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Achieving replicative immortality is a crucial step in tumorigenesis and requires both

bypassing cell cycle checkpoints and the extension of telomeres, sequences that protect

the distal ends of chromosomes during replication. In the majority of cancers this

is achieved through the enzyme telomerase, however a subset of cancers instead

utilize a telomerase-independent mechanism of telomere elongation—the Alternative

Lengthening of Telomeres (ALT) pathway. Recent work has aimed to decipher the exact

mechanism that underlies this pathway. To this end, this pathway has now been shown

to extend telomeres through exploitation of DNA repair machinery in a unique process

that may present a number of druggable targets. The identification of such targets, and

the subsequent development or repurposing of therapies to these targets may be crucial

to improving the prognosis for many ALT-positive cancers, wherein mean survival is lower

than non-ALT counterparts and the cancers themselves are particularly unresponsive to

standard of care therapies. In this review we summarize the recent identification of many

aspects of the ALT pathway, and the therapies that may be employed to exploit these

new targets.

Keywords: alternative lengthening of telomeres, ATRX, break induced replication, Rad52, telomeres, R-loops,

G-quadruplexes

INTRODUCTION

Achieving replicative immortality is a hallmark of cancer and is essential for cancer proliferation
(1). Due to the end replication problem, wherein DNA polymerases fail to replicate the distal ends
of chromosomes, chromosomal DNA is progressively shortened through each round of division,
ultimately threatening genomic stability (2). Humans, like many other species, have evolved
protective repetitive sequences called telomeres, nucleoprotein structures that act as a buffer to
the end replication problem as well as a barrier to the recognition of DNA ends by DNA repair
machinery (3). These sequences range from 3 to 12 kb in humans and consist of TTAGGGn repeats
interspersed with a group of telomere proteins called the Shelterin complex (4). The Shelterin
complex, consisting of TRF1, TRF2, POT1, TIN1, TPP1 and RAP1, acts primarily to protect and
aid in the structuring of telomeres (5). In this regard, the Shelterin complex works in concert to
promote the formation of loop structures named t-loops from the overhanging single-stranded G-
rich DNA (ssDNA) that, in turn, prevents the ssDNA ends from being recognized as a double strand
break (DSB) (6).
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The progressive shortening of telomeres, by ∼200 bp per cell
division, acts as a cellular clock that ensures turnover of cells
that have gone through many rounds of division and potentially
acquired a large number of mutations. At the end of this process,
termed the Hayflick limit, telomeres reach critically short lengths
and trigger cellular senescence (7).

Some cells, namely long-lived cells such as stem and early
progenitor cells, require maintenance of these telomeric
sequences to allow for long term survival. These cells use
the telomere elongating enzyme telomerase to maintain
telomere length. Telomerase itself is a combination of two
principle components, the 1,132 amino acid telomerase reverse
transcriptase (TERT) and an associated telomerase RNA
molecule (TERC) (8, 9). Together, telomerase progressively adds
telomeric sequence to the end of telomeres (7). The expression
and activity of telomerase is tightly controlled, limiting its use in
normal dividing cells (10).

Many cancers, 85–97%, utilize this natural telomere extension
mechanism and use it to maintain their own telomeres, allowing
them to evade telomere crisis (11). A minority of cancers,
however, have established telomerase-independent mechanisms
of telomere elongation. These cancers, collectively, are referred
to as the Alternative Lengthening of Telomeres (ALT) cancers
(12). ALT cancers present an exciting avenue of study due to their
unique nature. In this review we will explore recent literature that
is aimed at understanding the mechanism by which ALT arises,
as well as comment on emerging or potential therapies targeted
at ALT cancers.

WHAT IS ALT?

Despite being present in a minority of cancers overall, the
prevalence of ALT in cancers is not uniform, with cells of
mesenchymal origin being more likely to rely on ALT for
telomere elongation (13). Indeed, certain cancers, such as
osteosarcomas and cancers of the central nervous system, have
rates of ALT positivity approaching 90%, eluding to possible
mechanistic reasons for ALT development (11). The most likely
cause of this distribution is that, in contrast to cells of epithelial
origin, cells of mesenchymal origin are more likely to have
more stringently regulated telomerase expression, reducing the
potential for telomerase-mediated telomere maintenance (13).
ALT cancers can be particularly hard to treat effectively, in part
due to their distribution, often ruling out early resection and their
unique mechanism of maintenance leaving them insensitive to
therapies that target telomerase.

In contrast to telomerase mediated telomere extension ALT
is generally considered to be a form of aberrant telomeric
recombination constituting conservative replication (14, 15).
Along with a lack of reliance on telomerase, ALT is characterized
by a number of markers (16). The first, the presence of
extrachromosomal circular DNA is often regarded as the gold
standard of ALT diagnosis. This extrachromosomal DNA is in
fact partially double stranded telomeric DNA, that is either C-rich
or G-rich and are termed C- and G-circles, respectively. In the
diagnosis of ALT, rolling circle amplification of C-circles allows

for rapid quantification of telomeric circles, which correlate well
with ALT positivity (17). Two further characteristics include
telomere sister chromatid exchanges (tSCEs) and heterogenous
telomere lengths. ALT cancers also display increased replicative
stress and telomeric DNA damage induced foci (TIFs), a
potential driver of ALT generation (18, 19). Finally, ALT
cells display characteristic telomere clustering and localization
to promyelocytic leukemia (PML) bodies, forming structures
named ALT-associated PML bodies (APBs) (20). Recent work
has identified two possible new markers of ALT: mitotic DNA
synthesis (MiDAS) and upregulation of the long non-coding
Telomeric Repeat-containing RNA (TERRA) (21, 22).

THE MUTATIONAL LANDSCAPE OF ALT

Somatic mutations in the α-thalassemia/mental retardation
syndrome X-linked proteins (ATRX) and the death domain-
associated protein (DAXX) chromatin remodeling complex
are by far the most common mutations in ALT and are
highly correlated with ALT development (23). Nevertheless,
mutations in other proteins have been described in ALT that
are believed to be involved in, or may lead to the development
of the ALT phenotype. These include mutations in histone
H3.3, SMARCAL1, and IDH1 (24–26). Additional correlated
mutations may indeed exist, however due to the lack of routine
testing for ALT in clinic, many ALT cancers are likely never
fully characterized.

THE ROLE OF ATRX IN ALT
DEVELOPMENT

Recent work has improved our understanding of the underlying
mechanism of ALT, however, despite this, it is still not clear as to
the exact process by which ALT development occurs. Due to the
near universal loss of the SWI/SNF protein ATRX in ALT cancer,
and the ability of ATRX to suppress markers of ALT in a DAXX
dependent manner, it would appear that loss of ATRX is a key
factor in the development of ALT (27–29). Indeed, one recent
study showed that, in certain cell lines, markers of ALT could
be triggered upon loss of ATRX alone (28). This observation is
in contrast to the majority of cases where ATRX loss alone is
insufficient to trigger ALT and raises interesting questions as to
the other underlying factors present in these cells. Thus, ATRX is
not the silver bullet of ALT development one might expect. It is,
therefore, important to consider additional causal factors in the
development of ALT.

Although one of ATRX’s primary roles is in the ATRX-DAXX-
H3.3 histone deposition pathway, wherein ATRX promotes
the deposition of histone variant H3.3 into telomeres, ATRX
has also been found to be a potent regulator of histone
variant macroH2A incorporation into chromatin (30). It has
recently been shown that the interaction between ATRX and
macroH2A1.2 additionally acts in a protective capacity to
maintain fork stability during acute replication stress (31).
In ALT cells lacking ATRX, despite telomeric macroH2A1.2
being generally enriched, macroH2A1.2 is transiently lost during
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replication stress, leading to increased fork collapse, a potential
driver of the ALT pathway (32). In concert with this, loss
of ATRX additionally permits the binding of the alternative
macroH2A isoform, macroH2A1.1, to the poly(ADP-ribose)
polymerase tankyrase 1 in a DNA damage response dependent
manner, preventing its localization to telomeres and resolution
of cohesion. The result of this persistent telomere cohesion is an
increase in tSCEs and a simultaneous suppression of excessive
non-sister telomeric recombination that is detrimental to ALT
cell growth (33).

Many of the proteins mutated in ALT cancers are related, in
part, to replication stress or DNA break repair deficiency. ATRX
has previously been shown to be both involved in both of these
processes, with loss of ATRX being associated with increases in
replicative stress, fork stalling, fork restart, and fork protection
(34–36). A recent analysis of proteins recruited to common
fragile sites (CFS) identified ATRX as a pivotal player in CFS
stability upon induction of replicative stress, with ATRX being
recruited to a subset of CFS with DAXX in a FANCD2 dependent
manner (37).

Additionally, evidence exists for a role of ATRX downstream
of fork collapse in DNA double strand break repair. Work in
human glioblastomas has indicated that ATRX loss leads to a
reduction in non-homologous end joining (NHEJ), and renders
cells lacking ATRX sensitive to a number of DSB inducing
agents and ionizing radiation (IR) (38). In contrast, Juhász et al.
demonstrated no reduction in NHEJ efficiency in response to
the loss of ATRX, and instead implicated ATRX in long tract
DNA repair by homologous recombination (39). Additionally,
the study suggested that ATRX-null cells were sensitive to both
methyl methanesulfonate (MMS) and mitomycin C (MMC),
an alkylating agent and DNA crosslinking agent, respectively.
Despite the contrasting messages of these studies, both present
potential therapies that could target ALT cancers.

ALT IN GLIOMA

ALT cancers are particularly common in cancers of the central
nervous system, with rates as high as 63% (11). Mutations in
the isocitrate dehydrogenase enzyme (IDH1), specifically the
R132H mutation, almost exclusively occur in gliomas and other
cancers of the central nervous system. To date, no extensive
work has been performed to quantify the prevalence of IDH1
mutations across the spectrum of ALT cancers, however, previous
literature has shown that thesemutations correlate strikingly with
ALT status in certain tumor types (26). Work by Mukherjee
et al. investigated these mutations in the context of human
ALT gliomas and found that IDH1 R132H mutations led to a
consistent downregulation of a number of proteins, two of which
being the Shelterin component RAP1, and the DNA damage
repair protein XRCC1. The authors show that in the absence
of ATRX, loss of both RAP1 and XRCC1 leads to an increase
in ALT markers (26). Downregulation of RAP1 has previously
been shown to lead to an increase in telomere dysfunction by
end uncapping, however a previous study showed that following
TALEN knockout RAP1 loss did not in itself lead to an increase
in telomere dysfunction or tSCEs (40, 41). This lends credibility
to the hypothesis proposed by the authors, that RAP1 loss along

with a cooperating ATRX mutation are required to trigger the
phenotype. XRCC1 loss, on the other hand, leads to a deficiency
in microhomology-mediated end joining (MMEJ), a critical
pathway for efficient repair of homologous repeat sequences
(26). Along with a role in MMEJ, XRCC1 has additional roles
in both base excision repair (BER) and nucleotide excision
repair (NER) (42, 43). In both cases, loss of XRCC1 would lead
to persistent ssDNA breaks, which following replication could
present a barrier to replication and eventual formation of a DSB.

ALT REQUIRES TELOMERIC
HETEROCHROMATIN

In contrast to much of the genome, which is euchromatic,
telomeres are naturally heterochromatic structures, a term used
to describe condensed DNA that bares a variety of histone
modifications. The predominant marker at heterochromatic
regions is the histone H3 lysine 9 trimethylation (H3K9me3),
which is in turn bound by a number of proteins including
ATRX and heterochromatin protein 1 (HP1) (44–46).
Outside of telomeric heterochromatin, at the pericentromeres,
heterochromatin formation is promoted by two histone
methyltransferases, the suppressor of variegation 3–9 homologs
(SUV39H1 and SUV39H2), which are collectively known
as SUV39H. Loss of Suv39h itself leads to formation of
many of the markers of ALT, including APBs and tSCEs,
and it was therefore assumed that SUV39H acted as the
major propagator of telomeric heterochromatin, and that
SUV39H protected telomeres from ALT (47, 48). In this regard,
ALT telomeres display reduced condensation and decreased
H3K9me3 marks, which lead to a reduction in chromatin
compaction (49).

Recent literature, however, has challenged this idea, suggesting
that, in fact, ALT telomeres are enriched for H3K9me3, and
non-ALT telomeres are largely euchromatic (50). Additionally,
work has shown that, contrary to long standing dogma, telomeric
heterochromatin formation is instead mediated through the
H3K9 methyltransferase activity of SET Domain Bifurcated 1
protein (SETDB1), and this heterochromatin formation drives
the development of ALT. In this work the authors demonstrate
that SETDB1 loss leads to a reduced recruitment of ALT-related
factors to telomeres, and a reduction in ALT markers including
C-circles and APBs, and that, therefore, heterochromatin
formation at telomeres is required for ALT (51).

Together these data suggest a potentially pivotal role of
chromatin landscape in the development and maintenance of
ALT, the specifics of which may guide a number of cellular
processes. Additionally, the observation of ALT loss upon
SETDB1 loss raises the possibility that SETDB1 could constitute
an exciting target for therapy in ALT, perhaps through the use of
a small molecule inhibitor.

ALTERED rDNA HETEROCHROMATIN IN
ATRX-DEFICIENT CANCERS

Along with telomere heterochromatin changes in ALT, recent
evidence has suggested a role for the binding of ATRX to another
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of its highly repetitive binding sites—ribosomal DNA (rDNA).
The work, in mouse ES cells, demonstrates the importance
of ATRX and DAXX in the deposition of histone H3.3 into
ribosomal repeat sequences and, in the absence of effective
deposition, cells progressively encounter rDNA copy number
alterations and rDNA repeat instability. Following ATRX loss,
the reduction in rDNA copy leads to proportionally reduced
ribosomal RNA (rRNA) transcription, which ultimately results
in increased sensitivity to inhibitors of the RNA Polymerase
PolI (the principle polymerase for rRNA). The authors go on
to demonstrate that canonical ALT cells, likely due to their
lack of functional ATRX, are equally sensitive to PolI inhibitors,
suggesting that PolI inhibitors could be effective on a wide range
of ALT cancers (52).

APBs AND THEIR FORMATION

APBs are, as previously mentioned, a marker of ALT and are
considered to be a major site of telomere recombination in
ALT. Following the generation of a DSB at telomeres, evidence
suggests that telomeres migrate rapidly and cluster within
APBs in a RAD51-dependent manner, awaiting downstream
processing (53).

Work has previously shown that APBs are required for
ALT and that overexpression of the nuclear autoantigen Sp-
100, a constituent component of PML bodies, inhibited APB
formation through the sequestration of the MRN complex
component NBS1, another constituent component of APBs.
This sequestration ultimately led to progressive telomere length
shortening and a reduction in telomere length fluctuations (54).
Along with Sp-100, a number of other proteins are required for
effective APB formation including PML, TRF1 and TRF2, and
the SUMO E3 ligase MMS21. The latter, MMS21 is part of the
SMC5/6 complex and is considered to be an essential SUMO
E3 ligase in the generation of APBs, with its primary role in
SUMOylating TRF1 and TRF2 as part of APB formation. In
studies where the SUMO target sites in TRF1/2 are disrupted, or
the SUMO-ligase dead mutant of MMS21 was introduced into an
MMS21 null cell line, APB formation was severely impaired (55).

In part owing to the complexity of APB formation, and
their intrinsic requirement for the ALT process, APBs and
their formation are a strong candidate for the development
of therapies. One such therapy could be a SUMO E3 ligase
inhibitor, or inhibitors of the SENP family of proteins,
proteins that cleave the inactive precursor form of SUMO
and catalyze the de-conjugation of SUMO to its target
protein (56).

BREAK INDUCED REPLICATION DRIVES
ALT TELOMERE SYNTHESIS

Telomere maintenance in ALT is thought to be mediated by a
pathway referred to as break induced replication (BIR), with a
preference for lagging strand synthesis (57). Seminal work in
the field from Dilley et al. implicated a primary three protein
axis of POLD3, PCNA, and RAD52 in the mechanism of

ALT telomere extension. In this work the authors demonstrate
that ALT telomere maintenance is independent of RAD51,
a protein responsible for homology search in homologous
recombination, and is instead dependent on the less well-defined
paralog RAD52. The reliance on RAD52 over RAD51 is an
interesting observation, due to the involvement of RAD51,
together with the Hop2-Mnd1 heterodimer in the facilitation
of long-range telomere migration as well as the colocalization
of these proteins to APBs in ALT cells (58). However, yeast
studies have shown both RAD51-dependent and -independent
mechanisms of BIR in telomere maintenance exist, highlighting
the possibility that BIR in humans may occur in a similar
fashion (59).

Additional ancillary factors are recruited to telomeres in ALT
and have been hypothesized to play a number of roles. One such
factor, FANCD2, a component of the Fanconi anemia complex, is
both recruited to CFS with its partner protein FANCI and also to
telomeres in ALT positive cells (60, 61). FANCD2, in ALT cells,
appears to act in opposition to the Bloom Syndrome Helicase
(BLM) to restrain telomere replication and recombination, and
its depletion leads to a hyper-ALT phenotype. Depletion of
FANCD2 alone, however, does not trigger the ALT phenotype,
indicating the involvement of additional factors. Increased
telomeric DNA content as a consequence of telomere elongation
and tSCEs in FANCD2-depleted cells occur through a RAD51-
independent mechanism, which one could hypothesize is in
agreement with the notion of a RAD51-independent, RAD52-
mediated ALT process (62). Additionally, the recent observation
of MiDAS at telomeres, has also been shown to be RAD52-
dependent and SLX4-dependent but RAD51-independent (22,
63). Although, work by Sobinoff et al. shows an opposing role
for SLX4 in ALT telomere elongation and as such, further work
will need to be done to determine and fully characterize its role
in controlling BIR (64).

ALT IS A BIFURCATED PATHWAY

Recent work has built upon the previous observation of
RAD52-dependent BIR-mediated telomere extension in ALT to
further distinguish the mechanism of ALT. Alongside RAD52-
dependent BIR, compelling evidence exists for a second RAD52-
independent mechanism of ALT. In this case, the commonly held
phenotypical markers of ALT, APBs, and C-circle generation, can
be considered to be a consequence of a bifurcated ALT pathway.
Indeed, when Zhang et al. investigated RAD52 knockout
(RAD521) ALT cells it was noted that while in the initial period
following RAD521 telomeres rapidly shortened, presumably
as a consequence of a loss of telomeric BIR, telomere length
subsequently stabilized. The authors were able to show that
telomere synthesis in APBs was acutely dependent on RAD52.
In contrast, RAD52 was dispensable for C-circle generation,
yielding no immediate reduction in C-circles in RAD521
cells (65).

After telomeres reached considerably short lengths, however,
an alternative, RAD52-independent, ALT pathway emerged,
showing increased C-circle levels and telomere synthesis at APBs.
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This RAD52-independent pathway was indeed still dependent on
POLD3 and its partner POLD4, as well as BLM, as evidenced
by a loss of DNA synthesis in APBs and C-circles. Additionally,
despite recapitulating ALT markers such as C-circles and APBs,
telomere length was not maintained to the same degree as when
the cells utilized a RAD52-dependent mechanism. This suggests
a fundamental difference in the two mechanisms, a difference
which could be attributed to the observation by the authors of the
ability of RAD52 to initiate telomeric D-loop formation, a critical
step in BIR, even in the presence of Replication Protein A (RPA)
coated ssDNA (65). Additionally, loss of the structure specific
endonuclease scaffold SLX4 reduces proliferation in ALT cells
lacking RAD521, with some evidence suggesting the existence
of an SLX4-dependent, but RAD52-independent mechanism of
telomere stability (66).

These data suggest that canonical “ALT” may indeed be an
amalgamation of multiple similar but distinct pathways, the
first being RAD52-dependent, and the second being RAD52-
independent, with the RAD52-dependent pathway contributing
to the majority of the telomere extension, and the RAD52-
independent pathway acting as an alternative pathway that
recapitulates some ALT markers, but with reduced efficiency.
Nevertheless, more work is needed to fully decipher these
intertwined pathways.

THE ROLE OF ATR AND ATM IN ALT

Recent work has demonstrated that ALT-associated BIR is
independent of the ataxia telangiectasia-mutated (ATM) protein
kinase and ataxia telangiectasia and Rad3-related protein (ATR),
both of which are key regulators of DNA damage repair, and the
initial damage is instead sensed by an replication factor C (RFC)
and Proliferating cell nuclear antigen (PCNA) (14). Previous
work, however, suggests that ALT cells display sensitivity to
ATR inhibitors (67). In this work, the authors demonstrate a
reduction in ALT markers including APBs, tSCEs, and C-circles
in the presence of the ATR inhibitor VE-821 and a reduction
in APBs upon knockdown of ATR with siRNA. The authors
propose this is a consequence of an accumulation of DNA
damage, increased micronuclei formation and aberrant anaphase
chromosome segregation. ALT cells, when exposed to the ATR
inhibitor VE-821, show significantly reduced survival and a
considerably lower IC50. In corroboration with Dilley et al. and
Flynn et al. demonstrated that ALT cells lacked any sensitivity to
ATM inhibitors (67). Subsequent studies, however, have failed to
identify a sensitivity, calling into question the initial finding of
using ATR inhibitors in treating ALT cancer (68).

Together, these data suggest that it is unlikely that ALT relies
on an ATM or ATR-modulated pathway for telomere extension,
and instead likely relies on RFC and PCNA. This distinction
is important to note in regard to therapeutic treatment of
cancers with ATR inhibitors, which in this case may not improve
outcomes. Onemay hypothesize that, in fact, ATR inhibitionmay
lead to defects in ssDNA break repair or fork stalling, which may
in turn exacerbate the ALT phenotype.

NuRD-ZNF827—A DRIVER OF ALT
RECOMBINATION

Another characteristic marker of ALT is the presence of telomere
variant repeats interspersed throughout the telomere (69). These
repeats are thought to occur as a consequence of subtelomeric
recombination, or rare nucleotide misincorporation by
telomerase, and levels of variant repeats vary between different
ALT cancers (70, 71). Shelterin components, evolutionarily
adapted to binding to canonical repeats, display lower affinity
to these variant repeats, allowing for the binding of the NR2C/F
class orphan nuclear receptors (72). Orphan receptors in this
class, including TR2, TR4, and COUP-TF2 have been shown
to recruit the zinc finger protein ZNF827 to ALT telomeres
and provide a platform for the recruitment of the nucleosome
remodeling and histone deacetylation (NuRD) complex. The
NuRD complex, in turn, has been shown to promote telomere-
telomere recombination through binding together telomeres
from different chromatids or chromosomes, recruitment of HR
factors, as well as displacement of Shelterin components and
induce further replicative stress. Together, NuRD and ZNF827
can be considered as potent drivers of the ALT process, however,
the HDAC properties of NuRD also has protective properties,
including counteracting excessive de-heterochromatinisation
and a buffering effect on telomere bridge formation (73).
Recent progress has been made in the development of histone
deacetylase (HDAC) inhibitors which could be used to selectively
inhibit ALT through NuRD suppression. Unfortunately, it is
still unclear as to whether HDAC inhibitors could be selective
enough, with potential effects, in non-cancerous tissues (74).

RPA AND TELOMERE TRANSCRIPTION IN
ALT

Many of the aforementioned ALT processes, in part, lead to the
formation of either ssDNA overhangs or regions of ssDNA. In
vivo, ssDNA is rapidly coated by RPA, which serves to both
protect ssDNA from the formation of secondary structures, as
well-facilitate many aspects of DNA repair including activation of
ATR signaling pathways (75). It has been proposed that release of
RPA from telomeresmay be an importantmechanism to suppress
HR, and thus BIR, at telomeres (67).

Regulation of RPA at telomeres would thus be essential to
ensure appropriate repair of telomeric damage. Indeed, work by
Flynn et al. has proposed one such mechanism of RPA regulation
at telomeres. The authors propose the involvement of the
telomeric repeat containing RNA (TERRA), a long non-coding
RNA (lncRNA) that ranges from 100 to 9 kb and is thought to
be involved in many telomeric processes, in the sequestration
of RPA from telomere ends in a cell cycle dependent manner
(67, 76).

In order to prevent ATR signaling at telomeric overhangs,
such as those found at T-loops, the Shelterin components POT1
and TPP1 must prevent RPA binding. POT1-TPP1, however, is
only able to displace a minor fraction of telomere-bound RPA in

Frontiers in Oncology | www.frontiersin.org 5 January 2020 | Volume 9 | Article 1518

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kent et al. Alternative Lengthening of Telomeres in Pediatric Cancer

in vitro assays, and instead cells rely on displacement of RPA by
hnRNPA1, which is unable to displace POT1. It is then proposed
that hnRNPA1 activity is itself mediated by TERRA transcript
levels, which vary throughout the cell cycle (77).

ATRX loss is proposed to lead to an accumulation of TERRA
in late-S/G2, whereas in ATRX wild type cells TERRA levels are
high in S phase only, with multiple studies indicating higher
overall TERRA levels in ALT and ATRX-null cells (67, 78).
This accumulation of TERRA then prevents the release of RPA
from telomeric ssDNA by hnRNPA1, which in turn leads to
ATR signaling and a DNA damage response. This phenotype is
marked by the appearance of large damage related RPA foci in
G2/M specifically in ALT positive cells and non-ALT cells lacking
ATRX (67).

Along with a proposed role in RPA sequestration from
telomeres, TERRA has been implicated in the promotion of
telomeric heterochromatin expansion, through its binding to
both HP1 and the H3K9me3 (79). Additionally, TERRA is
thought to be crucial for the short-term protection of T-loops
from DNA helicases through the formation of DNA:RNA hybrid
structures at telomere ends, termed R-loops (78, 80). These
telomeric R-loops could hypothetically pose significant threat to
efficient telomere replication.

DNA SECONDARY STRUCTURES AND
R-LOOPS IN ALT

An inherent feature of telomeres is their ability to adopt non-
canonical secondary structures including G-tetrad structures
called G-quadruplexes (G4). Previous work has suggested that
ATRX binds to these G4 structures (81), and has a potential
role in their resolution, with ATRX-null cells displaying higher
numbers of G4 structures (81, 82). Consistent with this notion,
recent work has shown that in an ATRX-null background cells
are unable to effectively tolerate the induction of these structures
through chemical stabilization, raising the possibility for their
use in either selectively killing ATRX-null ALT cells, or in pre-
sensitizing these cells to other therapeutic agents such as ionizing
radiation (82, 83). A number of G4 stabilizers are currently in
clinical trials, with one example being CX-3543 (Quarfloxin)
(84). Additionally, it has been reported that introduction of the
G4 stabilizing ligand PDS into cells induces MiDAS, with a
significantly stronger effect in ALT positive cells. Taken together
this infers that the presence of G4 structures may potentiate ALT
but also may offer a therapeutic target (22).

R-loops are composed of a three-stranded nucleic acid
structure, where the nascent RNA forms a hybrid with the DNA
template strand and displaces the non-template DNA strand. R-
loops are also thought to occur in regions within the genome
that are enriched in guanine nucleotides and are therefore highly
coincident with G4 forming regions (85). R-loops also have
the potential to be major contributors to genome instability
and are thought to cause replication fork stalling, collapse and
generation of DSBs if they remain unresolved prior to replication
(86). Strikingly, ALT cancer cells have been reported to have
higher levels of R-loops and binding of RNaseH1 (an enzyme

that degrades RNA:DNA hybrids) at telomeres. Significantly,
overexpression of RNaseH1 attenuates ALT markers, suggestive
of a role of R-loops in potentiating ALT (78).

In addition to RNaseH1, FANCM, and ATRX have been
shown to have roles in regulating R-loops in the context of
ALT (78, 87–89). Recent published literature suggests FANCM
is important for replication fork remodeling and DNA damage
repair and resolves R-loops at the telomeres. The authors show
that FANCM is recruited to telomeres and in its absence, there
is an accumulation of telomeric RNA:DNA hybrids. Moreover,
overexpression of RNaseH1 suppressed the enhanced ALT
markers present after FANCM depletion. This therefore suggests
that R-loop formation has a potential role in generating the
replication stress needed for ALT initiation/exacerbation. In
addition, the authors demonstrated that the ATPase/translocase
domain of FANCM was responsible for R-loop resolution, as
mutations in this domain generated increased R-loops (88).

ALT cancer cells have been suggested to have increased
TERRA that is thought to act in cis or trans to form R-
loop structures at the telomeres (78). Silva et al. showed that
with FANCM depletion, TERRA transcript levels increased
significantly, implicating FANCM in the modulation of R-
loop formation by also controlling TERRA. FANCM mediated
suppression of ALT has additionally been shown to be dependent
on its interaction with the BLM-TOP3a-RMI (BTR) complex and
disruption of this interaction using the PIP-199 small molecule
inhibitor has been shown to be selectively toxic to ALT cancer
cells (88).

TRANSLESION SYNTHESIS IN ALT

Replication stress, whether it be caused by exogenous agents
or structures such as R-loops and G-quadruplexes, must be
dealt with to avoid replication fork collapse. We have previously
discussed the role of ATRX in replication fork protection, as well
as the consequences of failure to protect these forks. Recent work
has implicated another DNA repair network in the protection of
ALT telomeres.

Using BioID, a technique that utilizes proximity-dependent
biotinylation, Garcio-Exposito et al. revealed proteins associated
with telomeres in both an ALT and non-ALT context (90). In
both ALT and non-ALT samples this method detected common
telomere-associated proteins, such as the Shelterin complex as
well as several Shelterin accessory proteins including MRE11,
BLM, PARP1, and Tankyrase 1. In ALT positive samples, the
method pulled outmany ALT associated proteins including PML,
ERCC1 and SLX4, providing validation for the technique.

In addition to these ALT-specific factors, however, the authors
also found enrichment of factors that functionally converge
to regulate RAD18-mediated mono-ubiquitination of PCNA
during translesionDNA synthesis (TLS), namely FANCJ, RAD18,
and the specialized Y-family polymerase DNA Polη. TLS is a
mechanism of DNA repair that allows replication machinery to
bypass lesions by replicating directly over them with the aid of
specialized polymerases that are amenable to distorted templates
(91). Following depletion of one such polymerase, Polη, APBs
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and C-circles increased in ALT cells, indicating a link between
Polη and the ALT process. After induction of specific breaks
in telomeres, Polη knockdown did not lead to differential ALT
marker output, indicating that Polη does not directly operate
within the ALT pathway itself.

These data could indicate a role for Polη, and the TLS
pathway, in the protection of stalled telomeric replication forks in
ALT, attempting to prevent collapse of forks that may lead to BIR.
The observation of SLX4 at ALT telomeres lends credence to this
hypothesis, due to the described role of SLX4 in promoting HDR
through fork collapse. In this regard, the authors demonstrate
that HDR at ALT telomeres increases in the absence of Polη (90).

An open question remains as to what is the cause and origin
of potential telomeric lesions in ALT cancer cells that require
the TLS machinery for replication and repair. Previous studies
have shown that, in response to loss of telomerase, ALT tumors
showed increased levels of mitochondrial reactive oxygen species
(ROS), and upregulation of core mitochondrial oxidative defense
genes including PGC-1β, and its targets such as NRF2, SOD2, and
Catalase (92). Such an increase in ROS could induce oxidative
damage at telomeres, and lead to the generation of 8-oxodG
within the GGG triplet of telomeres, as previously described,
which would thus be targets of a TLS repair pathway (93). Along
with providing insights into one potential mechanism of ALT

generation, Hu et al., demonstrated the susceptibility of ALT
positive cells to PGC-1β or SOD2 knockdown, suggesting that the
development of small molecule inhibitors of this pathway could
provide an exciting future therapy for ALT (92).

ALTERNATIVE MECHANISMS OF DEALING
WITH REPLICATION STRESS IN ALT

Along with TLS as a mechanism of reducing the effects of
replicative stress, literature evidence exists for the involvement
of the replication stress response protein SMARCAL1 in the
regulation of ALT activity (94). SMARCAL1 is a 954-amino
acid protein containing an RPA binding domain at the N-
terminus (95). Alongside its role as a DNA strand annealing
helicase, SMARCAL1 catalyzes fork reversal in response to
replication stress that causes replication fork stalling (96–98).
This fork reversal stabilizes the replication fork, allowing for
processing of the fork and attempted resolution of the cause of
the replication stress.

A study in ALT positive glioblastoma found that SMARCAL1
mutations, like those of ATRX and DAXX, correlate well
with ALT status, with over half of ALT positive glioblastoma
samples harboring SMARCAL1 mutations (99). Interestingly,

FIGURE 1 | An overview of the ALT process. Telomeres in ALT cancer cells undergo replicative stress potentially as a result of DNA secondary structure formation,

including R-loops and G-quadruplexes. This results in the formation of a one ended double strand break. Damaged telomeres are clustered into ALT associated PML

nuclear bodies, potentially mediated through the SUMOylation of Shelterin components, including TRF1 or TRF2. APBs constitute the site of recombination where

telomeres are extended predominantly via a process of Rad52 dependent Break Induced Replication (BIR).
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TABLE 1 | Potential targets and therapies for the ALT pathway.

Target Rationale

ATR inhibitors Conflicting evidence of susceptibility of ALT cells to ATR

inhibitors, evidence in the literature of susceptibility to

VE-821 (67)

Rad52 inhibitors RAD52-mediated BIR facilitates ALT but has few other

functions within most cells making it a unique target in

ALT (14)

PolI Inhibitors rDNA copy number loss upon loss of ATRX sensitizes

ATRX-null ALT cells to PolI inhibitors such as CX5461 (52)

Oncolytic Viruses ATRX and DAXX work in concert to protect cells from viral

invasion, leaving ALT cells susceptible to ICP0-null

viruses (110)

HDAC inhibitors Evidence of the involvement of the NuRD complex may

indicate efficacy of HDAC inhibitors in ALT (73)

G4 Stabilizer Work has shown ALT cells are susceptible to excessive G4

stabilization using ligands. Examples include: Pyridostatin,

Phen-DC3, CX-3543 (22)

SETDB1 inhibitors SETDB1 loss leads to a reduction in ALT markers (51)

PGC-1β/SOD2

inhibitors

Members of the core mitochondrial oxidative response lead to

increase mitochondrial ROS which may be a trigger of

ALT (92)

SUMO E3

Ligase/SENP

inhibitors

SUMOylation is essential for the generation of APBs, which

are in turn essential for ALT telomere lengthening (55)

DNA damaging

agents

ATRX-deficient cells display reduced ability to repair DNA

DSBs generated with compounds such as MMS and

MMC (39)

the authors also note that these mutations are largely mutually
exclusive with ATRX mutations, implying that both ATRX
mutations and SMARCAL1 mutations may ultimately lead
to the same outcome. Consistent with a role in protecting
against ALT, SMARCAL1 depletion augments C-circles
as well as markers of telomeric DNA damage in ALT
cells (94, 100).

Additionally, loss of the Anti-Silencing Factor 1 paralogs
ASF1a and ASF1b, histone chaperones that assist in the transfer
of H1.3-H4 or H3.3-H4 histone dimers to the CAF-1 and
HIRA proteins respectively, have been described to trigger an
ALT-like phenotype. Depletion of ASF1a in a long telomere
HeLa background, without any concomitant mutations in
factors such as ATRX, was sufficient to trigger both APBs
and C-circles, likely also through the generation of replication
stress (101).

In addition to chromatin remodeling, cells have a number
of other ways to protect replication fork progression. One
such complex of proteins, the fork protection complex (FPC),
is composed of the TIMELESS and TIPIN proteins (102).
Recent studies have indicated that the TIMELESS/TIPIN, protect
telomeres from replication stress by suppressing break-induced
replication processes (103). Analogous to SMARCAL1 depletion
of TIMELESS or TIPIN in an ALT cell leads to an increase in

ALT markers, including telomere clustering, APB formation and
telomeric MiDAS (22). Taken together these studies once more
reinforce the need for cells to protect against telomeric replication
stress in order to prevent induction of ALT.

OTHER TREATMENT POSSIBILITIES FOR
ALT

Along with the previously mentioned treatment opportunities
in ALT, the loss of ATRX/DAXX in a vast majority of
ALT cancers presents a unique opportunity for therapy. It
has long been established that, outside of its role as a
chromatin remodeller, ATRX has a role in the innate viral
immune response. Previous work has shown that many viruses
contain protective mechanisms to repress ATRX mediated
viral responses. In the case of herpes simplex virus (HSV),
during early viral infection viral particles are localized adjacent
to discrete nuclear structures known as nuclear domain 10
(ND10), of which ATRX and DAXX are constituent components
(104–106). In response to this, HSVs enlist the activity of
the immediate early (IE) protein ICP0, which disperses the
ND10 compartment and degrades PML (107–109). ICP0-null
viruses, on the other hand, are largely unable to replicate
within ATRX positive cells (110). Thus, an exciting avenue of
potential therapy would be to use ICP0-null viruses to deliver
a fatal payload to ATRX-null cells, a so-called oncolytic virus
approach (111).

CONCLUSION

Over the last few years much progress has been made in
elucidating the underlying mechanism behind ALT, however
much work remains to be done (Figure 1). Questions still
linger over the chronology in which different components of
the ALT pathway are activated, and what was once a single
mechanism of ALT telomere extension is now understood to
be multiple related pathways. As a result, additional research
is needed to fully elucidate the mechanism of ALT, and
with each characterized pathway, additional therapeutic targets
become clear. To summarize a list of potential targets and
therapies for the treatment of ALT cancers discussed in this
review is shown in Table 1.
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