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Generally, changes in the metabolic status of cells under conditions like hypoxia and

accumulation of lactate can be sensed by various sensing mechanisms, leading to

modulation of a number of signal transduction pathways and transcription factors.

Several of the proangiogenic cytokines like VEGF, FGF, PDGF, TGF-β, Ang-2, ILs, etc. are

secreted by cancer cells, under hypoxic microenvironment. These cytokines bind to their

receptors on the endothelial cells and activates a number of signaling pathways including

Akt/PIP3, Src, p38/MAPK, Smad2/3, etc., which ultimately results in the proliferation and

migration of endothelial cells. Transcription factors that are activated in response to the

metabolic status of tumors include HIFs, NF-κb, p53, El-2, and FOXO. Many of these

transcription factors has been reported to be regulated by a class of histone deacetylase

called sirtuins. Sirtuins are NAD+ dependent histone deacetylases that play pivotal role

in the regulation of tumor cell metabolism, proliferation, migration and angiogenesis. The

major function of sirtuins include, deacetylation of histones as well as some non-histone

proteins like NF-κB, FOXOs, PPARg, PGC1-α, enzymes like acetyl coenzymeA and

structural proteins like α tubulin. In the cell, sirtuins are generally considered as the

redox sensors and their activities are dependent on the metabolic status of the cell.

Understanding the intricate regulatory mechanisms adopted by sirtuins, is crucial in

devising effective therapeutic strategies against angiogenesis, metastasis and tumor

progression. Keeping this in mind, the present review focuses on the role of sirtuins in

the process of tumor angiogenesis and the regulatory mechanisms employed by them.
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INTRODUCTION

Angiogenesis, the process of formation of new blood vessels from pre-existing ones, is essential
for the normal growth, development and wound healing. Apart from this, angiogenesis is
also inevitable for tumor growth and metastasis (1–5). The expression and secretion of
various modulators of angiogenesis is regulated by microenvironmental factors like hypoxia and
accumulation of different metabolites (6–8). Under conditions like hypoxia, a number of signal
transduction pathways and transcription factors like PPARα, PGC-1α, AMPK, FOXOs, etc. gets
activated (9, 10). The expression and activation of these transcription factors has been reported
to be regulated by a class of histone deacetylase called sirtuins or SIRT (11, 12). Sirtuins are
NAD+ dependent histone deacetylases that play a vital role in the regulation of metabolism, aging,
oncogenesis, angiogenesis and cancer progression (13, 14). It has been reported that SIRT1 can
function as a redox sensor, and its activity might be dependent on the overall metabolic status of the
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cell (15), since it has been shown to regulate the stabilization of
transcription factors such as HIF1α under hypoxic conditions
(16). Therefore, understanding the regulatory mechanisms
employed by sirtuins to modulate tumor angiogenesis is
essential for developing effective anti-cancer and anti-angiogenic
therapeutic strategies.

SIRTUINS: MECHANISM OF ACTION AND
CLASSIFICATION

In mammals, seven homologs of sirtuins, i.e., SIRT1–SIRT7
(17, 18) which were initially described as class III HDACs
(Histone deacetylases), are now known as class III KDACS
(Lysine deacetylases) (19). The proposed mechanism of Sirtuin
deacetylation is reported to be ADPR-peptidyl-imidate (20)
where, Sirtuins catalyze NAD+-dependent deacetylation of acetyl
lysine, producing nicotinamide, deacetylated lysine, and 2′-O-
acetyl-ADP-ribose (21). The major function of sirtuins involve,
removal of acetyl groups from the acetyl lysine-modified proteins
(22, 23). The reaction gets initiated when, NAD+ binds to
the catalytic site of sirtuin, with the C1 of NAD+ getting
placed at the channel junction that, houses the acetyl lysine
(24). To understand how increasing levels of NAD+ affects
sirtuin activity, NAD+ synthesis was enhanced by supplementing
different precursors for NAD+ like nicotinic acid to Preiss-
Handler pathway and the result showed increased activation
of sirtuins and other enzymes which are NAD+ dependent
(25). Cellular [NAD+]/[NADH] ratio is reported to control
deacetylase activity of the sirtuins where, NAD+ works as
activator, and both nicotinamide and reduced nicotinamide
adenine dinucleotide (NADH) acts as inhibitors (26, 27).
Sirtuins (SIRT1-3, 5, and 7) catalyze deacetylation reaction
on lysine residues of target proteins (28) whereas, SIRT4 and
SIRT6 catalyze ADP-ribosylation reaction, by transferring ribosyl
moiety to the substrates (29). Sirtuins carry out transcriptional
repression where acetylated histones H1, H3, and H4 act
as substrates (30). In addition, a number of non-histone
proteins like nuclear factor-κB (NFκB), forkhead box type O
transcription factors (FOXO), peroxisome proliferator-activated
receptor g (PPARg), coactivator 1α (PGC-1α), enzymes like
acetyl coenzyme A (CoA) synthetase 2 (AceCS2), and structural
proteins, such as α-tubulin are also deacetylated by sirtuins
(29). In contrast to other KDACs, whose only function include
deacetylation (31), sirtuins can also remove other groups
like glutaryl (32), crotonyl (33), succinyl (34), palmitoyl (35),
and myristoyl (36) groups. SIRT1-3 is reported to deacylate
hydrophobic (butyryl group) and SIRT5, acidic acyl group
(Malonyl group) in histones (37, 38). Also, some non-histone
proteins like IDH2, MnSOD and TNFα have been reported to
be deacylated by sirtuins (39). It is observed that SIRT4 has
both, deacylase activity in leucine metabolism and lipoamidase
activity in decarboxylation of pyruvate, to generate acetyl CoA
(40, 41). The intracellular distribution of sirtuins differs. While
SIRT1, 6 and 7 are located within the nucleus, SIRT2 is located
in the cytoplasm and SIRT 3, 4, and 5 are located within
mitochondria (42). In addition, SIRT1 and SIRT3 are known to

shuttle to cytoplasm and nucleus, respectively (43, 44). These
findings establish sirtuins as important players in epigenetic
gene regulations.

SIRTUINS IN ENDOTHELIAL CELL
FUNCTIONS

Different classes of sirtuins have been widely studied in
endothelial cell growth and maintenance (45–47). While,
blocking the function of SIRT1 reduced endothelial sprout
formation, migration and the assembly of primitive vascular
network (14) it was observed that, knockdown of SIRT1
altered the levels of sprouting angiogenesis due to reduction
of MMP14 expression (48, 49). Potente et al. reported that
SIRT1 deacetylates FOXO1, a negative regulator of angiogenesis,
as SIRT1- deficient ECs showed abnormal angiogenic behavior
due to FOXO1 activity (14). Nutrient deprivation and cellular
energy shortage increase the levels of NAD+ and thus the
expression and activation of sirtuins (50). It was observed that,
endothelial tip cells employ anaerobic glycolysis for generating
ATP (Warburg effect) rather than oxidative phosphorylation
(51). In addition to promoting endothelial cell proliferation and
angiogenesis, this makes ECs more resistant to hypoxia too
(52, 53). Recent studies have established that SIRT1modulates tip
and stalk behavior through deacetylation of intracellular domain
(NICD) of NOTCH1 in tumor associated endothelial cells
(54). Interestingly, sirtuins also regulate, endothelial homeostasis
by modulating the endothelial nitric oxide synthase (eNOS)
(55). Recent studies reveal that endothelial SIRT1 deficiency,
causes fibrosis due to aberrant secretion of ligands of Wnt and
Notch pathways, as well as proteolytic fragments of glycocalyx
core protein (56). Some studies also reported that SIRT1 can
mediate transcriptional repression in association with Hey2
and Hes1 during vascular development (57, 58). In ECs, over
expression of SIRT1 prevents cellular senescence, enhances
vasodilatory responses, and alleviates aging-induced vascular
impairment (59, 60) whereas, SIRT1 deficiency results in reduced
migration in response to chemoattractant (14). In addition to
SIRT1, SIRT2 is reported to regulate the survival and energy
metabolism of ECs. Studies by Zhang et al. demonstrated
that SIRT2 inhibition reduce the survival rate of PIEC cells
as it causes mitochondrial depolarization (61). SIRT2 is also
reported to promote Ang II-induced cytoskeletal remodeling
in ECs (62). In addition, SIRT2 knock down studies revealed
altered expression of migration associated genes like CALD1
(caldesmon) and CNN2 (calponin) (63, 64). SIRT3 was observed
to increase survival of ECs especially during hypoxia through
elevating the levels of deacetylation of FOXO3 (65). Recent
studies also revealed that in SIRT3 deficient endothelial cells the
expression of PFKFB3 was downregulated causing attenuation
of glycolysis and angiogenesis (66). SIRT4 however appears to
inhibit mononuclear cell adhesion to pulmonary microvascular
endothelial cells through repression of E-selectin and VCAM-
1 (67). While, angiogenic capacity of endothelial progenitor
cells were significantly reduced due to down regulation of
CXCR4/JAK2/SIRT5 signaling (68), it was observed that, SIRT6
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TABLE 1 | The substrates and pathways regulated by different classes of sirtuins.

Sirtuin Enzyme activity Substrates Pathway Regulated References

SIRT1 Deacetylase Histone, p53, FOXO, Rb, p300, PPARγ, NF-κB,

PGC-1α, UCP2, MnSOD, Acetyl-CoAsynthetase 1,

Smad7, eNOS

Cell survival, metabolism regulation,

lifespan regulation, inflammation, oxidative

stress response

(14, 46, 133–142)

SIRT2 Deacetylase α-tubulin, Histone, FOXO, β-catenin Cell cycle regulation, nervous system

development

(101–103, 107)

SIRT3 Deacetylase Histone, FOXO3a, Acetyl-CoA synthetase2, MnSOD Regulation of mitochondrial metabolism,

ATP-production fatty acid oxidation

(83, 111, 112, 143)

SIRT4 ADP-ribosyl

transferase/

Deacylase

Glutamate dehydrogenase Regulation of mitochondrial metabolism,

insulin secretion

(29, 144)

SIRT5 Deacetylase

Demalonylase

Desuccinylase

Cytochrome c, Carbamoyl phosphate synthetase 1 Apoptosis, urea cycle, regulation of

protein-protein interaction, protein stability

(32, 34, 37, 38, 145)

SIRT6 Deacetylase/

Deacylase ADP-ribosyl-

transferase

Histone, HIF1α, TNF-α, NFκB Genome stability, DNA repair (29, 35, 118, 127)

SIRT7 Deacetylase Histone, p53 Regulation of rRNA transcription, cell cycle

regulation

(130, 146)

protects endothelial cells from DNA damage and telomere
dysfunction (62, 69). Though variousmembers of the SIRT family
has been implicated in the regulation of EC biology, the role of
SIRT-1 is the most widely studied ones.

SIRTUINS IN TUMOR ANGIOGENESIS AND
THEIR REGULATORY STRATEGIES

Expression pattern of sirtuins varies in different types of cancers.
While, SIRT1, 4, 5, and 7 have been reported to be upregulated
in certain cancers (70–72), the same SIRT1as well as SIRT2
and SIRT6 is shown to be downregulated in breast cancer,
hepatic cell carcinoma (73), gliomas, gastric carcinomas (74,
75) and colon adenocarcinoma (76). SIRT1 mainly, mediates
heterochromatin formation by deacetylation of histone H1
K26, histone H3 K9 and histone H4 K16, thereby causing
deacetylation of non-histone proteins, like transcription factors
(E2F1, p53, FOXO, BCL6, p53, Rb), DNA repair proteins
and signaling factors (77). SIRT1 mediates regulation of gene
expression in response to metabolic status by modulating FOXOs
(78). Such a deacetylation of FOXOs by SIRT1 alters various
signaling pathways, inhibit apoptosis and regulates mechanisms
involved in oxidative stress (79, 80). In general, p53 negatively
regulates angiogenesis either, by increasing the production of
anti-angiogenic factors or inhibiting pro-angiogenic factors (81).
SIRT1 has been reported to regulate neovascularization, through
reducing the transcriptional activity of p53 by deacetylation
of lysine (45, 46, 82). Apart from SIRT1, SIRT3 and SIRT7
has also been reported to deacetylate p53 thus, negating p53
activity (83, 84). SIRT1 also deacetylates other transcription
factors like p73, E2F1, SMAD 7, NFKB and modulate apoptosis
and inflammatory responses (45, 46, 85). It was observed
that resveratrol, a SIRT1 activator reduced total VEGFR2
expression and inhibited phosphorylation of VEGFR2 by VEGF

(86). Also, SIRT1 negatively modulates Delta-like ligand 4
(DLL4)/Notch pathway, inactivates elongation factor2 through
activation of ELF2kinase and ultimately inhibits the proliferation
and migration of vascular endothelial cells (87, 88). It is reported
that SIRT1 deacetylation at K14 and K20 of PH domain is
necessary for binding of Akt to PIP3 and further activation
during tumor angiogenesis (89, 90). Several reports suggest
that, SIRT1 deacetylate eNOS, stimulate its activity and enhance
NO production and tumor angiogenesis (91, 92). Also, FOXO1
and FOXO3 have been reported to repress eNOS, suggesting a
link between SIRT1, FOXO and eNOS (93). Increase in SIRT1
deacetylase activity and a consecutive HIF2α activity in ECs,
results in acidification and reprogramming toward glutamine
metabolism during induction of angiogenesis (94, 95). Studies
by Kunhiraman et al. and Edatt et al. reveal that glycolytic
inhibition using 2-DG at a sublethal concentration increased the
expression and activity of SIRT1, causing reduced expression of
angiogenesis associated genes like VEGF and MMP9 (96, 97).
Contrary to these reports, Portmann et al., Li et al., and Suzuki
et al., report that SIRT1 and VEGF expression is positively
correlated during hypoxia induced angiogenesis in breast cancer
and lung cancer (98–100). It therefore appears that, the SIRT-1
mediated regulation of angiogenesis and factors regulating it, is
largely context dependent.

Like SIRT1, SIRT2 also deacetylate proteins like α-tubulin
and histones, being co-localized with tubulin (101–103). Hu
et al., demonstrated that SIRT2 knockdown prevented STAT3
phosphorylation and translocation to nucleus, thus decreasing
the secretion of VEGF (104, 105). In addition, SIRT2 is reported
to directly interact with β-catenin thereby altering the expression
of genes like MMPs during tumor angiogenesis (106, 107).
Also, it is observed that, SerRS (seryl-tRNA synthetase) plays
tumor suppressor and anti-angiogenic role by collaborating
with SIRT2 to antagonize c-Myc, a known angiogenic and
oncogenic gene (108). Another class of sirtuins, SIRT3 is
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FIGURE 1 | Role of sirtuins in Tumor Angiogenesis: SIRT1 mediates deacetylation of FOXO1, p53, AKT, eNOS, and the intra cellular domain of the Notch protein

(NICD) leading to the reduced anti-angiogenic activity of FOXO1, reduced transcriptional activity of p53, induction of AKT signaling causing the transcriptional

activation of pro angiogenic genes, enhanced endothelial NO production causing blood vessel relaxation and disassembly followed by the proteasomal degradation of

Notch protein respectively. SIRT1 also modulates the expression of VEGF, VEGFR2, MMP9, MMP14, etc. directly by its histone deacetylase activity. miR-34a,

miR-106a, miR-217, miR-23a, miR-212, and miR-138-5p targets SIRT1 at post transcriptional level. SIRT3 and SIRT7 catalyze the deacetylation of p53. SIRT7

inhibits HIF-1α stabilization and hence its nuclear translocation. Binding of SIRT2 with β-catenin leads to the sequestration of β-catenin in the cytoplasm, causing

modulation in the expression of β-catenin responsive genes including MMPs. SIRT6 mediates the transcriptional activation of IL8 and TNFα which, in turn positively

modulates tumor angiogenesis. SIRT2 inhibits STAT3 phosphorylation and its nuclear translocation. SIRT5 inhibits pyruvate dehydrogenase complex (PDC) and

succinate dehydrogenase (SDH) causing the accumulation of succinate and reactive oxygen species (ROS) in the mitochondria, leading to HIF-1α activation. SIRT3

negatively regulates mitochondrial ROS production and hence HIF-1α stabilization. SIRT3 mediates deacetylation of FOXO3, thereby promoting endothelial cell (EC)

survival under hypoxia. - Sirtuins, - transcription factors/enzymes/signaling molecules, - downstream genes, -

acetyl(Ac)/phosphate(p) group, - β-catenin, - Nitric oxide, - Succinate/reactive oxygen species (ROS).

reported to mediate deacetylation of histones, regulate the
stability of tubulin polymers (44, 109, 110), mediate induction
of uncoupling protein−1 and regulate Acetyl-CoA synthetase
activity (111, 112). Contrary to SIRT1 and SIRT2, SIRT3 is
reported to have an opposing effect on angiogenesis, as loss of
SIRT3 in human breast cancers, resulted in the upregulation
of HIF-1α target genes like VEGF and genes involved in
glycolysis (113, 114). Interestingly, it was observed that, SIRT3
overexpression reduced angiogenesis by negatively regulating
ROS production, glycolysis as well as HIF-1α stabilization,
ultimately resulting in a negative regulation of Warburg effect
(115). SIRT4, 5, and 6 has been majorly reported to carry
out ADP-ribosylation, desuccinylation and demalonylation

rather that deacetylation (34, 116–118). ADP-ribosylation,
regulate the activity of glutamate dehydrogenase and PARP
(119, 120). Studies from our lab and others has demonstrated
that PARPs can regulate the VEGF/VEGFR2 signaling circuit
by either transactivation of VEGFR2 or poly ADP ribosylating
VEGF to reduce its activity (7, 96, 121). Desuccinylation by
SIRT5 suppresses the activities of pyruvate dehydrogenase
complex and succinate dehydrogenase (117) leading to the
accumulation of succinate and mitochondrial reactive oxygen
species, thereby activating HIF1α (122). SIRT5 can also
cause desuccinylation and negative regulation of S100A10, a
protein that regulate invasion and motility (123). Generally,
NAD+ levels influence the secretion of various cytokines
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by inflammatory cells (124). It was found that SIRT6 over
expression in pancreatic cancer cells increased TNFα and IL8
production through ADP-ribosylation mediated Ca2+ responses
(125) and elevated levels of IL8 led to local inflammation,
angiogenesis, and EMT (126). Interestingly, Kawahara et al.
demonstrated SIRT6 interaction with RELA subunit of
NFκB to regulate the expression of its target genes involved
in tumor progression through deacetylation of promoter
region (127, 128). SIRT6 is also reported as a corepressor
of HIF1α by deacetylating H3K9 causing downregulation of
the expression of genes involved in energy metabolism (129).
Furthermore, it is observed that SIRT7 can inhibit HIF1α
through a mechanism that is independent of its catalytic activity
and regulate the expression of downstream genes like VEGF
A and erythropoeitin (130). Also, downregulation of SIRT7
during breast cancer lung metastasis, caused activation of
TGFβ signaling pathway and angiogenesis (131). Contrary
to this, SIRT7 has been reported to promote angiogenic
response by modulating endothelial cell function and VEGF
like growth factor expression in mice (132). Altogether these
contradicting roles played by sirtuins in tumorigenesis and
angiogenesis, highlights the epigenetic regulations involved and
unravels the therapeutic potential of sirtuin modulators
in treatment of tumor progression by targeting tumor
angiogenesis (Table 1).

POST TRANSCRIPTIONAL REGULATION
OF SIRTUINS: IMPORTANCE OF miRNAs
IN TUMOR ANGIOGENESIS

Along with cytokine and transcriptional factor mediated
regulation, precise and effective post transcriptional level
regulation are also employed by sirtuins through RNA binding
proteins (RBPs) and small non-coding RNA molecules. Micro
RNAs are a group of small non-coding RNAs, known as
the micro regulators of gene expression. For e.g., miR-34a
has been reported to retard endothelial progenitor cell (EPC)
mediated angiogenesis by targeting SIRT1 and thereby elevating
the levels of acetylated FOXO1, leading to endothelial cell
(EC) senescence and cell cycle arrest (147, 148). Similarly,
miR-217 has been reported to induce senescence of ECs
by modulating the levels of acetylated FOXO1 in a SIRT1
dependent mechanism (149). However, miR-217 has also been
reported to promote angiogenesis of Human cytomegalovirus
infected endothelial cells by inhibiting SIRT1 and FOXO3A
(150). Further, report from our group suggests that miR-106a
regulates the expression of MMP9 during cell migration by
directly targeting SIRT1 mRNA (151). Our group has also
reported that the horizontal transfer of miR-23a from tumor
cell colonies can induces angiogenesis by targeting SIRT1 in
the recipient endothelial cells (152). Further, miR-212 has been
reported to exhibit anti-angiogenic properties, by targeting
SIRT1 and Gab1 in endothelial cells (153). SIRT1 has also
been reported to inhibit the anti-angiogenic- Notch signaling

pathway (54). In addition, TGFβ mediated suppression of
SIRT1 expression leading to the activation of Notch signaling
pathway in ECs was reported to be depended partly on miR-
212 (153). Further, a key micro regulator of angiogenesis and
hypoxia responses, miR-138-P_5P has been reported to target
SIRT1 (154–156).

CONCLUSION: FUTURE PERSPECTIVES
AND NOVEL THERAPEUTIC APPROACHES

During the past decade, sirtuins have emerged as critical
regulators of endothelial cell behavior and have been directly
linked to tumor angiogenesis through multiple signaling
pathways and cross-talks (Figure 1). Lack of long-term
therapeutic efficacy of current anti-angiogenic strategies
requisite for novel angiogenesis inhibitors targeting sirtuins
(157, 158). Recent discoveries suggest that employing sirtuin
isoform specific modulators is a potent anti-angiogenic strategy.
Endothelial microparticles enriched with Sirt6 mRNA induces
EC angiogenesis, increases eNOS phosphorylation and prevents
release of inflammatory chemokines in diabetic patients (159).
Novel approaches like employing various metal (160–162)
and inorganic NPs (163–165) have been reported to modulate
angiogenesis. Many studies revealed that the shape, size and
surface charge of the nanoparticles plays a crucial role in
their angiogenic behavior (166, 167). Recently our group has
reported that carbon-based nanoparticles (carbon quantum dots)
with size <6 nm, inhibit angiogenic process and significantly
reduce the expression level of VEGF, VEGFR2, and FGF
(168). SirtuinsNano-particle based phytochemicals are reported
to regulate sirtuins in cardioprotective treatment strategies
(169). So far, no reports are available on the direct correlation
with nano particles targeting sirtuins in tumor angiogenesis.
Mechanistic studies are under progress on the development
of NPs targeting sirtuins and further, tumor angiogenesis.
Future studies that unveil the role of potent sirtuin modulators
like CQDs at the crossroads of tumor angiogenesis will
provide insights for designing novel anti-angiogenic therapies
targeting sirtuin.
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