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Objectives: To investigate the ability of radiomics features from MRI in differentiating

anaplastic oligodendroglioma (AO) from atypical low-grade oligodendroglioma using

machine-learning algorithms.

Methods: A total number of 101 qualified patients (50 participants with AO and

51 with atypical low-grade oligodendroglioma) were enrolled in this retrospective,

single-center study. Forty radiomics features of tumor images derived from six matrices

were extracted from contrast-enhanced T1-weighted (T1C) images and fluid-attenuation

inversion recovery (FLAIR) images. Three selection methods were performed to select the

optimal features for classifiers, including distance correlation, least absolute shrinkage

and selection operator (LASSO), and gradient boosting decision tree (GBDT). Then

three machine-learning classifiers were adopted to generate discriminative models,

including linear discriminant analysis, support vector machine, and random forest (RF).

Receiver operating characteristic analysis was conducted to evaluate the discriminative

performance of each model.

Results: Nine predictive models were established based on radiomics features from

T1C images and FLAIR images. All of the classifiers represented feasible ability in

differentiation, with AUC more than 0.840 when combined with suitable selection

method. For models based on T1C images, the combination of LASSO and RF classifier

represented the highest AUC of 0.904 in the validation group. For models based on

FLAIR images, the combination of GBDT and RF classifier showed the highest AUC of

0.861 in the validation group.

Conclusion: Radiomics-based machine-learning approach could potentially serve as a

feasible method in distinguishing AO from atypical low-grade oligodendroglioma.

Keywords: radiomics, machine learning, oligodendroglioma, anaplastic oligodendroglioma, magnetic resonance

imaging, grading
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INTRODUCTION

Oligodendroglial tumors, one of the most common subtypes of
gliomas, are classified into oligodendroglioma (grade II) and
anaplastic oligodendroglioma (AO) (grade III) according to
the 2016 World Health Organization (WHO) classification
system (1). The clinical management and prognosis of
oligodendrogliomas are closely relevant to the histopathological
grade. AO is considered as the malignant tumor with aggressive
behavior and requires radiotherapy and chemotherapy after
the maximum safe resection, whereas patients with low-grade
oligodendroglioma usually undergo less postoperative treatment
and have better survival outcomes (2, 3). Therefore, the accurate
preoperative assessment of tumor grade is clinically important
for treatment planning and prognosis prediction. Magnetic
resonance (MR) scan is recommended in pre-surgical evaluation
of oligodendroglioma grade, as the contrast enhancement pattern
is typically considered as the characteristics of high-grade glioma
(2, 4). However, up to 50% of low-grade oligodendroglioma
showed similar patterns with enhancement on MR imaging
(MRI), making the discrimination from AO challenging in these
cases (5).

Radiomics is an emerging field that can extract quantitative
parameters from medical images to provide non-visual
information calculated with mathematical formulas (6). Previous
studies suggested that the combination of radiomics and
machine-learning algorithms showed promising potential in
differential diagnosis, pre-surgical grading, and prognosis
prediction of intracranial tumors (7–10). However, it has never
been applied in the grade prediction of oligodendrogliomas.
Because radiomics could potentially reflect the underlying
pathophysiology of lesions, we hypothesized that it might
detect the differences that were difficult to obtain by visual
inspection between AO and atypical oligodendroglioma
(6, 11). Therefore, the purpose of the present study was to
investigate the ability of radiomics-based machine learning
technology in distinguishing AO from atypical low-grade
oligodendroglioma. A set of radiomics parameters was extracted
from MR images, and a series of discriminative models were
established using different combinations of selection methods
and machine-learning algorithms.

MATERIALS AND METHODS

Patient Selection
In this retrospective study, we screened our institutional database
to review the patients who were diagnosed and treated at the
neurosurgery department of our institution from January 2015
to December 2018. According to the 2016 WHO Classification
of Tumors of the Central Nervous System, the presence of
isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion
is necessary for diagnosis of both oligodendroglioma and AO.
Therefore, we carefully viewed the pathological reports and
genetic testing results of all participants, ensuring that enrolled
patients histopathologically and genetically met the 2016 WHO
criteria. We initially selected 241 potentially eligible patients who
were: (1) with pathological confirmation of oligodendroglioma

(N = 182) or AO (N = 59); (2) with conclusive genetic testing
results (presence of IDH mutation and 1p/19q codeletion); (3)
with pre-therapeutic MR images. Among 182 patients with low-
grade oligodendroglioma, 68 of them were selected as atypical
oligodendroglioma defined as a low-grade oligodendroglioma
with enhancement patterns on MRI. The exclusion criteria were
as follows: (1) incomplete medical records (N = 11); (2) recorded
history of receiving radiosurgery, chemotherapy, or radiotherapy
before MR scans (N = 9); (3) previous history of any other
cerebral diseases, such as stroke, subarachnoid hemorrhage (N
= 6). The process of patient enrollment was shown in Figure 1.
The clinical parameters, such as gender, age, Ki-67 labeling index
of tumor, and days between MR scan and surgery were also
recorded. This study was approved by the Ethics Committee of
Sichuan University. The written informed consent was obtained
from all participants enrolled in this study (written informed
consent for patients under the age of 16 was obtained from
parents or guardians).

MRI Acquisition
All patients enrolled took MR scan via 3.0T GE SIGNA MRI
scanner in our institution. In this study, contrast-enhanced
T1-weighted (T1C) and fluid-attenuation inversion recovery
(FLAIR) images were selected to perform texture analysis for the
following reasons: first, they were the most important sequences
in the diagnosis of oligodendrogliomas; second, the boundary of
tumor and normal brain tissue should be clear and recognizable
on images for precise delineation (Figure 2). The parameters of
T1C image were as follows: TR/TE= 1,540/2.4ms, slice thickness
= 1mm, axial FOV = 24 × 24 cm2, and data matrix = 256 ×

256. The parameters of FLAIR image were as follows: TR/TE =

4,000/393ms, slice thickness= 1mm, axial FOV= 24× 24 cm2,
and data matrix = 516 × 516. Gadopentetate dimeglumine (0.1
mmol/kg) was used as the contrast agent for T1C sequence. MR
images of all participants were collected with uniform standards
through Picture Archiving and Communication Systems from
our institutional radiology department.

Texture Features Extraction
Texture features were extracted from MR images by two
researchers together under the guidance of senior radiologists
using LIFEx software (http://www.lifexsoft.org) (12). Following
the instructions of the software, we manually contoured the
regions of interest (ROI) on axial image slice by slice (obvious
cystic area was not included in ROI considering the interference
of cystic fluid). Disagreements between researchers on tumor
boundary were addressed by consulting the senior radiologists.
The edema band and adjacent structure invasion were carefully
separated from the tumor tissue through the difference in
contrast enhancement patterns in T1C images. Anatomic
structures around the tumor were also recorded to help with
delineation in FLAIR images. To ensure the accuracy of texture
parameters, ROI was only drawn on the biggest one for tumors
with clear boundary and on tumor-confirmed area for tumors
with vague boundary. Even following this strategy, 12 FLAIR
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FIGURE 1 | The flowchart of patient enrollment process. MR, magnetic resonance.

FIGURE 2 | Examples of atypical low-grade oligodendroglioma and anaplastic oligodendroglioma on MRI. (A) A patient with atypical low-grade oligodendroglioma in

contrast-enhanced T1-weighted (T1C) image. (B) A patient with atypical low-grade oligodendroglioma in fluid-attenuation inversion recovery (FLAIR) image. (C) A

patient with anaplastic oligodendroglioma in T1C image. (D) A patient with anaplastic oligodendroglioma in FLAIR image.
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FIGURE 3 | The workflow chart from image processing to model establishment. ROI, regions of interest; LASSO, least absolute shrinkage and selection operator;

GBDT, gradient boosting decision tree; LDA, linear discriminant analysis; RF, random forest; SVM, support vector machine; AUC, area under the curve.

images were excluded because we were unable to delineate the
tumor due to the interference of edema.

A total of 40 texture features were extracted from six matrices
in the first or the second orders, including Histogram-based
matrix, Shape-based matrix, Gray-level co-occurrence matrix
(GLCM), Gray-level run length matrix (GLRLM), neighborhood
gray-level dependence matrix (NGLDM), and Gray-level
zone length matrix (GLZLM) (Supplementary Material 1).
The association between features was assessed with Pearson’s
correlations (Supplementary Material 2).

Model Establishment
The optimal features needed to be selected first because the
number of radiomics features was too large and not all of them
were statistically significant. Features were chosen using three
selection methods, namely, distance correlation, least absolute
shrinkage and selection operator (LASSO), and gradient boosting
decision tree (GBDT). Then three machine-learning classifiers
were adopted to generate discriminative models, including
random forest (RF), linear discriminant analysis (LDA), and
support vector machine (SVM). LDA and SVM classifiers were
chosen because they were representatives of linear and non-linear
classification algorithms, respectively (13). Different from LDA
or SVM, RF was considered the hybrid model of linear and non-
linear classifiers by some researchers (14, 15). The patients were
randomly divided into the training group and the validation
group with the ratio of 4:1. The models were first trained
with the training group and then applied to the independent
validation group to test their discriminative performance, and
this procedure was repeated for 100 cycles. A confusion matrix
was established combining the histopathological results and
predictions of models based on which the sensitivity, specificity,

and accuracy were calculated. Area under the receiver operating
characteristic curve (AUC) for both training group and validation
group was also recorded to evaluate the discriminative ability
of different models. The workflow from imaging processing to
model establishment was shown in Figure 3.

RESULTS

Patient Characteristics
A total number of 101 qualified patients (50 individuals with
AO and 51 with atypical low-grade oligodendroglioma) were
enrolled in the present study. The gender ratio of participants was
54:47 (male:female). The average ages of patients with AO and
atypical low-grade oligodendroglioma were 47.1 and 38.7 years,
respectively. The detailed characteristics of patients and lesions
were summarized in Table 1.

Model Assessment
A total of nine predictive models were built through the
combination of three selection methods (distance correlation,
LASSO, and GBDT) and three machine-learning classifiers (RF,
LDA, and SVM). Radiomics features from T1C images and
FLAIR images were introduced into models, respectively. All
of the classifiers represented feasible discriminative ability with
AUC more than 0.840 in the validation group when combined
with the suitable selection method.

Among models using parameters from T1C images, the
combination of LASSO and RF classifier (LASSO + RF) was
proven to show the highest AUC of 0.904 in the validation
group. Moreover, RF classifier seemed to be the optimal
classification algorithm in differentiation for the reason that
all RF-based models showed excellent performance with AUC
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TABLE 1 | Characteristics of patients and lesions.

Characteristics Atypical low-grade

oligodendroglioma

(n = 51)

Anaplastic

oligodendroglioma

(n = 50)

Age, n (%)

0–20 years 5 (9.8) 1 (2.0)

21–40 years 22 (43.1) 15 (30.0)

41–60 years 19 (37.3) 23 (46.0)

61–80 years 5 (9.8) 11 (22.0)

Mean age (range) (year) 38.7 (7–71) 47.1 (16–76)

Gender, n (%)

Male 29 (56.9) 25 (50.0)

Female 22 (43.1) 25 (50.0)

Ki-67 labeling index, n (%)

<10% 35 (68.6) 9 (18.0)

≥10% 16 (31.4) 41 (82.0)

Average days between MR

scan and surgery

9.4 7.9

MR, magnetic resonance.

over 0.920 in training group and 0.870 in the validation group
(Table 2). For three models using the LDA classifier, receiver
operating characteristic (ROC) analysis suggested that they all
represented feasible discriminative ability, with AUC of 0.880
(distance correlation + LDA), 0.835 (LASSO + LDA), and
0.879 (GBDT + LDA) in the validation group (Table 3). For
SVM-based models, only distance correlation + SVM showed
feasible performance, with AUC of 0.866 in the validation group.
Inadequate discriminative ability was observed in LASSO +

SVM (AUC = 0.702 in the validation group) compared to
other models, and overfitting was observed in GBDT + SVM
(Table 4).

Among models using parameters from FLAIR images, GBDT
+ RF was found to represent the highest AUC of 0.861 in
the validation group. Besides, other two models using RF
classifier also displayed feasible discriminative ability, with
AUC of 0.836 (distance correlation + RF) and 0.855 (LASSO
+ RF) in the validation group (Table 2). For three models
using LDA classifier, ROC analysis demonstrated that the
AUC in the validation group were 0.843, 0.819, and 0.848,
respectively (Table 3). Among SVM-based models, distance
correlation + SVM represented the best performance in
differentiation with AUC of 0.860 in the validation group.
Overfitting was observed in GBDT + SVM again, indicating
that this model might be unsuitable for the grade prediction
(Table 4).

DISCUSSION

Accurate preoperative evaluation of tumor grade is important
for treatment facilitation and prognosis prediction. Lacking
specific blood biomarkers, MR scan is commonly performed
to evaluate oligodendroglioma grade pre-surgically with high
spatial resolution and tissue resolution. However, atypical
low-grade oligodendroglioma with contrast enhancement could

complicate the differentiation from AO (16). Searching for
accurate diagnosis, the value of advanced MRI techniques
in oligodendroglioma grading had been investigated in
previous studies (17, 18). Nevertheless, these advanced imaging
techniques require additional expense and platforms and are
not routinely conducted for every patient in clinical work.
In the current study, a series of radiomics parameters were
extracted from conventional MR sequences and fed into
machine-learning classifiers to differentiate AO from atypical
low-grade oligodendroglioma. Several predictive models with
suitable combination were proven to represent feasible ability
in grade prediction. Given that both T1C and FLAIR sequences
are routinely performed in clinical examination, machine
learning-based radiomics could potentially serve as the imaging
biomarkers to aid preoperative diagnosis.

Radiomics has been investigated in recent studies, implying
that the parameters are associated with tumor histopathology
and abnormal microenvironment. The texture features calculate
the image characteristics from different aspects, statistically
reflecting intratumoral heterogeneity, cellular density, and level
of vascularization (19–21). This theory has been verified by
previous researches that the shift of texture parameters was
associated with irregularity in blood vessel distribution and
intratumoral hypoxia (22, 23). Given that these biological
procedures were regulated by DNA, texture parameters were also
related to molecular pathologic characteristics of tumors, such as
mutation status of IDH and Kirsten Ras (KRAS) (24, 25). As for
oligodendrogliomas, AO is histologically characterized by high
cellular density, nuclear atypia, and microvascular proliferation,
which might contribute to its radiological characteristics, such
as contrast enhancement. Thus, we hypothesized that texture
parameters might help discriminate between grade II and
III oligodendrogliomas.

Moreover, with analyzable statistics converted from images,
the novel computer technology could be employed. Similar
researches suggested that radiomics combined with machine-
learning algorithms displayed promising potential in various
fields, including differential diagnosis of glioblastoma, pre-
surgical grading of glioma, and prediction of patient survival
outcomes (8, 26–28). It is worth noting that previous studies
primarily focused the value of radiomics in distinguishing
low-grade glioma vs. high-grade glioma, whereas the possible
different characteristics among the histological subtypes of
glioma were not taken into consideration (29–31). However, the
heterogeneity of different glioma subtypes might interfere with
the accuracy of the models. Therefore, our study first applied
radiomics in grade prediction of oligodendrogliomas, a specific,
common subtype of gliomas. More importantly, we focused
on the situation where visual inspection was not sufficient
in discrimination, aiming to explore the ability of radiomics-
based machine learning in differentiating AO from atypical low-
grade oligodendroglioma.

Compared with previous studies on glioma grading, we
employed more selection methods (distance correlation, LASSO,
and GBDT) and machine learning classifiers (RF, LDA, and
SVM), wishing to identify the optimal model with the best
discriminative performance. The results indicated that all of
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TABLE 2 | Discriminative performance of models using RF classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C image

Distance correlation 0.927 0.928 0.959 0.901 0.874 0.876 0.925 0.825

LASSO 0.945 0.946 0.976 0.921 0.904 0.900 0.971 0.833

GBDT 0.959 0.960 0.984 0.939 0.896 0.895 0.952 0.838

FLAIR image

Distance correlation 0.911 0.835 0.775 0.915 0.836 0.833 0.813 0.868

LASSO 0.946 0.863 0.844 0.882 0.855 0.756 0.780 0.725

GBDT 0.957 0.882 0.839 0.931 0.861 0.783 0.770 0.806

RF, random forest; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced T1-weighted;

FLAIR, fluid-attenuation inversion recovery.

TABLE 3 | Discriminative performance of models using LDA classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C image

Distance correlation 0.896 0.898 0.919 0.879 0.880 0.886 0.935 0.835

LASSO 0.928 0.929 0.949 0.911 0.835 0.829 0.926 0.748

GBDT 0.918 0.918 0.918 0.917 0.879 0.881 0.904 0.854

FLAIR image

Distance correlation 0.866 0.796 0.727 0.900 0.843 0.783 0.740 0.887

LASSO 0.891 0.807 0.752 0.879 0.819 0.739 0.735 0.746

GBDT 0.943 0.862 0.836 0.889 0.848 0.817 0.802 0.841

LDA, linear discriminant analysis; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced

T1-weighted; FLAIR, fluid-attenuation inversion recovery.

TABLE 4 | Discriminative performance of models using SVM classifier and different selection methods in distinguishing anaplastic oligodendroglioma from atypical

low-grade oligodendroglioma in the training group and the validation group.

Selection method Training group Validation group

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

T1C

Distance correlation 0.885 0.889 0.981 0.829 0.866 0.857 0.989 0.760

LASSO 0.759 0.770 0.930 0.700 0.702 0.657 0.881 0.570

GBDT 1.000 1.000 1.000 1.000 / / / /

FLAIR

Distance correlation 0.904 0.738 0.650 0.965 0.860 0.772 0.715 0.953

LASSO 0.712 0.689 0.616 0.878 0.606 0.678 0.664 0.716

GBDT 1.000 1.000 1.000 1.000 / / / /

SVM, support vector machine; AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; T1C, contrast-enhanced

T1-weighted; FLAIR, fluid-attenuation inversion recovery; /, overfitting.

the classifiers represented feasible discriminative ability when
combined with suitable selection method, and RF-based models
showed the best performance with highest AUC in the validation
group. RF classifier is a robust classification algorithm that has
represented high discriminative performance in many studies
(24, 32, 33). The mechanism of RF classification algorithm

is to build subtrees by using the training bootstrap samples
and choose the classification with the most votes over all
trees in the forest (34). On the other hand, the results also
indicated that the selection method with different mechanisms
may have effects on the performance of the models. Distance
correlation is the representative of filter models that rank features
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based on certain characteristics and remove irrelevant features
without classification algorithms, whereas LASSO and GBDT
were representatives of embedded models that embed feature
selection with classifier construction (35). However, wemust note
that most models represented similar diagnostic performance,
and the differences in AUC may be partly attributed to the
relatively small study cohort. Future studies with larger sample
sizes are required to validate our results and further investigate
the optimal model for grade prediction.

There were some limitations in the present study. First, this
was a retrospective study; the selection bias was inevitable.
Second, radiomics features were extracted from T1C and FLAIR
sequences, whereas the value of features from other sequences
like diffusion-weighted imaging (DWI) was unclear. Future
studies are required to explore whether the features from other
sequences could help improve the discriminative ability. Third,
our models were not externally validated because this study was
conducted in a single institution. However, the image processing
and model establishment were conducted using open-source
packages, providing the potential for researchers to verify our
results in the future. Fourth, considering IDH and 1p/19q status
could be reflected in texture parameters, it is reasonable to
think that other molecular biomarkers may be associated with
parameters. However, this point was not considered in the
current study because of the relatively small sample size and
single subtype of gliomas. Future larger studies are required to
validate our results and to rectify the defects.
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