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Extracellular vesicles (EVs) are heterogeneous nanosized vesicles that are constitutively

released by virtually all types of cells. They have been isolated in almost all body fluids.

EVs cargo consists of various molecules (nucleic acids, proteins, lipids, and metabolites),

that can be found on EVs surface and/or in their lumen. EVs structure confer stability and

allow the transfer of their cargo to specific cell types over a distance. EVs play a critical role

in intercellular communication in physiological and pathological settings. The broadening

of knowledge on EVs improved our comprehension of cancer biology as far as tumor

development, growth, metastasis, chemoresistance, and treatment are concerned.

Increasing evidences suggest that EVs have a significant role in osteosarcoma (OS)

development, progression, and metastatic process. The modulation of inflammatory

communication pathways by EVs plays a critical role in OS and in other bone-related

pathological conditions such as osteoarthritis and rheumatoid arthritis. In this review we

describe the emerging data on the role of extracellular vesicles in osteosarcoma and

discuss the effects and function of OS-derived EVs focusing on their future applicability

in clinical practice.
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INTRODUCTION

Extracellular vesicles are lipid bilayer nanovesicles containing nucleic acids (DNA, mRNA, and
miRNA), proteins, metabolites and lipids (1). EVs were first described by Johnstone et al., that
demonstrated EVs ability to transport transferrin receptor outside the cells during the maturation
of reticulocyte (2). Recently, these nanovesicles have gained substantial attention as crucial factors
in maintaining normal cellular and biological physiology. These vesicles are proposed to be tailor-
made specialized mini-maps of their cell of origin, and have peculiar functions in cell-to-cell
communication (3). Extracellular vesicles are a class of nanovesicles including exosomes and
microvesicles, that have been defined and sub-grouped on the basis of their size, biogenesis and
composition. Exosomes are classically considered as 30–100 nm, they are part of the endosomal
compartment and are generated within large intracellular multivesicular bodies. They are released
into the extracellular space upon fusion with the plasma membrane. Microvesicles range as
100–1,000 nm and are produced by direct budding from the plasmatic membrane (4).

The EVs lipid membrane protects its cargo from enzymatic degradation making them ideal
carriers for local and long-distance transport (3). EVs have been identified in nearly all eukaryotic
and prokaryotic cells and are secreted in physiological and pathological conditions (5, 6). They
have been isolated from most body fluids including plasma, saliva and urine (7). Furthermore,
extracellular vesicles are observed abundantly in tumor microenvironment where they play an
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important role in signaling pathways (8, 9). The presence of
matrix metalloproteinases (MMPs) and MMP regulators in EVs
showed their crucial role in extracellular matrix remodeling, that
is involved not only in metastatic process but also in several
bone-related conditions (10).

OSTEOSARCOMA

Osteosarcoma is the most common primary bone tumor and
the more frequent pediatric solid cancer (11). To date, the
standard treatment for osteosarcoma is based on neoadjuvant
chemotherapy, surgery and post-operative chemotherapy. This
aggressive treatment does not guarantee a favorable outcome,
principally in patients with metastatic and/or recurrent disease
(12, 13), thus new therapies are needed. Therefore, a major
translational objective of osteosarcoma research is to identify new
therapeutic markers and their clinical significance. In this review,
we describe the emerging data on the role of EVs in osteosarcoma
growth, metastasis, and chemoresistance (Figure 1), focusing on
their future applicability in clinical practice.

EFFECTS OF OS-DERIVED EVs ON CELLS
OF TUMOR MICROENVIRONMENT

The specific tumor-driving genetic alterations related to OS
development are currently poorly understood. Although there is
still no final consensus on the cell of origin for osteosarcoma, the
regulation at epigenetic level may be an early event occurring
in the transformation of mesenchymal stem cells (MSC) during
OS development (14). Recently, Mannerström et al. examined
the EV-mediated intercellular crosstalk of MSC and OS. The
authors demonstrated that OS-EVs modulate the epigenetic
status of MSC, through hypomethylation of long interspersed
nuclear element 1. Furthermore, OS-derived EVs influenced the
expression of matrix metallopeptidase 1, vascular endothelial
growth factor A (VEGF-A), and intercellular adhesion molecule
1 which are related to bone microenvironment remodeling (15).

Tumor growth, progression, and metastatic process are
supported by angiogenesis, that guarantees oxygen and nutrient
supply to the OS expanding mass, and provides an escape
route for tumor cells to enter the circulation and spread to
distant organs (16). Different cells and mediators are involved
in the angiogenic process. Recently, we highlighted the ability
of OS derived-EVs to contribute to tumor angiogenesis. This
pro-angiogenic activity is mediated by angiogenesis-related
proteins (serpin-E1, serpin-F1, TIMP-1, thrombospondin-1,
urokinase-type plasminogen activator (uPA), VEGF, pentraxin-3,
PDGF-AA, angiopoietin-2, coagulation factor-III, CD26, CD105,
endostatin, endothelin-1, and HB-EGF) and miRNAs (miR-
146a-5p, miR-10b-5p, miR-143-3p, miR-382-5p, miR-150-5p,
miR-125b-5p, miR-27a-3p, miR-145-5p, miR-26a-5p, miR-93-
5p, miR-21-5p, miR-92a-3p, and miR-106a-5p) that have been
identified in OS derived-EVs cargo (17). Moreover, Raimondi
et al. showed that OS derived-EVs stimulated endothelial cells
to express and secrete elevated levels of the pro-angiogenic
factor VEGF, and interleukins (IL-6 and IL-8) (18). The role of

tumor-derived EVs cargo in stimulation of angiogenesis is well-
recognized in other tumors such as multiple myeloma, glioma,
renal cell carcinoma, pancreatic, colorectal, prostate, and lung
cancer (19). Thus, angiogenic EV cargo can now be reasonably
considered a common aggressive trait of cancer derived-EVs.

Osteosarcoma is generally considered a tumor of osteoblastic
lineage, and it has been demonstrated that osteoclasts have
a crucial role in OS aggressiveness and poor response to
chemotherapy (20, 21). Osteoclast formation and bone
resorption are stimulated by osteoclast-inducing factors
secreted by OS cells themselves, and, additionally, by the pro-
osteoclastogenic cargo of OS-derived EVs (18, 22). In particular,
the biochemical characterization of OS-derived EVs identified
a profile of bioactive pro-osteoclastic factors including matrix
metalloproteinase-1 and 13, transforming growth factor β

(TGF-β), CD-9 and receptor activator of nuclear factor kappa-β
ligand (RANKL) (22). In addition, Raimondi et al. identified a
pro-osteoclastic miRNA cargo in OS-derived EVs. The authors
demonstrated that EVs contain miR-148a-3p and miR-21-5p,
known for their involvement in the tumor microenvironment
establishment (18). The functional role of miR-148a-3p in bone
homeostasis, osteoclastogenesis and bone metabolism in vivo
has been previously described (23). Additionally, miR-21-5p
has been found highly expressed in osteoclast precursors, and
upregulated during RANKL-induced osteoclastogenesis (24).
These studies suggest a specific role of the pro-osteoclastogenic
cargo of EVs in the alteration of bone remodeling homeostasis in
OS bone microenvironment.

The contribution of EVs in tumor progression and metastatic
process may be exerted through both local and distant
intercellular communication. Macklin et al. demonstrated a
role of EVs as mediators in the transfer of migratory and
invasive characteristics fromOS subclones with highly metastatic
traits to poor metastatic cells (25). The hypothesis that a local
interclonal cooperation through EV production and transfer
favor the metastatic progression of OS, and can determine
organotropic metastasis by inducing a pre-metastatic niche, has
already been previously demonstrated for human breast and
pancreatic cancer (26).

OS derived-EVs may furthermore contribute to metastatic
process by prompting MSC to acquire a pro-tumorigenic
and pro-metastatic phenotype. Indeed, OS derived-EVs cells
selectively incorporate a membrane-associated form of TGF-β,
which induces the pro-inflammatory IL-6 production by MSC.
MSC-derived IL-6 increases tumor growth and metastasis
formation in mice bearing osteosarcoma (8, 27). Moreover, OS
cells secreted both the soluble form of uPA and uPA-containing
exosomes. Interestingly, the autocrine and paracrine activation of
the uPA/uPAR axis has been related to the conversion of OS cells
to a metastatic phenotype (28).

The interaction of OS cells with the surrounding immune
cells has been explored to support immunotherapy approaches
for OS and their potential use as adjuvant therapies (29). The
analysis of the proteomic composition of OS-derived EVs in
a canine osteosarcoma model identified immunosuppressive
proteins with immunomodulatory effects on T cells. In particular,
authors demonstrated a diminished activation and proliferation
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FIGURE 1 | Role of extracellular vesicles in the communication between osteosarcoma cells and the tumor microenvironment. Osteosarcoma cells interact with the

surrounding cells through secretion and up-take of extracellular vesicles (EVs). EVs cargo consists of nucleic acids, proteins, lipids, and metabolites. EVs have been

found to play roles in a multitude of pathways involved in tumor growth, progression and metastatic process. EV-mediated crosstalk occurs through the trafficking of

vesicle-associated components to endothelial cells, osteoclasts, T cells, muscle cells, cancer stem cells, cancer-associated fibroblasts, mesenchymal stem cells, and

osteosarcoma cells. OS-derived EVs influence angiogenesis, osteoclastogenesis, immunomodulation, drug resistance, epigenetics status, invasion, and migration

processes. EVs derived from cells of OS microenvironment affect OS growth, migration, and invasion. Peculiar microenvironment tumor conditions (acidic pH, hypoxia

and stress) affect EVs secretion and features.

of CD4+ and CD8+ T cells (30). Cancer derived-EVs have been
linked with several mechanisms that support tumor development
through immune escape (31, 32). In particular, the activation
of the programmed death ligand 1 (PD-L1) pathway is used by
cancer cells in the process of immune surveillance evasion, and
the overexpression of PD-L1 has been associated with increased

metastasis in OS (33). Interestingly, Chen et al. showed that
metastatic melanoma released EVs carrying PD-L1 that can be
used to predict the effect of anti-PD-1 therapy (32).

OS-derived EVs may also play a role in sarcoma-associated
cachexia, secondary to aggressive surgical treatment of OS.
Interestingly, Mu et al. have related inflammation and the
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crosstalk between NF-kB and Notch signaling to skeletal muscle
atrophy seen in cancer cachexia, and demonstrated that EVs
derived from OS murine cells may transfer Notch-activating
signals to muscle cells (34).

So far, there are no data available on EVs derived from
OS cancer stem cells (CSC), that represent a sub-type of
tumor cells with well-known roles in tumor propagation,
therapy resistance, recurrence, and metastasis (35). In prostate
cancer a different miRNA pattern was found in EV cargo
derived from tumor bulk and CSC, thus unveiling additional
potential biomarkers and therapeutic targets (36). In this
direction, we may assume that future investigations of
EV cargo derived from OS CSC will enrich the panel of
EV-derived biomarkers.

To summarize, different specific activities of OS-derived EVs
on tumor microenvironment cells have been demonstrated.
However, according to Jerez et al. the enrichment of EV proteins
and miRNA derived from different OS cell lines is heterogeneous
(37, 38). This has to be carefully considered when general
conclusion on OS behavior are based on a specific miRNAs or
protein identified in EV cargo derived by a specific cell line. In
order to substantiate the findings, use of additional cell lines
and, especially possibly, primary OS cells should be considered
in future experiments.

FUNCTIONS OF EVs DERIVED FROM
CELLS OF OS MICROENVIRONMENT

MSC and cancer-associated fibroblasts (CAFs) are known
to support tumor progression and chemoresistance, through
paracrine cross-feeding and vesicles secretion (39). Thus, a
growing interest has been devoted to explore the activity
of EVs derived from MSC or CAF on tumor cells. The
transfer of EVs derived miRNA represents an additional
level of intercellular communication between stroma and
cancer cells. Recently, Wang et al. demonstrated that miR-
1228 encapsulated in CAF-derived EVs promotes OS cells
migration and invasion by downregulating suppressor cancer
cell invasion mRNA expression (40). Recent findings suggest
that the contribution of MSC-derived EVs to OS growth is
mediated by the activation of Hedgehog signaling pathway
(41). Moreover, Lin et al. demonstrated that MSC-derived
microvesicles support U2OS cell growth under hypoxia, and that
this activity was partially related with the PI3K/AKT and HIF-1α
pathways (42).

However, MSC and CAF are not the unique cellular
component of osteosarcoma microenvironment. Indeed,
osteoblasts, osteoclasts, endothelial, and immune cells
coexist with cancer cells and participate in their growth
and survival. Moreover, their ability to secrete EVs has
already been demonstrated in other pathophysiological models
(43–45). Further investigation into how EVs derived from
microenvironment cells may act on OS cells will help to elucidate
new factors and mechanisms involved in cell communication
within tumor microenvironment, and to discover new targets
and/or biomarkers.

INFLUENCE OF MICROENVIRONMENT ON
EVs SECRETION AND FUNCTION

Several microenvironment parameters (acidosis, hypoxia, and
elevated interstitial fluid pressure) influence tumor cell viability,
proliferation, motility and metabolism, and are able to lead to
more aggressive behavior of OS cells (46). Malignant lesions
of mesenchymal tumors appear to be quite acidic (47), and it
has been demonstrated that extracellular acidosis contributes
to OS behavior, chemoresistance, and response to therapy (48–
50). Interestingly, Logozzi et al. demonstrated that an acid
extracellular pH (6.5) induced a significant increase in EV
release, while buffering the medium reduced the EV release in
prostate, melanoma, osteosarcoma, breast, adenocarcinoma, and
colorectal carcinoma cells (51). According to this, we recently
demonstrated an increased amount of EV protein mass secreted
by OS cells grown in acidic compared to neutral pH, and a higher
pro-angiogenic activity of acidic OS-derived EVs on in vivo assay
(17). Different hypothesis have been discussed to determine how
EVs cargo is transferred from cell to cell, without reaching a
conclusive and accepted theory (52). Despite this, Parolini et al.
demonstrated an increased fusion efficiency of EVs secreted at
low extracellular pH by melanoma cells, possibly due to the
modified lipid composition of EVs detected at acidic pH (53). The
pharmacological handling of the extracellular and intracellular
pH of cancers, that has been considered as a potential additional
treatment in tumor therapy (54), may thus also interfere with EVs
release and fusion efficiency.

Stress conditions are likewise able to modify the behavior of
cells of tumor microenvironment. It is well-known that hypoxia,
poor nutrient conditions, and mechanical stress influence MSC
secretome (55–57). In this context, it is not surprising that EVs
isolated from serum deprived MSC carries tumor supportive
miRNA and lncRNA, and increase OS survival and resistance to
apoptosis (58, 59).

As microenvironment parameters influence EVs release and
cargo, an emerging concept is to produce more sophisticated in
vitro models to better resemble in vivo cell environment when
studying EVs, as it is already a well-recognized approach in drug
discovery (60). According to this, Villasante et al. pointed out that
3-dimensionality and stiffness of a tumor matrix can determine
the size and cargo of EVs released by Ewing’s sarcoma cells. These
authors suggested to study EVs in 3D rather than in 2D setting to
better mimic the native structure of the tumor (61).

ROLE OF OS-DERIVED EVs IN
ANTI-CANCER DRUG RESISTANCE

Multidrug resistance (MDR), intrinsic or acquired, remains
a major obstacle to successful osteosarcoma treatment and
contributes to poor clinical outcome (62). Recent studies
support EVs as playing a key role in OS drug-resistance
(63–66). We demonstrated that the MDR phenotype can
be induced in OS cells through MDR OS-derived EVs.
These nanovesicles are able to decrease OS cell sensitivity
to doxorubicin by the transfer of functional MDR-1 mRNA,
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TABLE 1 | Biomarkers identified in circulating EVs in osteosarcoma.

Biomarker Sample Type Number of patients analyzed References

EV-associated TGFβ Human serum n = 10 OS patients

n = 10 healthy donors

(24)

EV-associated SERPING1,

HEL-S-71p, HBB, KRT10, HEL180,

TIH1, IGLC7, DC33, and

characterized protein

Canine serum n = 8 OS group

n = 5 healthy dogs with

traumatic bone fractures

n = 5 healthy,

size-matched controls

(68)

EV-associated SERPIND1 and class

III MHC

Canine serum n = 5 OS diagnosis

n = 5, 2 weeks after amputation

n = 5 onset of lung metastases

(68)

Serum exosomal miRNAs:

miR-124, miR133a, miR-9,

miR199a-3p, miR-385, miR-135b,

miR-148a, miR-27a

Serum exosomal mRNAs:

Annexin2, Smad2, MTAP, CIP4,

PEDF, WWOX, Cdc5L, P27

Human serum n = 48 OS patients with poor

chemotherapeutic

n = 45 OS patients with good

chemotherapeutic response

n = 51 healthy donors

(69)

EVRNA carries aberrant gene fusions Human plasma n = 3 OS presurgery patients

n = 3 OS metastatic patients

(70)

Mutations of RNA in circulating EVs Human blood n = 40 metastatic and

non-metastatic patients

Recruiting is still ongoing.

ClinicalTrials.gov

Identifier: NCT03108677

and its product P-glycoprotein, inducing MDR phenotype
to OS doxorubicin-sensitive cells (65). Recently, pre-clinical
and clinical data linked EVs to MDR also in hematological
malignancies, glioblastoma, neuroblastoma, melanoma,
breast, prostate, lung, ovarian, colorectal, gastric, pancreatic,
and kidney cancer (66, 67).

Moreover, EVs can mediate MDR through the transfer
of specific bioactive molecules including, prosurvival/apoptosis
related-factors, and non-coding RNAs (68). Much attention
has focused on the miRNAs identified in EVs cargo due to
their capacity to interfere in gene regulation and subsequently
to be involved in a variety of drug resistance pathways
and mechanisms (69). Therefore, the EV and its molecular
cargo can be viewed as a fundamental mediator of cancer
drug resistance.

EVs AS BIOMARKERS IN OS

Liquid biopsy strategies are now being explored to discover
and validate new and more efficient and/or complementary
approaches to improve OS diagnosis, management and treatment
(70). Liquid biopsies can be profitably used to assess molecular
heterogeneity of OS tumors, and to provide dynamic tumor
information. In this context, EVs represent a promising target
as they can be easily non-invasively isolated from accessible
body fluids including blood, urine and saliva. Furthermore,
EV cargo is protected from degradation inside a membranous
structure, that provides stability and allows prolonged periods
of storage of EVs before analysis, making their clinical use
feasible (71). EVs contains nucleic acids, proteins, lipids and

metabolites that can be identified, characterized and thus used
as biomarkers. As far as EV-associated proteins are concerned,
circulating levels of EV-associated TGF-β have been found
to be increased in osteosarcoma patients, when compared
to healthy control subjects (27). A proteomic investigation
of circulating EVs in canine serum samples identified EV
related proteins useful to distinguish serum of osteosarcoma
from serum of healthy or fractured dogs (72). Furthermore,
Brady et al. identified two proteins associated with EVs
(serpinD1 and MHC class III-complement C6) which allow
to discriminate serum derived from different disease stages
of OS (72).

The presence of a specific collection of RNAs in EVs cargo
may also serve as new or supplementary biomarker in OS
diagnosis and progression. Xu et al. showed dysregulated levels of
several miRNAs and mRNAs in EVs isolated from serum of OS
patients with a poor chemotherapeutic response when compared
with good responders (73). Moreover, Bao et al. demonstrated
in a pilot study, an increased tumor mutation burden in
RNA isolated from metastatic EVs plasma samples compared
to non-metastatic ones (74). A prospective observational
study to reveal the roles of circulating EVs RNA in lung
metastases of primary high–grade osteosarcoma was launched
in 2017 and recruiting is still ongoing (ClinicalTrials.gov:
Identifier: NCT03108677).

In this review different EVs cargo components have been
described as potential biomarkers in OS patients. In Table 1

biomarkers identified in circulating EVs in osteosarcoma are
reported. The number of patients and source of EVs (plasma,
serum, or blood) were described. These studies were carried
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out in small cohorts of patients utilizing different methods
to isolate EVs. According to Ayers et al. several parameters
and challenges will have to be considered before a diagnostic
clinical application of EVs can become a solid reality (75).
The major concern of all studies using EVs are focused
on standardization and improvement of methods to isolate
EVs and, if appropriate, to distinguish EV subpopulations.
It has to be pointed out that also a standardization of
pre-analytical variables is also required to ensure that the
quantity and characteristics of EVs reported can be reliably
evaluated. The possibility to merge data coming from different
laboratories would be simplified by following shared protocols
and guidelines. In this respect the International Society of
Extracellular Vesicles supported several initiatives to favor
method homogenization, such as the EV Transparent Reporting
and Centralizing Knowledge (76), the Minimal Information
for Studies of EVs (4) and the Clinical Wrap-Up session
at ISEV2018 (77). As far as EVs isolation methods are
concerned, microfluidic miniaturized systems have recently
emerged as promising technology to address both isolation and
analysis of EVs in clinical settings, where a small amount of
samples are available and rare molecular targets have to be
detected (78, 79).

CONCLUSIONS

Osteosarcoma is a complex system in which cancer cells, cancer
stem cells, mesenchymal cells, immune cells, fibroblasts and
endothelial cells coexist and communicate. Recently acquired

knowledge indicates that the interactions among these cells
are also mediated by extracellular vesicles. The transfer of
tumor-supportive traits from osteosarcoma cells to donor cells
contribute to cancer growth and metastatic process. On the
other hand, EVs derived from microenvironment cells are
able to influence tumor growth and migration. Additionally,
specific tumor microenvironment features (stress, hypoxia,
acidic pH) interfere with EV secretion and cargo. Overall,
data from literature suggest multiple functions of EVs in
osteosarcoma, paving the way to discover new therapeutic
targets and to design innovative diagnostic assays. Future efforts
must focus on technological advances in EV purification and
characterization to improve EV detection and cargo evaluation
in clinical setting. Moreover, one additional challenge for
the future will be to associate new functions to subclasses
of EVs to identify peculiar pathways involving EVs, and
changes in their cargo related to OS stage or response
to therapy.
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