-seq data of 511 LGG samples were obtained from
the TCGA database as a training set. Information regarding
the somatic mutation status and clinical dataset of the
corresponding LGG patients were also downloaded from the
TCGA website (https://portal.gdc.cancer.gov/repository). From
the CGGA dataset (http://www.cgga.org.cn/), we downloaded
RNA-seq data of 172 LGG samples as a validation set. In addition,
a comprehensive immune-related gene set, identified to actively
participate in the process of immune activity, was extracted
from the Immunology Database and Analysis Portal (ImmPort)
database (https://immport.niaid.nih.gov) (18). This was used to
identify immune genes that were differentially expressed between
patients with (IDH1mut) and without IDH1 mutation (IDH1wt).

Differential Expression Analysis
Differential expression analysis was conducted using the
“DESeq2” R package (19). The log2 |fold change| > 1.5 and adj.
P < 0.05 were set as the cut-off values to screen for differentially
expressed genes.

Functional Enrichment Analysis
Metascape (http://metascape.Org) was used to perform
functional and pathway enrichment analyses to explore the
potential molecular mechanisms of the selected genes (20).
Functional enrichment was conducted for Gene Ontology (GO)
terms including the cellular component, biological process, and
molecular function categories. The Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were also enriched. Only terms
with a P < 0.01 and the number of enriched genes ≥3 were
considered as significant and grouped into clusters based on
their membership similarities. The most enriched term within a
cluster was selected as the one to represent the cluster.

Construction of the Immune Prognostic
Signature
Following quality filtering to exclude patients with missing
survival information or a survival time of 0 days, there were 506
samples subjected to subsequent analysis. For further analysis,
the transcriptome profiling of RNA measured by FPKM values
was performed using the log2-based transformation. On the basis
of the differentially expressed immune genes (DEIGs), Kaplan-
Meier analysis was first performed to screen for prognostic
genes in the TCGA set. These genes which were validated
in CGGA were put into the Cox regression model with least
absolute shrinkage and selection operator (LASSO) penalty for
analysis using the “glmnet” R package (21–23). Finally, an IPS
was constructed by weighting the Cox regression coefficients to
calculate a risk score for each patient. Based on the optimal cut-
off values obtained by the “survminer” R package, LGG patients
were classified as low- and high-risk according to their risk score.
To appraise the prognostic performance of the IPS, Kaplan-Meier
analysis and the log-rank test were employed. Time-dependent
receiver operating characteristic (ROC) curves were depicted to
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evaluate the sensitivity and specificity using the “timeROC” R
package (24). Area under the curve (AUC) values were calculated
from the ROC curves.

Principal Components Analysis (PCA) and
Gene Set Enrichment Analysis (GSEA)
PCA was carried out using the “pca3d” R package to investigate
gene expression patterns of grouped patients. GSEA (http://
www.broadinstitute.org/gsea/index.jsp) was conducted between
high- and low-risk phenotypes (25). A nominal P < 0.05
and a false discovery rate (FDR) < 0.25 were considered
statistically significant.

TIMER Database Analysis
The TIMER database (https://cistrome.shinyapps.io/timer) is
a comprehensive resource to analyze and visualize immune

infiltrates among different cancer types (26). TIMER reanalyzes
gene expression profiles, which includes 10,897 samples across
32 cancer types from TCGA to estimate six immune cell types
in the tumor microenvironment, including B cells, CD4+ T
cells, CD8+T cells, macrophages, neutrophils, and dendritic cells
(26). The data of immune infiltrate levels of LGG patients was
extracted from the TIMER database to investigate the association
with the IPS.

Development and Validation of the
Nomogram
Univariate and multivariate Cox analyses were performed to
assess the independent prognostic ability of the IPS. Then, a novel
nomogram was generated based on the results of the multivariate
Cox analysis using the “rms” R package and externally validated
in the CGGA cohort. We conducted 1-, 3-, 5-year OS calibrations

FIGURE 1 | Identified IDH1-associated immune genes. (A) Genomic landscape of LGG and the mutational signatures in the TCGA dataset, which were assayed on

the FireBrowse platform. (B) Volcano plot of 984 genes differentially expressed between IDH1wt and IDH1mut patients. (C) Heatmap of genes differentially expressed

between IDH1wt and IDH1mut patients. (D) Heatmap of immune genes differentially expressed between IDH1wt and IDH1mut patients.
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to determine the predictive accuracy of the nomogram model.
The concordance index (C-index) was used to evaluate the
discrimination of the model. Bootstraps with 1,000 resamples
were calculated to correct the C-index (27). In addition, the time-
dependent ROC curves were plotted to illustrate the predictive
performance. To assess the clinical utility of the nomogram,
decision curve analysis (DCA) was employed to compare the
benefits of different models.

Statistical Analysis
Heatmaps were generated using the “pheatmap” R package.
A volcano plot and violin plots were generated using the
“ggplot2” R package. OS was defined as the primary outcome.
Statistical analyses of this study were conducted using the R
software (version 3.5.2), GraphPad Prism (version 7.0.0), and

SPSS software (version 24.0). A two-sided P < 0.05 was regarded
as significant.

RESULTS

Identification of Differentially Expressed
Immune Genes
In LGGs, the IDH1 mutation is the most common type of
mutation (Figure 1A). Based on the DESeq2 algorithm, there
were 984 genes identified that were differentially expressed
between IDH1wt and IDH1mut patients, including 883 up-
regulated and 101 down-regulated genes (Figures 1B,C). From
this set of genes, 88DEIGswere selected by the ImmPort database
for further analysis (Figure 1D). As shown in Figures 2A–C, the
DEIGs were mainly enriched in regulation of signaling receptor

FIGURE 2 | Functional analysis of 88 IDH1-associated immune genes. (A) Heatmap of enriched terms across input gene lists, colored by P-values. Network of

enriched terms: (B) colored by cluster ID, where nodes that share the same cluster ID are typically close to each other; (C) colored by p-value, where terms containing

more genes tend to have a more significant P-value.
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activity, chemotaxis, positive regulation of MAPK cascade,
transmembrane receptor protein tyrosine kinase signaling
pathway, lymphocyte activation (GO), and cytokine-cytokine
receptor interaction (KEGG).

Construction of the Immune Prognostic
Signature
Considering the differences in immune gene expression between
IDH1wt and IDH1mut patients, we evaluated the prognostic

value of DEIGs by Kaplan-Meier analysis. Log-rank tests were

performed and revealed that 68 DEIGs were associated with

prognosis. Using a cross validation with the CGGA set, 41
DEIGs were identified as showing significant correlation between
gene expression and OS (Supplementary Table 1). Then, LASSO

Cox analysis was performed to select genes with the best

prognostic value and to build an IPS in the TCGA cohort

(Figures 3A,B). Risk scores were calculated for each sample (risk
score= 0.036∗TNFRSF12A+ 0.259∗VAV3+ 0.104∗TNFRSF11B

FIGURE 3 | Construction and validation of the immune prognostic signature. (A,B) LASSO Cox analysis identified four genes most correlated to overall survival in

TCGA set. (C) Coefficient values for each of the four selected genes. (D,G) Kaplan–Meier curves of overall survival for LGG patients based on the IPS in TCGA cohort

and CGGA cohort. (E,H) Risk scores distribution, survival status of each patient, and heatmaps of prognostic four-gene signature in TCGA and CGGA cohorts.

(F,I) Time-dependent ROC curve analysis of the IPS.
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+ 0.356∗HFE, Figure 3C). Patients in the TCGA cohort then
were assigned to a high- or low-risk group using the optimal
cut-off value obtained with the “survminer” R package. The
Kaplan-Meier analysis demonstrated that patients with a high-
risk score were correlated with worse outcomes (Figure 3D).
Risk score distribution and gene expression patterns are shown
in Figure 3E. The time-dependent ROC curve analysis of the
IPS in the TCGA cohort indicated a promising prognostic
ability for OS (1-year AUC = 0.90, 3-year AUC = 0.83, 5-year
AUC= 0.72, Figure 3F).

Validation of the Immune Prognostic
Signature
To confirm that the IPS had a robust prognostic value, the
same formula was applied to the CGGA set, which consisted
of 172 LGG patients. Using the cut-off value obtained from the
corresponding cohort, patients were divided into high- and low-
risk groups. Consistent with the findings in the TCGA database,

patients with high-risk scores had significantly worse OS than
those with low-risk scores (Figure 3G). Risk score distribution
and gene expression patterns are shown in Figure 3H. The time-
dependent ROC analysis also showed that the IPS had high
sensitivity and specificity (Figure 3I). AUC values were 0.85, 0.87,
and 0.87 for 1-, 3-, and 5-year OS, revealing the high predictive
value of the IPS for LGG patients.

Stratification Analyses
The IDH1 mutation is a stable marker for better prognosis
in LGG. Stratification analyses were carried out to determine
whether the predictive ability of the IPS would remain stable
in distinct subgroups. As shown in Figures 4A,B, patients in
the high-risk group showed worse survival compared to those
in the low-risk group in both IDH1wt and IDH1mut subgroups.
We also demonstrated that the IPS was still a powerful marker
for predicting OS in patients with grade II or grade III tumors,
younger or older, and male or female patients (Figures 4C–H).

FIGURE 4 | Stratification analysis. The Kaplan–Meier analysis of the IPS grouping according to patients with (A) IDH1 mutant, (B) IDH1 wildtype, (C) grade II, (D)

grade III, (E) > 41 years, (F) ≤ 41 years, (G) male, and (H) female. The risk score was group by (I) age, tumor grade (J), and (K) sex.
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Afterwards, we attempted to determine the statistical
difference in the distribution of clinicopathological features
between low- and high-risk groups. The risk scores
distributed differently in stratified patients validating their
association with the IPS. Patients with grade III tumor or
at older ages exhibited a higher-risk level (Figures 4I,J).
Whereas, there was no association between risk score and
sex (Figure 4K).

High Risk Indicated an Enhanced Local
Immune Phenotype
Considering different prognosis, we investigated differences
between risk groups using RNA-seq data. Based on the
genes comprising the IPS, PCA was performed and revealed
that patients in high- or low-risk groups were distributed
in discrete directions indicating differences in the immune
phenotype (Figure 5A). GSEA was then conducted between
the high- and low-risk groups, and more immune-related
biological processes were found significantly enriched in
the high-risk group, indicating that the high-risk score
conferred an enhanced immune phenotype (Figures 5B,C,
Supplementary Table 2).

Timer Database Analysis and Immune
Checkpoints Analysis
Characterization of the immune infiltration landscape
is important to explore the status of the immune
microenvironment and investigate the tumor-immune
interaction. We applied the TIMER tool to identify potential
relationships between the IPS and infiltrating immune cells
including B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages and dendritic cells. As shown in Figure 6A, tumor-
infiltrating immune cells were strongly interrelated and exhibited
positive correlation with our IPS. Patients in the high-risk group
had significantly higher proportions of infiltrating B cells, CD4+
T cells, CD8+ T cells, neutrophils, macrophages and dendritic
cells than those in low-risk group (all P < 0.05, Figure 6B).

Immune checkpoints have been the subject of a wave of new
studies for their important roles in immune regulation, and
immune checkpoint blockade therapies are promising strategies
in the treatment of cancer (28). Therefore, we investigated
the relationship between the IPS and expression of critical
immune checkpoints including PD-1, CTLA-4, LAG-3, TIM-
3, and TIGIT. We found that the risk score showed a positive
correlation with the expression of PD-1, CTLA-4, TIM-3, and
TIGIT (Figure 6C). Among the risk groups, high-risk patients

FIGURE 5 | Different immune phenotypes between high- and low-risk groups in TCGA cohort. (A) Principal components analysis of IDH1-associated immune genes

between high- and low-risk groups. Blue color indicates low-risk patients, and red color represents high-risk patients. (B,C) Gene set enrichment analysis for

comparing immune phenotype between high- and low-risk groups. Significant enrichment of five immune-related GO terms in high-risk group. FDR, false discovery

rate; NES, normalized enrichment score.
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FIGURE 6 | Correlations of the IPS with infiltrating immune cell proportions and immune checkpoints. (A) Correlation of the risk score with infiltrating immune cell

proportions. Pearson’s correlation coefficient values with the level of significance were shown on the top of the diagonal. ***P < 0.001. (B) Violin plots visualizing

significantly different immune cell proportions between high- and low-risk patients. (C) Correlation of the risk score with the expression of several crucial immune

checkpoints (D) Violin plots visualizing significantly different immune checkpoints between high- and low-risk patients.

expressed higher levels of CTLA-4, PD-1, and TIM-3 (all P< 0.05,
Figure 6D, Supplementary Table 3).

Functional Annotation of Prognostic DEIGs
Between High- and Low-Risk Group
We identified 41 DEIGs validated in the CGGA database
that were risk score-associated genes. These genes were

differentially expressed between high- and low-risk LGG
patients (Figure 7A). Similar to the results from the gene

enrichment analysis of 88 DEIGs, these prognostic risk
score-associated genes were mainly enriched in regulation of

signaling receptor activity, cell chemotaxis, positive regulation of

pathway-restricted SMAD protein phosphorylation, lymphocyte
activation, positive regulation of MAPK cascade (GO), and
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FIGURE 7 | Functional analysis of 41 risk score-associated genes. (A) Heatmap of IDH1-associated immune genes that were differentially expressed between

patients with high- and low-risk scores. (B) Heatmap of enriched terms across input gene lists, colored by P-values. Network of enriched terms: (C) colored by cluster

ID, where nodes that share the same cluster ID are typically close to each other; (D) colored by P-value, where terms containing more genes tend to have a more

significant P-value.

cytokine-cytokine receptor interaction (KEGG, Figures 7B–D).
This data thus provided a deeper understanding of the biological
effects of the IPS.

IPS Was an Independent Predictive Marker
of OS for LGG Patients
To examine whether the IPS was an independent prognostic
factor for LGG patients, we first applied univariate Cox analysis
and found that the IPS was significantly associated with OS
[Hazard ratio (HR): 6.346, 95% confidence interval (CI): 5.436–
9.078, P < 0.001; Figure 8A]. By adjusting for the available
clinicopathological variables, multivariate Cox analysis revealed
that the IPS was able to serve as an independent prognostic
factor with a HR of 5.321 in the TCGA cohort (95% CI: 2.979–
9.503, P < 0.001; Figure 8A). In addition, the same results were
found in the CGGA cohort and indicated that the IPS had an
independent role in predicting LGG survival (univariate: HR:

9.651, 95% CI: 5.266–17.685, P < 0.001; multivariate: HR:6.258,
95% CI: 2.825–13.864, P < 0.001; Figure 8A).

Establishment and Validation of an
IPS-Based Nomogram Model
To provide a clinically associated quantitative method that
could be employed to estimate OS for LGG patients, we
developed a nomogram model in which the IPS integrated the
two independent prognostic factors (age and grade; Figure 8B).
The C-index values indicated favorable discrimination ability
of the nomogram model (TCGA: C-index 0.839; CGGA:
C-index 0.811). Calibration plots of observed vs. predicted
probabilities of 1-, 3-, and 5-year OS demonstrated excellent
concordance in both the TCGA (Figure 8C) and CGGA cohorts
(Figure 8D). We then used time-dependent ROC curve analysis
to compare the predictive accuracy between the nomogram
model and individual predictors, including IPS, age, and
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FIGURE 8 | Construction and validation of the nomogram model. (A) Univariate and multivariate Cox analyses indicated that IPS was significantly associated with OS

in both TCGA and CGGA sets. Red indicates statistical significance, and blue indicates no statistical significance. (B) Nomogram model for predicting the probability

of 1-, 3-, and 5-year OS in LGGs. (C,D) Calibration plots of the nomogram for predicting the probability of OS at 1, 3, and 5 years in TCGA and CGGA cohorts.

(E,F) Time-dependent ROC curve analyses of the nomogram model, risk signature, age and tumor grade in TCGA cohort. (G,H) Decision curves of the nomogram

predicting 3- and 5-year OS in TCGA cohort.

grade (Figures 8E,F). The nomogram model suggested higher
prognostic accuracy at 3-and 5-year OS with a larger AUC.
Ultimately, we attempted to determine the clinical benefit of the
nomogrammodel and the corresponding scope of application via
DCA. Compared with IPS, age and tumor grade, the nomogram
mode revealed an enhanced net benefit with wider threshold
probabilities and offered the best clinical utility (3-year OS:
Figure 8G; 5-year OS: Figure 8H).

DISCUSSION

Although many new molecular markers have been identified, the
IDH1 mutation remains the most stable, and is widely used in
glioma studies (29). The discovery of IDH mutations in gliomas
as compared to their IDH wildtype counterparts, plays a crucial

part in the understanding of glioma biology. Mounting evidence
reveals that the immunological tumor microenvironment of the
gliomas differs based on their IDH1 mutation (15). However, the
mechanism governing the association of IDH1mutation with the
immune microenvironment is yet to be studied.

In the current study, the role of IDH1 mutations in the
regulation of immune phenotype in LGGs was comprehensively
studied. An IDH1-associated IPS, which was significantly related
to prognosis, was constructed based on a TCGA set, and
validated in a CGGA set. The prognostic value of this four-
gene IPS was also independent of the known strong prognostic
factors, like IDH1 mutation, age, and tumor grade. In addition,
the IPS enabled us to classify patients into subgroups with
distinct outcomes and immunophenotypes, implying that it may
be used to refine the current prognostic model and facilitate
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further stratification of patients. Therefore, we leveraged the
complementary value of molecular and clinical characteristics,
and integrated them to develop a novel nomogram model
to provide superior survival prediction. Further bioinformatics
analysis was conducted to better understand the biological
function of these IDH1-associated immune prognostic genes.

The four genes included in our signature were HFE, VAV3,
TNFRSF12A, and TNFRSF11B. Notably, there is no overlap
between the IDH1-associated immune genes identified in the
aforementioned studies. Moreover, these selected genes hold
great promise to serve as novel molecular targets and improve
patient management in the era of immunotherapy. The HFE
gene encodes the HFE protein, an MHC I-like molecule that
acts as an iron sensor in the body and is involved in iron
metabolism (30). There is increasing evidence suggesting a role
for HFE in antigen presentation with interactions between HFE
and the antigen presentation pathway shown to impair antigen
processing and T cell activation (31, 32). Previous studies have
also demonstrated a relationship between HFE genotype and
increased frequency of cancer. In patients with diffuse gliomas,
HFE expression was associated with decreased survival (33).
VAV3, a Rho-GTPase guanine nucleotide exchange factor, is
widely expressed in multiple tissues and plays important roles in
the formation of the cytoskeleton, cell differentiation, regulation
of T and B cell signaling pathways, and oncogenesis (34, 35).
Liu et al. demonstrated that high expression of VAV3 was
related to poor survival in glioblastomas (36), whereas its effect
on LGG prognosis was not identified previously. Furthermore,
TNFRSF12A and TNFRSF11B are cytokine receptors belonging
to the tumor necrosis factor receptor superfamily. Weller
et al. explored the association between TNFRSF11B and
Apo2L/TRAIL-based therapy in gliomas (37), but the underlying
mechanisms of its involvement in tumor biology remains to
be investigated. In our study, elevated expression of VAV3 and
TNFRSF11B were found to be related to worse survival in LGGs
for the first time.

Characterization of the immune infiltration landscape is of
great significance in investigation of the cross-talk between
tumors and immunity. Thus, we explored the correlation
between the IPS and immune cell infiltration to reflect the
status of the immune microenvironment in LGGs. On basis
of the TIMER database, we found that the high-risk patients
had higher infiltrating levels of B cells, CD4+ T cells, CD8+ T
cells, neutrophils, macrophages, and dendritic cells. These results
confirmed and expanded the finding that the heterogeneity of
immune infiltration was crucial for LGG progression. The IPS
could be used as a predictor for increased immune cell infiltration
and may have significant clinical implications.

Currently, there are an unprecedented number of clinical
trials evaluating the effects of immune checkpoint inhibitors

in gliomas (38). Further analysis was conducted to explore the
association between IPS and the expression of critical immune
checkpoints. We found that high-risk patients had higher PD-1,
CTLA-4, and TIM-3 expression in the tumor microenvironment
suggesting that the immunosuppressive microenvironment
partly led to worse survival of these patients. Thus, these
patients might be more likely to benefit from immune checkpoint
blockade therapies.

The current study provided novel insights into the LGG
immune microenvironment and immunotherapies. The selected
genes should be prioritized for functional and mechanistic
studies to confirm the value of their clinical application.
Moreover, a limitation of this study is its retrospective nature.
Thus, further prospective studies are needed.

In summary, the IPS is a clinically promising biomarker
that can be used to classify LGG patients into subgroups with
distinct outcomes and immunophenotypes, with the potential to
facilitate individualized management and improve prognosis. It
also provides a novel way to elucidate themechanism of the IDH1
mutation on prognosis from an immunological perspective.
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