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The tumor environment is of vital importance for the incidence and development of

colorectal cancer. Increasing evidence in recent years has elaborated the vital role

of the tumor environment in cancer subtype classification and patient prognosis, but

a comprehensive understanding of the colorectal tumor environment that is purely

dependent on the stromal compartment is lacking. To decipher the tumor environment

in colorectal cancer and explore the role of its immune context in cancer classification,

we performed a gene expression microarray on the stromal compartment of colorectal

cancer and adjacent normal tissues. Through the integrated analysis of our data with

public gene expression microarray data of stromal and epithelial colorectal cancer tissues

processed through laser capture microdissection, we identified four highly connected

gene modules representing the biological features of four tissue compartments by

applying a weighted gene coexpression network analysis algorithm and classified

colorectal cancers into three immune subtypes by adopting a nearest template prediction

algorithm. A systematic analysis of the four identified modules mainly reflected the close

interplay between the biological changes of intrinsic and extrinsic characteristics at

the initiation of colorectal cancer. Colorectal cancers were stratified into three immune

subtypes based on gene templates identified from representative gene modules of

the stromal compartment: active immune, active stroma, and mixed type. These

immune subtypes differed by the immune cell infiltration pattern, expression of immune

checkpoint inhibitors, mutation landscape, extent of mutation burden, extent of copy

number burden, prognosis and chemotherapeutic sensitivity. Further analysis indicated

that activation of the NF-kB signaling pathway was the major mechanism causing the

no immune infiltration milieu in the active stroma subtype and that inhibitors of the

NF-kB signaling pathway could be candidate drugs for treating patients with an active

stroma. Overall, these results suggest that characterizing colorectal cancer by the tumor

environment is of vital importance in predicting patients’ clinical outcomes and helping

guide precision and personalized treatment.

Keywords: microdissection, colorectal cancer, tumor environment, weighted gene coexpression network analysis,

immune subtypes, immunotherapy
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INTRODUCTION

Colorectal cancer is the third most common cancer and ranks
second in terms of cancer-related mortality (1). Most colorectal
cancer patients die because of a late diagnosis, recurrence
after surgical excision, or resistance to chemotherapy or
radiotherapy. Patients with the same American Joint Committee
on Cancer (AJCC) stage and pathomorphological features are
given consistent treatment regimens and often have distinct
prognoses and treatment responses. The current treatment
dilemma underscores the critical need to improve colorectal
cancer classification with distinct molecular features and survival
outcomes for reasonable clinical treatment decisions.

The tumor epithelium and surrounding microenvironment
closely interact through the extracellular matrix or secreted
factors such as exosomes, cytokines, and angiogenic factors (2).
The depiction of a transcriptome map of the altered biological
processes in the epithelial and stromal compartments will not
only allow investigators to comprehensively understand the
mechanism of cancer initiation and the complex coevolving
relationships between the intrinsic and extrinsic factors of tumors
(3) but also help in the detection of druggable epithelial–stromal
crosstalk targets (4). Nishida previously used a laser capture
microdissection (LCM)-processed miRNA and gene expression
microarray to reveal two miRNA clusters with high expression
in the cancer stroma (5). However, the major changes in the
biological features of the epithelial and stromal compartments
between colorectal cancer and adjacent normal tissues remain
poorly understood. A systematic analysis of the different
compartments of colorectal tissues is needed to better understand
the mechanisms of tumor initiation.

The tumor microenvironment (TME), which includes blood
vessels, lymph vessels, immune cells and mesenchymal cells,
is a complex ecosystem of stromal cells and plays a critical
role during tumorigenesis and progression. Previously identified
transcriptome subtypes of colorectal cancer associated with
a poor prognosis, including the stem (6), serrated (7), and
mesenchymal (8) subtypes, are enriched with genes derived
from the activated stromal compartment. The differentially
expressed genes of preoperative chemoradiotherapy-treated
rectal carcinomas between responders and non-responders are
mainly contributed by the stroma and not tumor glands (9). The
TME is a major contributing factor for patient outcomes and
chemoradiotherapy treatment responses (10, 11). Additionally,
recent studies have indicated that TME characteristics are closely
associated with the response to immune checkpoint blockade
(ICB) treatment (12, 13). For example, epithelial-mesenchymal

Abbreviations: ICB, immune checkpoint blockade; LCM, laser capture

microdissection; TME, tumor microenvironment; AJCC, American Joint

Committee on Cancer; TPM, transcripts per kilobase million; FPKM, fragments

per kilobase million; CIBERSORT, cell type identification by estimating relative

subset of known RNA transcripts; MCP-counter, Microenvironment Cell

Populations-counter; PCA, principal component analysis; WGCNA, weighted

gene coexpression network analysis; TMB, tumor mutation burden; CMS,

consensus molecular subtype; NTP, nearest template prediction; TCGA,

The Cancer Genome Atlas; SCNA, somatic copy number alteration; MSI-H,

microsatellite instability-high; FDA, Food and Drug Administration. CMap,

Connectivity Map.

transition (EMT)-, stroma- and angiogenesis-related signatures
are significant contributors to ICB treatment resistance (14, 15),
while the high infiltration of cytotoxic T cells can elicit an
effective immune response to attack tumor cells (16). Thus,
the surrounding tumor environment can shape the biological
behavior and the reaction of tumor cells to a drug regimen.

Despite increasing evidence proving the crucial role of
the immune context in determining immunological treatment
reactions and prognoses, most studies have focused on bulk
tumor transcriptomes, with mixed data from the tumor
epithelium and stroma. Few studies have focused on the
changes in immunological responses purely modified by the
surrounding immune context. In this study, we first described
the major biological process changes in the epithelium and
stroma of colorectal cancers and adjacent normal tissues and
defined three diverse colorectal immune subtypes, namely, the
“active immune,” “active stroma” and “mixed type” subtypes,
based on the top 40 most connected genes from the identified
network module by adopting weighted gene coexpression
network analysis (WGCNA). These subtypes had distinct
immune environments, genomic contexts, and ICB treatment
and chemotherapy response tendencies. Drugs targeting the NF-
kB signaling pathway could convert cold tumors into hot tumors.
Overall, this work proposes a new colorectal cancer classification
system that is purely based on the tumor environment and has
the potential to guide treatment decisions.

MATERIALS AND METHODS

Clinical Samples
Tissues from six patients with colorectal cancer and 6 adjacent
normal tissue samples (located more than 5 cm away from the
tumor edge) were obtained during surgery. Four patients had
paired tumor and adjacent normal samples, and the other four
samples were obtained from distinct patients. The obtained
tissues were independently morphologically reviewed by two
experienced pathologists to confirm the diagnostic accuracy.
Representative histopathological images are showed in Figure S1.
Fresh tissues were cleaned with normal saline solution and
frozen at -80◦C within 30min before RNA preparation. No
chemotherapy or radiotherapy was administered to the patients
prior to therapeutic resection. All patients underwent resection
of the primary tumor at the Department of Peritoneal Cancer
Surgery, Beijing Shijitan Hospital, Capital Medical University
(Beijing, China) between February 2016 and December 2016.
Written informed consent was obtained from all patients, and
the study protocol was approved by the Ethics Committee of the
National Cancer Center/Cancer Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College.

Microdissection Processing of Colorectal
Tissue and Gene Expression Microarray
The stromal compartment of the cancer and normal samples
was obtained manually by microdissection. All colorectal
tissues were embedded in OCT (Thermo Fisher) and cut
into 10-µm slices with a freezing microtome. The frozen
tissue slices were then placed in hematoxylin for 2-5 s.
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Next, stromal tissues were isolated with a needle under
a microscope and collected in Eppendorf tubes. Schematic
diagram of the marked stromal compartment processed through
microdissection are illustrated in Figure S1. Total RNA extracted
from the stromal compartment of the cancer and normal
samples was labeled and hybridized to Agilent 8∗60K Whole
Human Genome Oligo Microarrays (G4851B) according to the
manufacturer’s protocol. All RNA integrity numbers (RINs)
of the microdissected sample compartments were greater than
7.0, and RNA integrity was assessed using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
The raw and processed data are publicly available at the
Gene Expression Omnibus (GEO) website under accession
number GSE136735. A previously published dataset, GSE35602,
which contains epithelial and stromal regions of colorectal
cancer and normal tissues through LCM, was integrated to
identify specific modules of different colorectal compartments
(5). The background correction and normalization of raw
data were processed by the R package “limma.” The Combat
algorithm was used to eliminate technological bias caused
by different microarray platforms between the two datasets
described above (17). Since the stromal compartment in our
microarray profile was obtained manually by microdissection
and the GSE35602 dataset was processed through LCM, we used
the term “microdissection” to generalize the two methods in
our integrated data in this study. Basic clinical characteristics
of the enrolled samples in the two datasets are demonstrated
in Table S1.

Public Colorectal Cancer Transcriptional
Profiles
In this study, we used the GSE39582 dataset, which is the
largest microarray cohort with complete survival information
among published colorectal cancer expression spectra, and the
TCGA-COADREAD (TCGA-COAD and TCGA-READ) cohort.
The R packages “GEOquery” (18) and “TCGAbiolinks” (19) were
implemented to download the processed expression matrix and
clinical data of the GEO datasets and the TCGA-COADREAD
cohort, respectively, in March 2018. Available TCGA “level 3”
gene expression data of the TCGA-COADREAD cohort were
downloaded. Log2 (transcripts per kilobase million (TPM) + 1)-
transformed normalized values were applied for immune cell
infiltration pattern estimation and SubMap analysis. The survival
information data of the TCGA cohort, including overall survival
and relapse-free survival, were downloaded from the UCSC
Xena browser, while other clinical data, such as age, sex, and
microsatellite information, were obtained by the R package
“TCGAbiolinks.” For genes with multiple probe sets, the mean
expression levels were used as the gene expression values.

ICB Cohorts
Four pretreatment tumor expression profiles of ICB cohorts
were included in this study to assess the similarity between the
identified subtypes and the ICB treatment response. The data of
melanoma patients treated with anti-PD-1 (accession number:
GSE78220) (15), metastatic melanoma patients treated with
MAGE-A3 immunotherapy (accession number: GSE35640) (20),

and mice AB1-HA tumors treated with anti-CTLA-4 (accession
number: GSE63557) (21) were obtained from the National
Center for Biotechnology Information (NCBI) GEO database
(http://www.ncbi.nlm.nih.gov/geo/). The data of patients with
metastatic urothelial tumors from the IMvigor210 cohort (22)
treated with anti-PD-L1 were obtained from http://research-pub.
gene.com/IMvigor210CoreBiologies/. Processed fragments per
kilobase million (FPKM) data of the GSE78220 cohort were
transferred into TPM data. Gene expression in the IMvigor210
cohort was normalized by implementing the “voom” function
in the “limma” package. The processed normalized data of
the remaining two microarray cohorts were obtained by the
“GEOquery” package.

Identification of Representative Modules of
Colorectal Compartments
To illustrate the biological changes in the epithelial and stromal
compartments between colorectal cancer and normal tissues, we
applied WGCNA to identify the representative transcriptional
network modules of the different compartments. Genes with a
low dynamic range were excluded, and only the top 8000 genes
with the highest standard deviation were evaluated to construct
the coexpression network. The freely available statistical analysis
software (“WGCNA” R package) and R tutorials for constructing
the weighted gene coexpression network have been described
previously (23).

Identification of Colorectal Cancer
Subtypes Based on Microenvironment
Features
To clarify the impact of the surrounding environment of the
tumor on colorectal cancer, nearest template prediction (NTP)
(24) was applied to assign patients into three transcriptomic
subtypes. NTP performed class prediction using predefined gene
markers and returned the significance level of each sample
prediction with a nominal P-value. We set the Benjamini-
Hochberg (BH)-corrected false discovery rate (FDR) to 0.2 as
the prediction threshold for the significant classification of a
sample according to a previous report (6). The tumor purity
information of the TCGA-COADREAD and GSE39582 cohorts
was extracted from previous TCGA research (25) using the
ABSOLUTE method (26) and estimated using the R package
“estimate” (27).

Subclass Mapping
The Subclass Mapping (SubMap) method (28) was used to
evaluate the similarity between the identified subtypes and
the immunotherapy-treated patients. The SubMap algorithm
uses the Gene Set Enrichment Analysis (GSEA) function to
evaluate the extent of commonality of the different subtypes
in independent datasets. P-values were used to evaluate
the similarity, and the lower the P-values were, the higher
the similarity. Recommended default parameters, including
the number of marker genes (100), random permutations
for the enrichment score (100), and random permutations
for Fisher’s statistics (1000), were used. The R package
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“complexHeatmap” (29) was implemented to visualize the results
of the SubMap analysis.

Correlation of TME-Based Subtypes With
Mutations and Copy Number Aberrations
Significantly mutated genes were generated by MutSigCV_1.41
for the TCGA-COADREAD cohort accessed from the mutation
annotation file (https://gdc.cancer.gov/about-data/publications/
panimmune).

MutSigCV (30) identifies significantly mutated genes more
than expected by chance. The tumor mutation burden (TMB)
of each patient was calculated as the total number of
non-synonymous mutations per megabase. Fisher’s exact test
was applied to detect different mutated genes between the
active immune and active stroma compartments. For copy
number analysis, we applied GISTIC_2.0 to identify significantly
amplified or deleted genomes (31). The burden of copy number
loss or gain was calculated as the total number of genes
with copy number changes at the focal and arm levels. NTP,
SubMap, MutSigCV_1.41 and GISTIC_2.0 are freely available on
GenePattern (https://cloud.genepattern.org).

Functional Analysis and GSEA
The R package “clusterProfiler” (32) was applied for the Gene
Ontology (GO) analysis of four core transcriptional modules
inferred from the WGCNA. GSEA was applied to enrich
hallmark gene sets downloaded from the Molecular Signatures
Database (MSigDB). Input genes were ranked in descending
order according to the log2FC values. Enrichment significance
was estimated using default settings and 1000 permutations.
Benjamini–Hochberg-adjusted P-values less than 0.05 were
considered significantly enriched.

Quantifying Tumor-Infiltrating Immune
Cells
To estimate the immune and stromal cell infiltration patterns
in colorectal cancer, the Microenvironment Cell Populations-
counter (MCP-counter) method (33) using colorectal cancer
gene expression profiles was applied. MCP-counter is a robust
and highly informative method that quantifies eight types
of immune cells and two types of stromal cells based on
marker genes.

Connectivity Map Analysis
To further illustrate the molecular mechanism underlying the
difference in immunogenicity between active immune and
active stroma compartments and identify potentially useful
drugs, we performed connectivity map analysis (34) using
the 150 genes with the most significant fold changes (up-
and downregulated). In total, we submitted 300 genes to the
CMap website (https://clue.io/). All 300 genes were significantly
different under the criterion of FDR-adjusted P < 0.05 in the
TCGA-COADREAD cohort.

Predicting the Clinical Chemotherapeutic
Response
The R package “pRRophetic” (35)was applied to estimate
the chemotherapeutic response of 5-fluorouracil and cisplatin
in the TCGA-COADREAD and GSE39582 cohort. Cell lines
originating from the digestive system and the “cgp2016” dataset
were applied when implementing the “pRRopheticPredict”
function. This methodology fitted the ridge regression model
based on baseline gene expression and drug sensitivity of the cell
line, thus allowing the prediction of the clinical chemotherapeutic
response using only patients’ baseline gene expression data (36).
Drug sensitivity was measured by the concentration required for
50% of cellular growth inhibition (IC50).

Statistical Analysis
All statistical analyses were performed using R
(https://www.r-project.org/). The Wilcoxon rank-sum test
was adopted to compare differences between two groups. We
used the Kruskal–Wallis test to evaluate significant differences
when comparing more than two groups. The “edgeR” pipeline
was adopted for the differential expression analysis. Survival
probabilities were estimated with the Kaplan-Meier method,
and the log-rank (Mantel-Cox) test was used to compare the
survival distributions between two groups. A log-rank P < 0.05
was considered statistically significant.

RESULTS

Transcriptional Map of the Epithelium and
Stroma in Colorectal Cancer and Adjacent
Normal Tissues
To systematically characterize the expression patterns of
the epithelial and stromal compartments during colorectal
carcinogenesis, we performed WGCNA on the 8000 most
variable genes (Table S2) and identified 12 transcriptional
modules with gene numbers ranging from 47 to 1874 genes
(Figure 1A). In relating these modules to tissue compartment
information by correlating the eigengenes of each module with
compartment traits, four modules with the most significant
correlations to the tumor epithelium (blue module), tumor
stroma (yellow module), normal epithelium (red module), and
normal stroma (brown module) were identified (Figure 1B).
The eigenvalue of these selected modules was the highest
within the most closely related samples relative to the samples
in the remaining three groups, which also confirmed their
representation (Figure 1C). The heat map in Figure 1D shows
the expression levels of all modules, and these four modules
have remarkably high expression levels with their most correlated
samples. Given the representativeness of these four modules,
biological process enrichment analysis was applied to investigate
the related properties of tissue glands and the stroma in the
process of tumorigenesis (Figure 1E, Table S3). The yellow
module, which had a markedly high expression level in the
colorectal tumor stroma, was characterized by the overexpression
of genes involved in extracellular matrix organization, the cellular
response to transforming growth factor-β stimulus and the
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FIGURE 1 | Identification of modules representative of diverse colorectal compartments. (A) Hierarchical cluster dendrogram of the top 8000 genes with the highest

standard deviation. The identified modules underneath the tree are color coded. (B) Heat map of module-trait associations; rows represent the module eigengene,

(Continued)
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FIGURE 1 | and columns represent clinical traits. The Spearman correlation and significance level enclosed in brackets are labeled in each cell. The color intensity of

the cell corresponds to the correlation coefficient. (C) Eigengene bar plot of the yellow, brown, blue and red modules. Samples are ordered by the tumor stroma,

normal stroma, tumor epithelium, and normal epithelium and are labeled in yellow, brown, blue and red, respectively. The module eigengene is defined as the first

principal component of the module’s expression matrix. (D) Hierarchical clustering heat map of the top 8000 genes with the highest standard deviation. Genes are

ordered by the modules, ranging from the black module to the yellow module. The samples’ corresponding tissue compartments are annotated in the column

annotation panel on the top side of the heat map. The color intensity indicates the relative expression level of the genes. (E) Dot plot of the biological process

enrichment results. The top 10 GO terms with the highest enrichment levels are shown; the dot size and color represent the gene count and enrichment level,

respectively.

collagen metabolic process. Immune-related pathways such as T
cell activation, B cell activation and lymphocyte differentiation
were enriched in the brown module, whose expression level
was the highest in the normal stroma. Different GO biological
processes between the normal stroma and tumor stroma in
the colorectum consisted of the transformation of immune-
infiltrating cells (from B lineage cells and T cells to fibroblasts)
(Figures S2A,B). Cancer-associated fibroblast-secreted cytokines
such as IL-6 influence the phenotype of neoplastic cells, including
proliferation, migration, and angiogenesis (37). Consistent with
this finding, the overexpression of CDK1, EREG andANLN along
with several biological processes related to cell proliferation,
such as nuclear division, DNA replication and regulation of the
mitotic cell cycle phase transition, were enriched in the blue
module. The red module was characterized by genes involved
in metabolic pathways, including lipid catabolic processes and
steroid metabolic processes (Figure 1E). The systematic analysis
of stromal and epithelial tissues between colorectal cancer and
adjacent normal tissues indicated that the tumor stroma might
provide a suitable niche prompting tumor cell proliferation and
invasion, while a normal environment with abundant immune
cells helps maintain the function of the normal colorectum.

Identification of Colorectal Transcriptomic
Subtypes Based on the Surrounding
Microenvironment
The TME plays a crucial role in colorectal tumorigenesis and
progression. Considering the vital importance of the tumor
environment, we classified colorectal cancer patients into distinct
tumor types based on the context of the tumor environment
for further analysis. The top 20 genes with the highest network
degree in the yellow module and brown module were selected
as the gene templates (Table S4). The gene templates and genes
in the whole module were highly correlated in both the yellow
(Spearman’s correlation coefficient= 0.86, P < 0.001, Figure 2A,
left) and brown (Spearman’s correlation coefficient = 0.73, P <

0.001, Figure 2A, right) modules. We assigned patients into three
immune subtypes, namely, the “active stroma,” “active immune”
and “mixed type” subtypes by applying NTP analysis using these
curated gene templates (Figure 2B). NTP, a well-acknowledged
signature-based disease classification method, uses only a list of
gene signatures to assess the possibility of each single sample
belonging to a specific classification. As shown in Figure 2B,
33.7% (217/644) of the colorectal cancer patients from the
TCGA-COADREAD cohort were predicted as having an active
stroma compartment, 29.8% (192/644) were predicted as having
an active immune compartment, and the remaining samples that

failed to be classified into these categories (with an FDR above
0.2) fell into the third cluster, termed the mixed type (Table S6).
The GSEA of the hallmark gene sets (Table S5) showed that
the presence of the active stroma subtype was associated with
angiogenesis, EMT, and myogenesis (Figure 2C), and gene sets
enriched in immune activation, such as the interferon alpha
response, the gamma response and allograft rejection, were
observed in the active immune subgroup (Figure 2D). The active
immune subgroup exhibited a trend toward better recurrence-
free survival than the other two subgroups (TCGA-COADREAD:
cohort log-rank P = 0.036, Figure 2E; GSE39582 cohort: log-
rank P = 0.021, Figure 2F), while no significant difference in
overall survival was observed between these identified subtypes
(data not shown).

IFNG produced by immune cells in the tumor environment
plays an important role in recruiting CD8 T cells and in NK cell
infiltration (38). Cancers that feature high levels of angiogenesis
factors usually exhibit an immunosuppressive phenotype,
with high infiltration of regulatory T cells (Tregs), myeloid-
derived suppressor cells (MDSCs), and tumor-associated
macrophages (TAMs) (39). Overall, the active immune subtype
exhibits favorable immune conditions against tumor initiation
and progression, while the active stroma subtype exhibits
adverse conditions.

Demographic Characteristics
The distribution of sex, age at diagnosis and BMI were
not different between these identified subtypes in TCGA-
COADREAD cohort. Microsatellite instability-high (MSI-H) and
-low (MSI-L) subtypes, CMS1 and CMS3, and early-stage tumors
(stage I and stage II) were dominant in the active immune
subtype, while the microsatellite stable (MSS) subtype, CMS4
and late-stage tumors (stage IV) were predominant in the active
stroma subtype (Table 1).

TME-Based Subtypes Related to the
Immunotherapy Response
Immunotherapy can induce the durable remission of metastatic
melanoma and non-small cell lung cancer (NSCLC), yet only
a small subset of patients obtain a clinical response. Thus,
detecting patients with high sensitivity to immunotherapy
before implementing treatment is of vital importance. To
comprehensively depict the immune landscape of the identified
subtypes, published functional gene sets (Table S11) were
adopted to perform immune context annotation. Unexpectedly,
the active immune group showed enriched T cells, cytotoxic
lymphocytes, a high expression of immune checkpoints (PD1,
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FIGURE 2 | Selected gene template-based NTP reveals subtypes characterized by a distinct immune context and is associated with survival outcomes. (A)

Correlation scatter plot of the 20 selected hub genes and genes in the whole module. The enrichment score of each sample in a given gene set was calculated

(Continued)
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FIGURE 2 | through the ssGSEA algorithm. The correlation coefficient and the significance level of the test are annotated at the top left of the figure. Left: yellow

module. Right: brown module. (B) Heat map showing the expression patterns of the selected hub genes in the TCGA-COADREAD cohort based on the identified

immune subtypes. Genes annotated on the right side of the heat map are the selected core genes separated by the module to which they belong. The immune

subtype classification of each sample is annotated at the top side of the heat map. Color intensities indicate the expression level of the genes. (C,D) GSEA plot of the

enriched hallmark gene sets derived from the Molecular Signatures Database (MSigDB). The running score and preranked list are placed at the top and bottom of the

GSEA plot. The middle indicates whether members of gene sets appear in the ranked list of genes. Multiple gene set enrichment results indicated by corresponding

colors are shown on the same figure. (E,F) Kaplan–Meier curves for relapse-free survival (RFS) of the three identified immune subtypes in the TCGA-COADREAD and

GSE39582 cohorts.

TABLE 1 | Distribution of clinical characteristics among TME subtypes.

Variable Active immune

(192)

Active stroma

(217)

Mixed type

(235)

P-

test

Subtype MSI

status (%)

MSI-H 24 (21.8) 4 (5.8) 13 (12.7) 0.028

MSI-L 15 (13.6) 9 (13.0) 22 (21.6)

MSS 70 (63.6) 56 (81.2) 67 (65.7)

Not evaluable 1 (0.9) 0 (0.0) 0 (0.0)

Sex (%)

Female 92 (47.9) 99 (45.8) 108 (46.4) 0.909

Male 100 (52.1) 117 (54.2) 125 (53.6)

Tumor stage (%)

Not reported 5 (2.6) 9 (4.2) 6 (2.6) 0.001

Stage I 50 (26.0) 30 (13.9) 31 (13.3)

Stage II 73 (38.0) 66 (30.6) 98 (42.1)

Stage III 47 (24.5) 71 (32.9) 65 (27.9)

Stage IV 17 (8.9) 40 (18.5) 33 (14.2)

CMS subtype (%)

CMS1 53 (30.8) 13 (6.3) 39 (18.1) <0.001

CMS2 51 (29.7) 60 (29.1) 81 (37.7)

CMS3 56 (32.6) 14 (6.8) 26 (12.1)

CMS4 12 (7.0) 119 (57.8) 69 (32.1)

Age at diagnosis

(median [IQR])

71.00

[62.00, 78.00]

67.00

[57.00, 74.25]

68.00

[59.00,77.50]

0.020

non-norm

BMI

(median [IQR])

27.13

[23.87, 30.67]

27.10

[24.08, 30.99]

26.73

[23.63, 32.26]

0.901

non-norm

Summary of the distribution of clinical characteristics among TME subtypes in the TCGA-

COADREAD cohort. Numbers in the bracket placed immediately after the TME subtypes

represent the absolute number of each group; numbers in other brackets represent

the relative percentage distribution. For continuous variables, the median value with its

interquartile range is shown. Fisher’s test and the Kruskal-Wallis test were applied for

categorical variables and continuous variables, respectively.

PD-L1, and CTLA4) and some active immune response factors,
including T cell cytotoxicity factors (GZMA, GZMB, and IFNG),
and B cell markers (CD86 and CD80). In contrast, the active
stroma group was enriched with endothelial cells, fibroblasts,
EMT features and TGF-β signature genes (Figure 3A). Given
the significant correlation between the expression of immune
checkpoints (PD-1, PD-L1, and CTLA-4), the infiltration
numbers of cytotoxic T cells and the immunosuppressive
microenvironment with ICB responses (40, 41), we further
explored the potential immunotherapy treatment benefit of the
active immune group. SubMap analysis showed that the active
stroma group shares high similarity with anti-PD-1 resistance

in melanoma patients (Figure 3B, top left) and metastatic
urothelial tumors treated with PD-L1 checkpoint inhibitors
(Figure 3B, top right). The active immune class shares high
similarity with melanoma patients who responded to treatment
with MAGE-A3 (Figure 3B, bottom left) and BALB/c mice
who responded to treatment with anti-CTLA-4 (Figure 3B,
bottom right). Patients with a clinical response status to
immunotherapy, including a complete response (CR) or partial
response (PR), were considered immunotherapy responders,
while those with stable disease (SD) or progressive disease
(PD) were considered immunotherapy non-responders. Distinct
immunotherapeutic regimens exhibited non-conformity with
the identified immune subtypes, which might be due to the
distinct resistance and reactive mechanisms of cancer cells
adopted under different regimens and cancers (15, 42, 43).
SubMap analysis on another colorectal cancer cohort, GSE39582
(Figure S3B), also achieved similar results, further confirming
the non-conformity between the identified colorectal subtypes
and the immunotherapy-treated cohorts that was mainly caused
by distinct immunotherapy regimens and adopted tumor types.
In addition, the expression of eight biomarkers established in the
POPLAR trial (44), except for GZMB, was significantly higher
in the active immune group than in the active stroma group
(Figure 3C). By applying the identical analysis to the GSE39582
cohort, we obtained similar results (Figures S3A,B,D), which
served as independent cross-validation. No difference was
observed in tumor purity between these identified subtypes
(Figure S3C,Table S9), thus eliminating potential bias elicited by
differences in purity. Thus, our identified subtypes characterized
by distinct immune contexts and their relationship with
the immunotherapy treatment response may provide valuable
information for clinical treatment decisions.

Genomic Features of the TME-Based
Subtypes
Recent analyses have linked the tumor genomic landscape with
tumor cytolytic activity, indicating that a high TMB and specific
somatic mutations are associated with antitumor immunity (45).
The associated genomic data available in the TCGA database
allowed us to investigate the underlying genomic mechanisms.
In terms of TMB, patients in the active immune group and
the mixed type group showed a higher TMB than those in
the active stroma group (Table S10: active immune vs. active
stroma: Wilcoxon rank-sum test P = 0.00016; mixed type vs.
active stroma: Wilcoxon rank-sum test P = 0.00019). Notably,
no significant difference was found between the active immune
and mixed type groups (Table S10: active immune vs. mixed
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FIGURE 3 | Identification of immune subtypes with distinct immune contexts and immunotherapeutic responses. (A) Complex heat map of the functional gene

signature and immune cell infiltration score across immune subtypes in the TCGA-COADREAD cohort. The immune cell infiltration score was generated by

MCP-counter. Corresponding feature names of the gene signatures are shown on the left side of the heat map. The TME subtype, CMS subtype, MSI status, tumor

site, stage, sex and RFS are annotated in the lower panel. Color intensities indicate the expression level of the genes or the infiltration score of immune cells. (B)

SubMap analysis of the TCGA-COADREAD cohort and four independent preimmunotherapeutic treatment datasets. The active stroma subtype shares high similarity

with the immunotherapeutic resistance class in the GSE78220 and IMvigor210 cohorts, while the active immune subtype shares high similarity with the

immunotherapeutic response class in the GSE35640 and GSE63557 cohorts, and the mixed type is not associated with either responders or non-responders. The

colors labeled in each cell reflect the P-values of each subclass association. A.I., A.S., and M.T. represent the active immune, active stroma and mixed type,

respectively. (C) Box plot of prognostic genes in the POPLAR study, with expression profiling among the immune classes. The gene expression level was normalized

by log2 (TPM+1) transformation. The statistical significance of pairwise comparisons is annotated with symbols in which ns, *, **, and *** and **** represent not

significant (P > 0.05), P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, and P ≤ 0.0001, respectively. The Wilcoxon rank-sum test was used for comparisons between two groups, and

the Kruskal–Wallis test was used for comparisons between more than two groups.

type: Wilcoxon rank-sum test P = 0.62), and the mixed type
group did not exhibit particular immunologic characteristics or
immunotherapeutic benefits compared with the active immune
group (Figure 3B), which indicates that our immune subtype
classification can identify patients with inflammatory milieu
under similar TMB backgrounds. TMB of each sample in
the TCGA-COADREAD cohort can be found in Table S8. To
systematically elucidate the underlying genomic mechanism, we
focused on 43 significantly mutated genes (SMGs) identified
through MutSigCV_1.41 under a stringent threshold (q < 0.05)
and identified 14 different mutated genes between the active
stroma and active immune groups with a Benjamini-Hochberg-
adjusted P < 0.05 (Figure 4B, Table S7). The identified mutated
genes involved in antigen presentation (B2M) (45), cell cycle
regulation (FBXW7) (46), the MAP kinase/ERK signaling
pathway (BRAF) and the extrinsic apoptosis pathway (CASP8)
(25)have been previously reported to be positively associated with
immune cytolytic activity and the expression of costimulatory

genes frequently mutated in the active immune group, while
tumor suppressor genes including TP53 and APC were more
frequently mutated in the active stroma group. TP53 (47)
controls the expression of hundreds of genes involved in
immunity, and the activation of the Wnt/beta-catenin pathway
leads to a non-inflammatory milieu (48). These data suggest
that tumor cells might adapt distinct escape mechanisms,
primarily by impairing the extrinsic apoptosis pathway and
antigen presentation in the active immune group and through
the exclusion of immune effector cells in the active stroma group.

Given the recently reported evidence that a high burden
of copy number loss is positively related to anti-CTLA-4
blockade resistance (49, 50), we next explored copy number
alterations between these distinct immune groups. Similar to
the findings of previous reports, patients within the active
immune group showed a lower burden of gain and loss at
the focal level and a lower burden of gain at the arm level
compared with those in the active stroma group (Table S10:
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FIGURE 4 | Genetic and copy number alterations across immune subtypes. (A,C) Distribution of TMB (A) and focal and broad copy number alterations (C) among the

TME subtypes. The statistical significance of pairwise comparisons is annotated with symbols in which ns and *** represent not significant (P > 0.05) and P ≤ 0.001,

(Continued)
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FIGURE 4 | respectively. A.I., A.S., and M.T. represent the active immune, active stroma and mixed type, respectively. (B) Mutation landscape of SMGs in the

TCGA-COADREAD cohort. Genes are ordered by decreasing mutation frequency, and samples are sorted by the TMB in each subgroup. OncoPrint bar plot

annotation; TMB and the TME subtype are annotated in the upper panel. Genes with a significant difference between the active immune and active stroma subtypes

are annotated with symbols in which *, **, and *** represent P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001, respectively. (D) Copy number profiles for the active stroma, active

immune and mixed subtypes, with gains in dark red and losses in midnight blue. Gene segments are placed according to their location on chromosomes, ranging

from chromosome 1 to chromosome 22. (E) Detailed cytoband with focal amplification (left) and focal deletion (right) in the active stroma group generated with

GISTIC_2.0 software. The q value of each locus is plotted horizontally.

active immune vs. active stroma on focal-level gain burden: P
=0.0000023; focal-level loss burden: P = 0.00025; and arm-
level gain burden: P = 0.053). Copy number burden of each
sample in the TCGA-COADREAD cohort can be found in
Table S8. Figure 4D shows the distribution of the G-score across
all chromosomes in these subtypes. Focal amplifications (13q34,
20p11.21, and 20q13.33) and deletions (4q32.1, 5q15, and 5q34)
within chromosomal regions were detected in the active stroma
group (Figure 4E). The focal alterations of the active immune
and mixed type groups are shown in Figure S4. The somatic
copy number alteration (SCNA) level correlated with reduced
cytotoxic immune infiltration, while the increased total mutation
number correlated with high immune infiltration in colorectal
cancer. The burden of copy number gain and loss in the mixed
type group fell between those of the active immune and active
stroma groups at the focal level (Figure 4C). It appears that focal
copy number alterations strongly contribute to the difference in
immune infiltration in colorectal cancer.

Chemotherapeutic Treatment Response
Tendency of the TME-Based Subtypes and
Activation of the NF-kB Pathway in the
Active Stroma Subtype
Platinum and 5-fluorouracil are widely used in the treatment
of advanced colorectal cancer. Considering that chemotherapy
is the most widely used strategy in the treatment of colorectal
cancer, we used the “pRRophetic” package to predict the
treatment response to 5-fluorouracil and cisplatin. The active
immune subtype was more sensitive to 5-fluorouracil, while the
active stroma subtype was more sensitive to cisplatin (Figure 5A)
in TCGA-COADREAD cohort, strong concordance between
chemotherapeutic treatment sensitive and TME-based subtypes
was also seen in GSE39582 cohort (Figure S3F). This result
can be used to guide the personalized treatment of colorectal
cancer patients.

To identify candidate drugs and small molecules targeting
the active stroma, we employed Connectivity Map (CMap)
tools (34). CMap is a data-driven algorithm connecting genes,
drugs and diseases and is widely used to discover potential
therapeutic drugs and small molecules and to explore the
mechanism of action underlying these drugs (51). We identified
22 candidate small molecules with absolute connectivity scores
>90 (Figure 5B). We observed that knocking down the
TRAF7-derived gene signature was strongly anticonnected with
active stroma patients. TRAF7 is a signal transducer for members
of the TNF receptor superfamily, indicating the activation of
the NF-kB pathway in the active stroma. It has been reported
that the activation of NF-kB in pancreatic stellate cells prevents

the infiltration of cytotoxic T cells by upregulating CXCL12 in
pancreatic cancer (52). Overexpression of its downstream genes,
such asMMP9 and IL6, was observed in the active stroma subtype
compared with the active immune subtype (Figure 5C). Thus,
strategies to deactivate the NF-kB pathway, such as blocking
TRAF7, might be useful to enforce the infiltration of cytotoxic
T cells and to kill colorectal cancer cells.

DISCUSSION

The colorectal gland epithelia and surrounding tumor
environment interact and are mutually restricted during
tumorigenesis. Normal colorectal glands mainly participate
in digestion, iron metabolic processes and immunologic
processes, including T cell activation, B cell activation and
lymphocyte differentiation; these processes are enriched
in its matching microenvironment to provide a defense
mechanism against hostile factors to reach self-stabilization.
In contrast, the tumor epithelium proliferates rapidly with
the corresponding immunosuppressive environment, and
thus, cancer cells are not expunged. Complementary changes
in the tumor gland and microenvironment lead to cancer
progression, metastasis and drug resistance. To date, no studies
have systematically elaborated on the molecular interaction
patterns of the epithelium and stroma during colorectal cancer
initiation. Recently, rapidly developed technologies, such as
single-cell RNA-seq, have allowed us to clarify the complex
and dynamic relationship between cells (53, 54). However,
the spatial location information of cells, which is of vital
importance during tumorigenesis and progression, has been
overlooked. Combining microdissection transcriptome profiling
with single-cell RNA-seq or other developing technologies,
such as Slide-seq (55), might help us determine spatial cell
communication patterns.

We first revealed three molecular subsets, namely, the “active
immune,” “active stroma” and “mixed type” subtypes based on
the NTP method using gene templates established from stromal
and immune compartments. The active immune and active
stroma groups share similar characteristics with typically defined
“hot tumors” and “cold tumors,” respectively. Hot tumors are
characterized by a high degree of T cell and cytotoxic T cell
infiltration and the overexpression of immune checkpoints such
as PD-1, PD-L1, and LAG3 compared with cold tumors (56, 57).
These identified subsets exhibited a distinct immune context,
prognosis, and immunotherapy benefit, which supports the idea
that the immune environment is of vital importance in predicting
patient prognosis and evaluating the response rate of checkpoint
inhibitor immunotherapies.
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FIGURE 5 | Different chemotherapeutic sensitivities across immune subtypes and activation of the NF-kB pathway in the active stroma. (A) Distribution of the

estimated IC50 of 5-Fluorouracil and Cisplatin among the TME subtypes in TCGA-COADREAD cohort. The statistical significance of pairwise comparisons is

annotated with symbols in which ns, *, **, and *** represent not significant (P > 0.05), P ≤ 0.05, P ≤ 0.001, and P ≤ 0.0001, respectively. A.I., A.S., and M.T.

represent the active immune, active stroma and mixed type, respectively. (B) Bar plot of the candidate perturbations inferred from connectivity map analysis. Cp, kd,

and oe represent compound, knockdown and overexpression, respectively. The score value placed on x-axis represents a holistic measurement of the relationship

between the query gene set and the perturbation. The higher positive score, the more similar between the query and the perturbation. On the contrary, the lower

negative score, the more opposing. (C) Complex heat map of the downstream genes of the NF-kB pathway. Genes with a significant difference between the active

immune and active stroma subtypes are annotated with symbols in which **, and *** represent P ≤ 0.01, and P ≤ 0.001, respectively. Log2-fold change between the

active stroma and active immune subtypes is shown on the right panel.

Genomic analysis revealed a distinct mutation and copy
number change landscape. Patients in the active immune
group exhibited a higher TMB, a lower copy number burden
and enriched mutations that correlated with local immune
cytolytic activity compared with those in the active stroma
group. A significant negative correlation between TMB and the
copy number alteration level has been observed in colorectal
cancer (58). Ciriello et al. categorized colorectal cancer as an

M class that was characterized by recurrent mutations other
than recurrent copy number alterations, and McGrail et al.
showed that neoantigen levels were predictive of cytotoxic
T lymphocyte (CTL) infiltration (59, 60). However, Davoli
et al. showed that arm/chromosome SCNAs provided a larger
contribution to the immune signature than the total number of
mutations, and the focal SCNA level failed to be selected for
the prediction model. Immune cell infiltration mainly driven
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by mutations or copy number alterations is still a controversial
issue. Our identified immune subtypes attached importance to
focal number alterations. Nevertheless, these results revealed
that distinct immunologic phenotypes have distinct genomic
features (61).

Distinct immune cell infiltration patterns revealed a distinct
tumor escape mechanism (62) and a remarkable difference in the
prognosis of colorectal cancer (63).

The systematic analysis underscored the role of NF-kB
pathway activation in leading low immune infiltration. Taken
together, our results provide a systematic analysis of the
biological changes in the epithelial and stromal compartments
of colorectal cancer. Immunotherapy for colorectal cancer
is approved only for microsatellite instability-high (MSI-H)
patients, which comprise only a small subset (64), by the
Food and Drug Administration (FDA). Since the TMB level
of colorectal cancer ranks higher than that in other cancers
(e.g., TCGA pan-cancer) (65), we have good reason to believe
that the prospects for immunotherapy in colorectal cancer
are optimistic. Strategies that block the NF-kB pathway
might turn an active stroma compartment into an active
immune compartment, thus increasing the opportunity for
a response to ICB treatment and improving survival. The
close interplay between intrinsic traits (mutation landscape
and copy number alterations) and extrinsic characteristics
(infiltrated immune cells) in our identified immune subtypes
and their different tendencies toward the ICB treatment
response might help guide immunotherapy decisions in
colorectal cancer.

DATA AVAILABILITY STATEMENT

The datasets generated in this study can be found in the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) under the accession numbers GSE136735, and the
access to other datasets used in this study can be found in the
article when they are mentioned.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Ethics Committee of the National Cancer
Center/Cancer Hospital, Chinese Academy of Medical Sciences
and Peking Union Medical College. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

All authors have reviewed the data analyses. SC and LF conceived
and designed the whole study. RS performed the data analyses
and wrote the manuscript. BL collected clinical samples, and PL
performed the microdissection and microarray experiments. BZ
provided help with the computational analysis. All authors read,
critically revised, and approved the final manuscript.

FUNDING

This study was supported by the CAMS Innovation Fund for
Medical Sciences (CIFMS) (2016-I2M-3-005).

ACKNOWLEDGMENTS

We would like to thank all the patients who selflessly donated
their tumor specimens to this study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2019.01497/full#supplementary-material

Figure S1 | Representative histopathological images of enrolled samples and the

schematic diagram of manual microdissection. Representative histopathological

image in hematoxylin-eosin staining of colorectal cancer tissue (A) in x100 and

adjacent normal tissue (B) in 100x enrolled in this study (left) and the selected

stromal compartment subjected to microdissection is noted in black circle (right).

Figure S2 | Immune cell infiltration pattern in the epithelium and stroma of

colorectal cancer and adjacent normal tissues and weighted gene coexpression

network construction and evaluation. (A) Unsupervised hierarchical clustering

analysis of the MCP-counter quantified immune scores in

microdissection-processed colorectal cancer and adjacent normal tissues. The

cluster distance was calculated with the Ward.D2 method. (B) Volcano plot

showing immune cell enrichment differences between the normal stroma and

tumor stroma. The Wilcoxon rank-sum test was used to compare differences, and

the BH method was adopted to adjust P-values. (C) Scale-free fit index (left) and

network mean connectivity (right) for various soft-thresholding powers. Red line in

left plot indicates the predefined high value which is 0.9. Here, we choose the

power 10 as the soft-thresholding power, which is the lowest power before the

scale-free topology fit index curve reaching the predefined high value. (D) The

scale-free plot indicates that our constructed network has a power-law degree

distribution. (E,F) Network visualization of the selected gene template in the brown

(E) and yellow (F) modules identified by WGCNA.

Figure S3 | Identification of immune subtypes with distinct immune contexts and

immunotherapeutic responses. (A) Heat map of the functional signature genes

and immune cell infiltration extent across immune subtypes in the GSE39582

cohort. The immune cell infiltration score was generated by MCP-counter. The

TME subtype, CMS subtype, MSI status, tumor site, stage, sex, and RFS are

annotated in the lower panel. (B) SubMap analysis of the GSE39582 cohort and

four independent preimmunotherapeutic treatment datasets. The active stroma

subtype shares high similarity with the immunotherapeutic resistance class in the

GSE78220 and IMvigor210 cohorts, while the active immune subtype shares high

similarity with the immunotherapeutic response class in the GSE35640 and

GSE63557 cohorts, and the mixed type is not associated with either responders

or non-responders. The colors labeled in each cell reflect the P-values for each

subclass association. A.I., A.S., and M.T. represent the active immune, active

stroma and mixed type, respectively. (C) Distribution of tumor purity across

immune subtypes in the TCGA-COADREAD (left) and GSE39582 (right) cohorts in

which ns represents no significant difference been detected. (D) Box plot of

prognostic genes in the POPLAR study, with expression profiling among the

immune classes. The gene expression level was normalized by log2 (TPM+1)

transformation. The statistical significance of pairwise comparisons is annotated

with symbols in which ns, ∗, ∗∗, ∗∗∗, and ∗∗∗∗ represent not significant (P > 0.05),

P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, and P ≤ 0.0001, respectively. (E) Alluvial diagram

showing associations among the TME subtype, CMS subtype and MSI status. (F)

Distribution of the estimated IC50 of 5-Fluorouracil and Cisplatin among the TME

subtypes in GSE39582 cohort. The statistical significance of pairwise comparisons

is annotated with symbols in which ∗, ∗∗, and ∗∗∗∗ represent P > 0.05, P ≤ 0.01,

and P ≤ 0.0001, respectively. A.I., A.S., and M.T. represent the active immune,

active stroma and mixed type, respectively. The Wilcoxon rank-sum test was used
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for comparisons between two groups, and the Kruskal–Wallis test was used for

comparisons between more than two groups (C,D,F).

Figure S4 | Focal alterations in the active stroma and mixed type groups. (A)

Detailed focal amplification (left) and focal deletion (right) in the active immune

group generated with GISTIC_2.0 software. (B) Detailed focal amplification (left)

and focal deletion (right) in the mixed type group generated with GISTIC_2.0

software.

Table S1 | Clinical characteristics of enrolled samples in WGCNA analysis.

Table S2 | Top 8000 genes with highest standard deviation in microdissection

microarray.

Table S3 | Gene Ontology-Biology process enrichment analysis of selected four

module.

Table S4 | Subtype template genes.

Table S5 | Gene Set Enrichment Analysis of hallmark geneset derived from

Molecular Signatures Database (MSigDB) in active immune and active stroma

class.

Table S6 | Nearest template prediction analysis on TCGA COAD-READ cohort

and GSE39582 cohort.

Table S7 | Wilcox test analysis on identified significant mutated genes between

active stroma and active immune class.

Table S8 | Tumor mutation burden and copy number burden among TME

subtype.

Table S9 | Tumor purity in TCGA COAD-READ cohort and GSE39582 cohort.

Table S10 | Paired comparison detail among immune subtypes.

Table S11 | Dataset and gene sets enrolled in this study.
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