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Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor

cells with osteoblastic differentiation and osteoid production. While categorized as a rare

tumor, most patients diagnosed with osteosarcoma are adolescents in their second

decade of life and underscores the potential for life changing consequences in this

vulnerable population. In the setting of localized disease, conventional treatment for

osteosarcoma affords a cure rate approaching 70%; however, survival for patients

suffering from metastatic disease remain disappointing with only 20% of individuals

being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary

metastases remain the leading cause for osteosarcoma-associated mortality; yet

identifying new strategies for combating metastatic progression remains at a scientific

and clinical impasse, with no significant advancements for the past four decades.

While there is resonating clinical urgency for newer and more effective treatment

options for managing osteosarcoma metastases, the discovery of druggable targets and

development of innovative therapies for inhibiting metastatic progression will require a

deeper and more detailed understanding of osteosarcoma metastasis biology. Toward

the goal of illuminating the processes involved in cancermetastasis, a convergent science

approach inclusive of diverse disciplines spanning the biology and physical science

domains can offer novel and synergistic perspectives, inventive, and sophisticated model

systems, and disruptive experimental approaches that can accelerate the discovery

and characterization of key processes operative during metastatic progression. Through

the lens of trans-disciplinary research, the field of comparative oncology is uniquely

positioned to advance new discoveries in metastasis biology toward impactful clinical

translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma.

Given the spontaneous course of osteosarcoma development in the context of real-time

tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively

valuable in translational modeling given their faithful recapitulation of metastatic disease
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progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel

therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues,

and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable

corroborative models for realizing the science and best clinical practices necessary for

understanding and combating osteosarcoma metastases.

Keywords: comparative oncology, metastasis biology, experimental models, translational therapeutics, canine

cancer

TARGETING PULMONARY METASTASIS IN
OSTEOSARCOMA

Since the institution of chemotherapy in the 1960s, relapse-
free survival for osteosarcoma (OS) patients with localized
disease has dramatically improved. The current standard of care
involves surgical resection of the primary tumor and multi-agent
chemotherapy (both in the neoadjuvant and adjuvant setting)
which can result in 5-year survival rates up to 70% for patients
with localized disease (1). For those patients who present with
distant metastases (usually in the lung), outcomes are much
poorer with a survival rate of about 20% (2). The negative
prognoses associated withmacroscopic disseminated OS burdens
is not unique, but rather holds true for many types of cancers that
metastasize (3); and underscores the broader need in combating
metastatic progression across diverse solid tumor histologies. For
OS patients, major hurdles that reduce overall survival include
relapse, which occurs in 1/3 of patients with localized disease
(4) and in the majority (∼75%) of patients presenting with
systemic disease (5); and the development of chemo-resistance
(6). Since overall survival rates have plateaued with multi-agent
chemotherapy (7), there remains an impetus to discover and
clinically deploy alternative non-cytotoxin based anti-metastatic
therapeutics that inhibit lung metastasis progression and may
lead to improved patient outcomes. Several investigators in the
metastasis research community have advocated the idea that
delaying or inhibiting metastatic progression (particularly the
early stages of lung colonization) should be the most clinical
and biologic relevant metric rather than the cytoreduction of
the primary tumor in the evaluation of new drugs (3, 8, 9). The
merit of this proposed paradigm shift in therapeutic assessment
is supported by historical clinical data that micrometastases in
the lung are already present in OS patients with localized tumors
and that adjuvant chemotherapy has been shown to improve
relapse-free survival (10). Additionally, preclinical effectiveness
of molecularly-targeted therapy for targeting early stages of lung
colonization or micrometastases have been shown previously
(11, 12) (also see Table 2), and justify the exploration of
precision medicine approaches for improving survival outcomes.
To accelerate discovery to impact, the rational development
of anti-metastatic therapeutics requires a convergent science
approach including (1) a better understanding of OS metastasis
biology in relation to the lung microenvironment and (2) the
availability of engineered and natural model systems that most
faithfully recapitulate the complexities of metastatic progression.
Through transdisciplinary collaborative research, it is envisioned

that novel and effective anti-metastatic therapeutics can be
identified and translated to extend the lives of patients with
OS by eradicating or thwarting the progression of subclinical
micrometastatic disease that persisted following standard multi-
agent chemotherapy.

BIOLOGY OF PULMONARY METASTASES

Dissemination From the Primary Tumor
The metastatic process, or more commonly referred to as the
metastatic cascade, describes the progressive steps of tumor
cell dissemination from the primary tumor, transit within
the blood vasculature, and the establishment of clinically
detectable pulmonary metastases (Figure 1). Since each step of
the metastatic cascade is rate limiting, metastasis is considered
to be a very inefficient process (30–32). The initial stages of
metastasis involve the acquisition of an invasive phenotype
and migration away from the primary tumor site (step 1,
Figures 1A,B). Several studies have shown that OS cells secrete
proteolytic enzymes such as matrix metalloproteinases (MMPs)
and cathepsins which causes the degradation of local tissue
extracellular matrix (ECM) and basement membranes (33).
Modulation of TIMP3,MMP1,MMP3,MMP11 have been shown
to influence in vitro invasiveness of OS cells, and enhance
in vivo tumorigenicity (34–36). OS cell interactions with local
stromal cells such as mesenchymal stem cells (37) and endothelial
cells (38, 39), have been found to be pro-tumorigenic, whereas
interactions with natural killer cells (40) or primed dendritic cells
(41), were shown to have anti-tumor effects.

Intravasation and Transit Within the
Blood Vasculature
Once tumor cells reach the local microvasculature, intravasation,
or entry into blood vessels, is the next step in the metastatic
cascade (step 2, Figures 1A,B). Entry into the local
microvasculature requires OS cell interaction with endothelial
cells. Several in vitromodels exist to study tumor cell interactions
with endothelial cells (42), with the simplest system being the
co-culturing of tumor cells onto a monolayer of endothelial
cells. Research from several groups have utilized this in vitro
co-culture method and have shown that RUNX and osteopontin
(43), uPAR (14), and αvβ3 (44) influence the physical interactions
between OS cells and endothelial cells. More importantly, several
of these studies have shown that interfering with these OS
cell-endothelial interactions were found to inhibit metastasis
formation in vivo (14, 43).
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FIGURE 1 | The metastatic cascade in osteosarcoma. (A) Primary OS tumor, usually in the long bones. (B) Tumor cells acquire an invasive phenotype and migrate

away from the primary tumor and invade into surrounding tissues (step 1). Tumor cells interact with the basement membrane and endothelial cells to intravasate into

the blood microvasculature (step 2) and travel in the circulation (step 3). (C) Upon arrival at the secondary site (lung), tumor cells arrest via size restriction or adhesion

interactions with the pulmonary microvascular endothelial cells (step 4). (D) Once tumor cells extravasate out of the blood vessels, they must be able to adapt and

survive in the lung microenvironment (step 5). At this vulnerable stage, tumor cells can undergo a number of fates which include- enter cellular dormancy, die off, or if

the stresses of the lung microenvironment can be successfully managed, tumor cells can proliferate into multi-cellular micrometastases (step 6). Micrometastases can

enter into a state of “angiogenic dormancy” and remain the same size, or regress if cell death is greater than proliferation, or recruit local blood vessels and form a

vascularized secondary tumor (step 7).

Once within the blood stream, OS cells must be able to
resist anoikis, a specialized form of apoptosis induced by the
disruption of cell-matrix interactions, as first described by Frisch
and Francis (45). A number of key regulators of anoikis have
been characterized since its initial discovery (e.g., Mcl-1, Cav-
1, Bcl-xL, c-FLIP) (46) and several of these genes have been
linked to metastatic capacity in breast cancer cells (47) and OS
cells (24, 48, 49).

Another type of stress OS cells encounter within the
circulation is the physical hemodynamic forces of blood
flow. Observations on the hemodynamic destruction of tumor
cells were initially made by Weiss and Dimitrov (50). The
major physical stressor in the blood circulation is fluid
shear stress (FSS), which is defined as the frictional forces

between moving layers, and is measured in Newtons per meter
squared (N/m2) or Dynes per centimeter squared (Dyn/cm2)
(51). FSS in the blood circulation ranges from 1 to 30
Dyn/cm2 depending on the anatomical location (52). Lien
and colleagues have demonstrated that OS cells (MG63) were
found to have higher levels of apoptosis when exposed to
FSS ranging from 0.5 to 12 Dyn/cm2 when compared to
control static cells in an in vitro flow chamber (53). The
authors also demonstrated that the level of OS apoptosis
correlated with increasing times of exposure of various FSS
conditions. It would be interesting to assess whether MG63.3
cells, a highly metastatic variant of MG63 cells, characterized
by Ren et al. (54), exhibit some level of resistance to FSS-
induced apoptosis.
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Lung Colonization and Microenvironmental
Stressors
If OS cells can resist anoikis and adapt to damaging FSS
in the blood circulation, arrest, and survival in the lung
microvasculature presents the next significant challenge to
metastatic OS cells. Several studies using the experimental
metastasis model (tail vein injection of tumor cells) have
demonstrated that the majority of tumor cells that arrive in
the lung do not survive, and only a small subset of the initial
population (1–6%) were able to successfully establish metastases
(31, 32). These studies have carefully analyzed tumor cell fate
over time and concluded that metastatic colonization of the
lung is a non-linear process where tumor cells can undergo
any number of fates, as illustrated in Figure 1D. Newly arrested
tumor cells can either: (1) enter a dormant, viable but non-
dividing state, as observed in several lung metastasis studies
(32, 55, 56); (2) proliferate into a pre-angiogenic micrometastasis,
or (3) undergo apoptotic cell death (57, 58). Micrometastases,
in turn, can also undergo a number of fates which include:
(1) enter a state “angiogenic dormancy” where tumor cell
proliferation is balanced with cell death (59), (2) proliferate into a
vascularized macrometastatic lesion (60), or (3) regress if tumor
cell death is greater than cell proliferation. The ability to adapt
quickly to a harsh new microenvironment is a prerequisite for
metastatic cancer cell survival and proliferation in the lung. Stress
adaptation pathways depend on the nature of the particular stress
encountered, and several research groups have begun to shed
light on this aspect of metastasis biology.

Redox stress is a major microenvironmental stressor that

contributes to tumor cell clearance in the lung since several
studies have provided microscopic imaging evidence and “omic”

data supporting this notion. Qiu et al. (58) have shown that the

physical arrest of murine melanoma cells in the lung stimulates
the local microvascular endothelial cells to release a burst of

nitric oxide (NO), which was cytotoxic to tumor cells. Inhibition
of NO release by L-NAME (a nitric oxide synthase inhibitor)

treatment or the use of endothelial nitric oxide synthase knock-
out mice resulted in higher lung tumor burden. Piskounova

et al. (61) have shown that metastatic melanoma cells adapt

to the redox stress in the lung by upregulating the NADPH-
generating enzyme ALDH1L2; and targeting shRNAs against

ALDH1L2 resulted in lower lung tumor burden (61). NADPH

is important in maintaining redox homeostasis (62), and a recent
study by Basnet et al. (63) have shown that micrometastases of
breast cancer cells in the mouse lung have elevated transcript and
protein levels of antioxidant genes (e.g., NRF2 and GPX1). The
notion that ROS can negatively regulate metastasis formation
is somewhat controversial since other studies seem to suggest
the opposite (64–66). These discrepancies may be due to cell
type-specific responses, or the particular dose of ROS exposure.
Low, sublethal concentrations of ROS can turn on antioxidant
responses, whereas high concentrations of ROS can cause
irreversible damage to proteins, lipids and DNA with consequent
cell death.

Another type of cellular stress closely linked to redox stress
is endoplasmic reticulum (ER) stress. Protein folding processes

within the ER are exquisitely sensitive to perturbations in cellular
redox state, Ca2+ concentration within ER lumen, and ATP
supply (67). Redox stress can alter the oxidative protein folding
environment of the ER lumen, which results in the accumulation
of unfolded proteins, a condition known as ER stress (68). The
unfolded protein response (UPR) is activated by various sensors
on the ER membrane, and an adaptive transcriptional program
is activated to increase the chaperone capacity of the ER and
increase ER-associated degradation pathways to compensate for
the sudden load of unfolded proteins (67). The UPR has been
found to be dysregulated in many types of cancer, including
OS (69, 70). Several highly metastatic human OS cell lines were
found to upregulate the ER chaperone protein GRP78 at higher
levels compared to their low metastatic counterparts during ER
stress (12), and shRNAs and IT-139, a small molecule inhibitor
of GRP78 under clinical investigation (71), were found to
reduce lungmetastatic burden. Translocation of the transcription
factor ATF6α to the nucleus is also part of ER stress response,
and human OS cells were found to have elevated levels of
nuclear ATF6α compared to osteoblast controls under ER stress
conditions (72). Downstream targets of ATF6α such as GRP78,
PDI, and ERO1β where found to confer chemotherapy resistance
in OS cells, and down-modulation of ATF6α resulted in increased
sensitivity to cisplatin. Moreover, elevated levels of ATF6α in
patient samples was predictive or poorer overall survival and
poorer response to chemotherapy (72). Several groups have also
found UPR-related pathways to be dysregulated in OS (73–75).

Although the microenvironmental stressors discussed above
can contribute to tumor cell clearance in the lung, these
observations do not explain the apparent “organotropism” of
OS cells for the lung. Why do metastases in OS preferentially
occur in the lung? The answer, in part, may be due to
mechanical restriction of disseminated tumor cells in the
lung microvasculature. Human alveolar capillaries range from
5 to 8µm in diameter (76), whereas the average diameter
of osteoblastic osteosarcoma cells ranges from 10 to 19µm
(estimated from histology micrographs) (77). Circulating tumor
cells often arrest via size restriction within the first microvascular
capillary bed they encounter, and video microscopic evidence
from animal studies suggest that organs such as the lung and
liver are efficient at “filtering” out circulating tumor cells from
the blood (78). OS cell “organotropism” for the lung can
also be explained by the concept of the “pre-metastatic niche”
(PMN), in which growth factors from the primary tumor “prime”
downstream metastatic sites for tumor cell engraftment (79–
81). As to whether PMN contributes to lung colonization in
OS, Murgai et al. (82) found that metastatic OS cells secret
exosomes containing cytokines that can induce lung perivascular
cells to secrete fibronectin. The same authors also demonstrated
that fibronectin promoted tumor cell adhesion, migration, and
proliferation in vitro. Additionally, Macklin et al. (83) also
found that highly metastatic OS cells are capable of secreting
extracellular vesicles that were preferentially retained in the lung,
but not liver. More definitive studies will be needed to define
OS-specific changes in the lung during PMN formation, and
whether or not modulation of OS-specific PMN can influence the
formation of lung metastasis.
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MODEL SYSTEMS TO STUDY
OSTEOSARCOMA METASTASES

Preclinical Models to Study and Image the
Steps of Metastasis
Since lung metastasis progression involves complex 3
dimensional (3D) interactions between OS cells, ECM, and
lung parenchymal cells, model systems that can maintain or
partially recapitulate some aspects of these 3D interactions
will allow researchers to interpret metastatic OS cell responses
to gene therapy or pharmacologic intervention in a relevant
microenvironmental context. Indeed, several studies have
demonstrated that tumor cell response to therapeutics differ
when comparing 2D vs. 3D growth conditions (84–86). To
this end, several microscope-based models exist that permit
researchers to directly visualize and study metastatic cancer
cell behavior in a 3D microenvironment. Such models are
described below, and the benefits and limitations of each model
are discussed.

Chick Chorioallantoic Membrane Model
The chick chorioallantoic membrane (CAM) is a highly
vascularized membrane that primarily functions as a gas-
exchange organ for the developing embryo (87). The CAM
is commonly studied in a shell-less format (ex ovo), where
xenograft human tumor fragments or a tumor cell suspension
(Figure 2A) can be placed onto the CAM or injected into blood
vessels of the CAM. The CAM has proven to be a useful model
in studying tumor angiogenesis (90, 91), tumor cell migration
and invasion (92), intravasation into blood vessels (93), tumor
cells in transit within the vasculature, extravasation out from
blood vessels (Figure 2B) (94–98), and the outgrowth of patient
derived xenografts (99). In OS research, the CAM model has
been used to study tumor growth of a variety of OS cell lines
(100), angiogenesis (101), and metastasis to distant sites (102).
The main benefits of using the chick CAM model include:
(1) amenable to in vivo imaging, (2) relatively inexpensive,
and (3) can be used for high-throughput screening of targeted
therapies. Disadvantages of the CAM model include: (1) short
observation times (days), (2) inability to study tumor cell
interactions with the immune system since the chick CAM is
immunodeficient until developmental day 18 (87), and (3) fewer
antibodies available for host chicken antigens (103). The chick
CAM model is applicable to the study of tumor cell invasion
(step 1, Figure 1B), interactions between endothelial cells during
intravasation, transit within blood vessels, and extravasation
(steps 2, 3, and 4, Figures 1B,D) since these steps are readily
observable at the surface of the chick CAM. Tumor colonization
of distant sites in the chick CAM are not accessible for imaging,
and thus harvesting the organs for histology, or polymerase chain
reaction assays for tumor specific DNA sequences are required.
To study lung colonization in OS, other microscope-based
models that can examine lung tissue would be more appropriate.

Pulmonary Metastasis Assay (PuMA)
A technical advance that addresses the need to directly visualize
and characterize the growth of metastatic OS cells in the lung

FIGURE 2 | Imaging models to study the metastatic cascade in cancer.

(A) The CAM model (whole mount image) showing the chick embryo and

highly vascularized CAM. A small renal cell carcinoma (RCC) explant can be

seen growing in the dashed white box. Zoomed image of a different

established GFP-expressing RCC tumor where the entire tumor, associated

vasculature, and corresponding fluorescence image (below) are shown (Image

courtesy of Matthew Lowerison and Pengfei Song, UIUC). (B) High

magnification, single cell imaging of a GFP-labeled prostatic carcinoma cell

(PC) migrating through capillary plexus (labeled with rhodamine-lectin) and

forming invadopodia (yellow arrowheads) into the lumen of 2 adjacent

capillaries in the CAM model (Image courtesy of Fabrice Lucien and Yohan

Kim, Mayo Clinic). (C) The PuMA is an ex vivo lung explant model where tumor

cells in viable lung tissue is maintained in cell culture. The lung slices are kept

at an air-liquid interface on top of a gelatin sponge. (D) Shows the lung

parenchyma (stained red with DAR4M) and eGFP-expressing MG63 OS cells

(OS) interacting with vessel-like structures (v). Scalebar = 100µm. See Lizardo

and Sorensen (88) for methods. (E) The WHRIL model allows for the direct

visualize of lung tissue through a window in the mouse chest cavity (89) as

shown with the dashed white circle. (F) Fluorescent micrograph showing the

lung microvasculature (v) (labeled red with tetramethylrhodamine) and

GFP-expressing breast cancer cell (BC). Blue fibers represent second

harmonic imaging of connective tissue (c) fibers. Scalebar = 15µm (Images

courtesy of David R. Entenberg, Albert Einstein College of Medicine). UIUC,

University of Illinois at Urbana-Champaign.

microenvironment is called the pulmonary metastasis assay
(PuMA), first developed by Mendoza et al. (104), and further
refined by others (88, 105). The PuMA is an ex vivo, lung tissue
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explant model where fluorescently labeled tumor cells in viable
lung tissue (Figures 2C,D) can bemaintained in vitro for up to 21
days of observation. High and low metastatic pairs of human and
mouse OS cell lines, whose in vivo metastatic phenotypes were
characterized elsewhere (54), retain their metastatic propensities
in the ex vivo PuMA model. Such observations suggest that
despite the lack of blood flow, certain cellular, and extracellular
features of lung tissue still exert “microenvironmental pressures”
that are not conducive to the growth of low metastatic tumor
cells, but still permit the growth of highly metastatic tumor
cells. Indeed, the histology and microarchitecture of PuMA
tissue sections are virtually indistinguishable from that of in
vivo lungs (104). The PuMA model has been used to assess
how gene modulation or drug treatment affects metastatic OS
growth in lung tissue (12, 21–23, 25, 106). The PuMA model
has several advantages which include: (1) the ability to directly
study metastatic OS cells at both the cellular and subcellular
level while in a relevant 3D microenvironment, (2) amenable
to molecular imaging (gene or signaling pathways) by labeling
tumor cells with fluorescent dyes, fluorescent protein reporter
or protein fusion constructs, and (3) the PuMA model has
recently been adapted to a 96-well plate format for a high-
throughput drug screen (20). For image analysis, proprietary
software is not needed, and analysis can be done with publicly
available software packages such as ImageJ. Image processing can
be expedited through automation as described by Young et al.
(105). One major drawback of the PuMA model is the limited
number of cell lines that are compatible with the assay. For
tumor cell lines that have not been previously published to work
within the PuMAmodel, researchers must empirically determine
whether their metastatic tumor cell line of interest is compatible
with the B-media used in the PuMA model, and whether their
cell line can grow into progressively larger lesions over time.
Secondly, the length of observation in the PuMA model is
limited to 21 days post-injection of tumor cells. Beyond 21 days,
the PuMA lung tissue becomes devoid of lung parenchymal
cells, leaving only connective tissue. The PuMA model is ideal
in studying tumor cell arrest in the lung microvasculature,
extravasation, interactions with the lung parenchyma, and the
formation of micrometastases (steps 4, 5, and 6, Figure 1D). If
a researcher’s investigations require an intact microcirculation,
then an intravital (within a living subject) imaging model of the
lung would be more appropriate.

Intravital Video Microscopy of Lung Metastasis
Direct observation of labeled tumor cells in an intact lung
perfusion model have been described previously (58, 107);
however this method is an ex vivo perfusion model where
the lungs were removed en bloc and imaged on an inverted
microscope. Intravital imaging of the microcirculation of various
organs (such as lung or liver) was reported by Varghese et
al. (108), where an acute preparation of the organ of interest
was stably imaged on an inverted microscope for 4–6 h in
anesthetized mice. While innovative at the time, this technique
was prone to motion artifact from physiologic processes such as
breathing or heart beating, and necessitated movement artifact
compensation through a post-processing image stabilization

algorithm. More recently, imaging of labeled tumor cells in
the lung of a live, free breathing mice was recently described
by Entenberg et al. (89). In this intravital video microscopy
model, called Window for High-Resolution Imaging in the Lung
(WHRIL), a small circular window is implanted in the chest
cavity of the mouse (Figure 2E) and permits serial imaging of
the same area of the lung for a period of up to 2 weeks (protocol
allowance). Using the WHRIL model, the authors were able to
image tumor cells within the lung microvasculature (Figure 2F),
tumor cell extravasation, cell division, and formation of
micrometastases (89). The WHRIL model has capacity to
thoroughly characterize the effects of targeted anti-metastatic
therapeutics on pulmonary micrometastases and established
metastases in a preclinical setting. Using fluorescent reporter
genes or functional dyes, in combination with WHRIL model,
would permit researchers to assess the effects of gene modulation
or targeted therapies on metastatic OS cell biology in the lung,
in real-time. The advantages of the WHRIL model include the
unprecedented ability to study metastatic OS cells at the cellular,
subcellular, and molecular level in live, free-breathing mice.
Secondly, serial imaging can be performed to assess the effects of
therapy over progressive (albeit limited) time points. One major
drawback of this technique is the limited depth of imaging, which
in turn is dependent on the type of microscope (single photon vs.
multi-photon imaging) and the type of fluorophore used (109).
Regular epifluorescence imaging would be limited to an imaging
depth of 200µm due to light scattering. In contrast, using a
multi-photon confocal microscope and tumor cells labeled with
near-infrared fluorophores (emission wavelengths between 650
and 900 nm) would push the imaging depth toward 700µm
(110). The WHRIL model can be implanted at a timepoint
corresponding to tumor cell arrest, extravasation, colonization
of extravascular lung tissue, formation of micrometastases, and
vascularized macrometastases (steps 4, 5, 6, and 7, Figure 1D).

Mouse Models of Osteosarcoma
Metastasis
Based upon the complexity of metastatic biology, scientific
discoveries that lead to new and effective therapies for OS
metastases are expected to be derived through experimental
models which most faithfully recapitulate the biology
and key regulatory pathways involved in the genesis and
metastatic progression of OS. Furthermore, models that
accurately reproduce the natural progression of spontaneous
micrometastases in the absence of a primary tumor are necessary
to investigate activities of novel anti-metastatic therapeutics,
as this clinical setting is the most pressing scenario in which
humans diagnosed with OS require advances in treatment.
Although an ideal animal model of OS has yet to be universally
recognized or accepted, the most desirable model characteristics
should include spontaneous primary bone tumor and pulmonary
metastases development within an immunocompetent host.

In whole organisms, such as humans and dogs, successful
metastasis occurs only when cancer cells, singly or in groups,
become able to dehisce from not only the surrounding normal
tissues, but also from malignantly transformed neighboring
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FIGURE 3 | (A) Syngeneic orthotopic mouse model of primary bone OS

(K7M3) with concurrent spontaneous pulmonary metastases development

visualized by bioluminescent imaging, (B) with corollary histology of

established pulmonary metastatic lesions and (C) micro CT images of the OS

primary lesion showing profound osteolysis and contralateral unaffected tibia.

(D) Bioluminescent imaging of an experimental metastases model in athymic

nude mice following tail vein injection with the Abrams (canine OS) luciferase

cell line demonstrating correlation between luminescent signal and (E) gross

macroscopic tumor burdens.

cells within the primary tumor. To be successful in seeding
distant sites, these metastatic precursors must acquire the
ability to invade through the tissue matrix, intravasate into the
circulation, arrest within the target tissue, extravasate, survive
within each of these diverse and heterotypic environments, and
then proliferate within the target organ in ways that recapitulate
the primary solid tumor (111). Doing so requires the acquisition
of myriad behaviors not typical of the cells of origin, and these
transformed phenotypes can arise from abnormal activation
of cell-autonomous pathways that endow tumor cells with,
for example, resistance to apoptosis (112) or the ability to
affect unusually high levels of capped mRNA translation (22).
Beyond these shifts in behavior that represent intrinsic properties
of the malignant cells themselves, disseminated tumor cells
often acquire additional malignancy-associated behaviors from
interactions with the normal tissues that surround them within
the metastatic niche (113). Interestingly, these interactions need
not require close contact between the effector cells and the
responder cells—they can occur at long distances, even being
initiated by cells located within the primary tumor (114).

These complex interactions between malignant tumors and
host cells and tissues make the study of metastasis difficult
outside of whole organisms. As the laboratory workhorse for
most biological systems, murine models have become those that
researchers most often use for exploration into the mechanisms
of OS metastasis (115). Murine models of metastasis are
diverse and can facilitate the study of biology and therapeutic
development through manipulation of the host (using genetically
engineered mice, or GEMs), manipulation of the tumor cells
themselves (using cell lines, xenografts, or allogeneic transplants),
or both. Murine systems allow researchers to study elements

critical to oncogenesis, as is evident in the multiple GEM models
of spontaneous OS (116–118)—even facilitating whole-genome
forward genetic screens into mechanisms of oncogenesis and
metastasis (119). The use of immunodeficient mice has facilitated
a recent explosion in the generation of patient-derived xenograft
(PDX) models (120, 121) and their use in OS research (122),
including orthotopic models of spontaneous metastasis which
mimic the care patients receive through the implementation of
hindlimb amputations (123, 124).

Generally, mouse models can be divided into three classes:
(1) those that spontaneously develop primary tumors and
subsequently develop metastasis, (2) those that are implanted
orthotopically (usually into a leg bone) with spontaneous distant
metastases (Figures 3A–C), and (3) those where tumor cells are
inoculated directly into the circulation (often called experimental
metastasis, Figures 3D,E) (115). Each of these approaches can
ask different experimental questions, and each has unique
strengths and weaknesses that should be recognized when
interpreting results and formulating conclusions. Advantages
and disadvantages associated with these models are summarized
in Table 1.

Three Dimensional Engineered Models of
Metastasis
Traditionally, the oncogenic transformation and malignant
behaviors of cancer cells have been ascribed to perturbations
involving multiple and interactive molecular factors rooted in
genetic alterations and dysregulated biochemical signaling.While
many aspects of cancer cell phenotype, including metastasis, can
be adequately characterized and studied through the singular lens
of biology, there is overwhelming evidence thatmechanical forces
exerted by and upon cancer cells, surrounding stromal elements,
and ECM are integrally linked with oncologic activities, including
cancer cell invasion and metastasis (51, 125). Living cells are
capable of sensing mechanical stimuli (tensile, compressive, and
shear forces), termed mechanotransduction, through specialized
cellular structures including focal adhesions and stretch-gated
ion channels (126, 127), which result in activation of gene
and signaling pathways that regulate cellular behaviors. The
realization that mechanical cues, in concert with biologic context,
contribute collaboratively to diverse cancer processes has spurred
rapid advancements in studying cancer metastasis through the
deliberate inclusion of physical science, tumor bioengineering,
and microfabrication approaches.

While a preponderance of cancer investigations includes
studies based on two-dimensional (2D) cell models, such
experimental methods that rely upon cancer cells grown in
monolayer do not recapitulate the true interactions between
cells-cells and cells-extracellular matrices encountered during
solid tumor formation, evolution, and metastatic progression.
The bidirectional interactions of cancer cells with the tumor
microenvironment generates biological complexity, which can
be more thoroughly studied through three-dimensional (3D)
modeling strategies that include biomimetic engineered tumor
models. Through the purposeful design of various mechanical
platforms, it is now possible to ask and answer specific questions
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TABLE 1 | Mouse models of osteosarcoma.

Advantages Disadvantages

TUMOR SOURCE

Human cell lines • Easy to expand

• Easy to manipulate

genetically

• Able to compare across

many studies

• Those that colonize lung

demonstrate

tissue tropism

• Serial passage induces

genetic and phenotypic

drift

• Must use immunodeficient

mice

• Few stable lines available,

fewer that colonize

murine lungs

Patient-derived

xenografts

• Broad panels recapitulate

diversity

• Better fidelity to original

tumor properties/clones

• Many stable

PDXs available

• Must use immunodeficient

mice

• Most do not show

lung metastasis under

traditional conditions

• Still questionable

retention of original

tumor properties/clones

GEM-derived cell

lines

• Implantable in

immunocompetent

mouse strains

• High- and low-metastatic

cell lines derived without

multiple rounds

of selection

• Uncertain how well

GEM osteosarcoma

recapitulates

spontaneous disease

• Less-well-characterized

than human models

(genetics/copy number)

Intact GEM mice • Can engineer to study

interplay with genes of

interest

• Can study earlier stages

of malignant

transformation

• Patterns of tumor

development differ from

human (axial/jaw)

• Usually multiple primary

lesions

• Cannot resect/amputate

MODE OF INTRODUCTION

Orthotopic

injection

• May preserve original

tumor properties/clones

• Simple procedure

requiring minimal

investment in personnel

• High take rates in most

cell line/PDX models

• Can be removed

surgically, usually

by amputation

• Humane endpoints occur

faster and with smaller

tumors

• Difficult to distinguish

procedure-related emboli

from metastasis arising

from primary tumor

Orthotopic

implantation

• Same as for orthotopic

injection, except:

• Procedure-related tumor

emboli unlikely

• Same as for orthotopic

injection, except:

• More complex procedure

requiring large time

investment

• Lower take rate than for

injections

• Requires actively growing

“donor” tumors

Subcutaneous

implantation

• Simple procedure can be

high throughput

• Many PDX lines already

propagated

subcutaneously

• Can be excised in a

simple surgical procedure

• Serial passage

in subcutaneous

environment introduces

phenotypic drift (less than

in culture)

• Low rates of metastasis

from

subcutaneous tumors

(Continued)

TABLE 1 | Continued

Advantages Disadvantages

Intravenous

inoculation

• Very high throughput

procedure

• High rates of metastasis

formation in numerous

models

• Retains tissue tropism to

lung

• Short time courses for

experimentation

• Single-step experiments

(no resection

surgery required)

• Agnostic to early steps in

metastasis

• Inoculated cells may

differ from those

that disseminate

hematogenously from

a primary tumor

• Tissue tropism may be

weighted toward

anatomic circulation

patterns and site

of injection

PROCEDURES/MANIPULATIONS

Amputation • Mimics patterns of clinical

care in humans and dogs

• Allows time for

metastases to develop

beyond humane endpoint

for primary tumor

• Mice tolerate procedure

and recover well

• Complex procedure

requires large investment

of time, not high

throughput

• Morbidities associated

with procedure can

complicate interpretation

Surgical excision • Excision of subcutaneous

lesions less morbid than

amputation

• Procedure takes less time

than amputation

• Low rates of metastasis

from subcutaneous

tumors

• Adhesions surrounding

large lesions can

complicate excision

regarding how cancer cells respond to highly tunable variables
including matrix stiffness, interfacial geometry, cell curvature,
and other mechanotransduction gradients (128–131). By virtue
of precise and reproducible fabrication techniques for generating
engineered biomimetics, cancer cell reactivity in response to
individual or collective stimuli can be investigated under
controllable and quantitative experimental conditions. While
providing unique opportunity to study cancer biology, awareness
for the strengths and limitations of diverse mechanobiology
platforms for elucidating cancer-associated processes is required
to ensure their suitable applications. Given their capacity for high
throughput data generation, bioengineered 3D cellular platforms
are expected to complement existing biologic model systems
for rapidly advancing the current state of knowledge regarding
cancer metastasis. Several 3D in vitro biomimetic platforms
currently used in cancer research are summarized, and their
suitability for studying unique aspects related to OS metastasis
are highlighted.

Scaffold-Free 3D Models: Tumor Spheroids
Tumor cell masses naturally grow in 3D and cellular behaviors
are dependent upon multiple biochemical and mechanical cues
heterogeneously distributed throughout the microenvironment
(i.e., hypoxia and intercellular forces, respectively). Compared
to conventional 2D cell culture methods, spherical 3D tumor
models are superior for recapitulating the spatial cellular and
biochemical heterogeneity of solid tumors. Tumor spheroids
are cancer cell aggregates ranging in size from 20 to 1,000µm
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in diameter and can be formed through various techniques,
with the easiest method reliant upon cell buoyancy (132).
Additionally, allowing cells to aggregate by gravity (hanging
drop method) or culturing cancer cells on non-adherent or cell-
repulsive substrates are alternative strategies for reproducible
spheroid formation (133). The simplest spheroid models focus
on single cell populations which can self-aggregate and produce
endogenous ECM, thereby recapitulating homotypic cell-cell, as
well as heterotypic cell-ECM interactions operative during solid
tumor formation. The generation of more biologically complex
suspension models can be achieved through multicellular
spheroids whereby diverse cell populations (cancer, stromal,
immune) are intermixed to create more realistic physiologic
cues and cellular interactions produced within the naturally
occurring tumor microenvironment. Collectively, advantages
of tumor spheroid models include high-throughput analysis
(Figure 4A) and capacity for rapid scale up, while limitations
of scaffold-free 3D spheroids include difficulty in studying more
complex and dynamic processes such as angiogenesis, invasion,
and metastasis. Based upon these characteristics and limitations,
scaffold-free spheroid models are well-suited for preclinical anti-
cancer drug screening, characterizing diffusion kinetics and
drug resistance mechanisms, and unicellular responses including
migration, spreading, ECM deposition, and soluble mediator
secretions (133, 134).

Specific for OS, 3D culture systems with spheroids have been
utilized for the past 2 decades for studying the effects of the
tumor microenvironment on various aspects of OS biology and
has been thoroughly summarized by De Luca et al. (135). Derived
from these multiple investigations and relevant to therapeutic
strategies specifically for OS metastasis, OS spheroids have shed
illumination on drug resistance mechanisms to conventional
chemotherapeutics (136–142), the maintenance of cancer stem
cells and tumor-initiating cells (139, 143, 144), impact of
ECM stiffness and composition on metastatic phenotype (145,
146), cues that promote vasculogenic mimicry (147, 148), and
metastasis favoring pathways including the roles of specific
transcription factors (NF-κB) (149, 150) and miRNAs (151).
In addition, the feasibility of generating co-culture bicellular
spheroids through the combination of HUVEC and MG-63 cells
for the study of VEGF-mediated angiogenesis has recently been
described (152).

Scaffold-Based 3D Models
The ECM is critical in shaping tumor biologic responses through
mechanotransducive mechanisms, and the investigation of
cancer cells embedded within scaffold-based constructs that vary
in chemical composition, shape, density, structure, and porosity
allows for researchers to dissect differential mechanotransductive
contributions for the induction of diverse malignant phenotypes
and cellular processes displayed by cancer cells. Scaffolds can
be constructed from either natural or synthetic polymers,
with both sharing conserved properties of biocompatibility and
promotion of cellular adhesion. Natural scaffold materials are
typical ECM proteins while synthetic scaffolds are derived from
tunable and crosslinking materials including polyethylene glycol
(PEG) and polylactide-co-glycolide acid (PLGA), as well as

FIGURE 4 | (A) Glioblastoma spheroids in high throughput high-density

hanging drop culture on a microchip. Method allows for the rapid screening of

novel therapeutic agents in cancer cells growing in 3D whereby diffusional

gradients and cell-cell interactions are more accurately recapitulated than 2D

cell culture conditions (monolayer). Green dye (CelltoxTM Promega) shows cell

death after 24 h of culture (Image courtesy of Anurup Ganguli and Rashid

Bashir, UIUC). (B) Relative size of hydrogel scaffolds for the study of (C) 3D

glioblastoma spheroids by confocal fluorescent microscopy and associated

(D) homotypic (cell-cell) and heterotypic (cell-ECM) interactions by scanning

electron microscopy (Images courtesy of Emily Chen and Brendan Harley,

UIUC). UIUC, University of Illinois at Urbana-Champaign.

porous ceramic biomaterials such as bioactive hydroxyapatite
and tricalcium phosphate.

Hydrogel scaffolds (Figure 4B), composed of natural or
synthetic polymers, are widely used for studying biologic
responses of cancer cells, as a gel medium mimics the natural
in vivo microenvironment of nascent tumor mass growth in 3D
(Figure 4C), whereby cell-to-cell and cell-to-matrix interactions
are preserved for directing phenotypic behaviors including
proliferation, migration, chemoresistance, and angiogenesis (153,
154). The most common biocompatible polymeric hydrogel
materials include collagen type I, Matrigel, and alginate; and
these natural materials facilitate cancer cell attachment through
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heterotypic interactions via integrin receptors and ECM which
regulate cell survival, growth, and differentiation (Figure 4D).
In addition to natural biomolecules, synthetic constituents
used for hydrogel formulation can include polyethylene glycol,
polylactic acid, polyglycolic acid. By virtue of their chemistry,
synthetic hydrogels have the advantage of being chemically
tunable (stiffness, porosity, adhesion ligand density) via synthesis
or crosslinking (155), and can recapitulate spatiotemporal
changes in matrix heterogeneity encountered within the tumor
microenvironment. Increasing sophistication of hydrogel-based
models can be achieved through a combination of chemical
engineering and biologic layering, including the construction of
soluble mediator (growth factors, chemokines, peptidyl signaling
molecules) gradients or combinatorial co-culturing of cancer
cells with stromal cells including endothelial cells, fibroblasts,
and immune cells. While hydrogels have been explored as a
controlled drug release scaffold strategies for OS therapy (156–
158), the study 3D scaffold tumor models for unraveling OS
biology and metastasis remains limited, with some investigations
describing differences in behavioral phenotype of malignant
OS cells compared to non-transformed osteoblasts based upon
matrix rigidity and elasticity (159, 160). In addition to hydrogel
scaffolds, chitosan, silk, and synthetic polymers have served as
adhesive constructs for 3D OS modeling and have illuminated
mechanisms behind viral permissiveness (161), hypoxia-induced
angiogenic mediator secretions (162), drug resistance (163), and
maintenance of stem cell phenotype (164).

Microfluidic Platforms: Organ-on-a-Chip
While 3D spheroids with or without scaffolds provide valuable
information on cell-cell and cell-ECM interactions, the static
nature of nutrient and metabolic waste transport under typical
3D culture systems does not accurately replicate spatiotemporal
diffusional gradients naturally formed from lymphatic or
blood vessel formation within solid tumors. Microfluidic
systems are precisely fabricated from molds and made of
materials that are biocompatible, oxygen permeable, and tunable
(stiffness, temperature, shear flow pressure, molecular gradients).
Structurally, microfluidic systems can be fabricated to include
diverse shapes on a micro- or nanoscale including channels
and chambers with highly precise diameters, shapes, and flow
control rates. When combined with 3D cell culture systems
such as spheroids, microfluidic platforms can recapitulate
diverse complex processes representing different stages of the
cancer progression including tumor-vascular interface responses,
diffusional effects of biomolecules on cell populations, and
pathologic cancer processes including invasion, angiogenesis,
and metastasis (165–170). Recently, specific metastasis-on-a-
chip platforms have been fabricated allowing for real time
tracking of fluorescently labeled cancer cells and their heterotypic
interactions with both ECM and normal resident cells along
the full continuum of the metastatic cascade (171, 172). Kong
and colleagues recently reported the construction and use of a
microfluidic platform for studying the organotropism of cancer
cell metastasis and demonstrated the correlative value of their
microfluidic system with athymic nude mice models for the
evaluation of small molecule inhibiting anti-metastatic strategies
(173). Specific for OS, 3D microfluidic platforms have been used

TABLE 2 | Druggable molecular targets in the metastatic cascade.

Step of the

metastatic

cascade

Actionable

target(s)

Inhibitors Inhibit lung

metastasis

in preclinical

model?

(cancer

type)

References

Migration,

intravasation

PAK1 IPA3 Yes (ESCC) (13)

Intravasation uPAR SRSRY Yes (OS) (14)

Transit within blood TDO2

αvβ3

680C91

IH1062

Yes (BC)

Yes (Mel)

(15)

(16)

Extravasation VCAM

α5β1

CCR2

α-VCAM Ab

PHSCN

TC1-TSL

Yes (Mel)

Yes (BC)

Yes (Mel, Col)

(17)

(18)

(19)

Lung

colonization

GRP78

CDK12/13

BRD4

mTOR

Ezrin

HDACs

PKC

IL-6ST

CXCR1/2

PD-1/Lag-3/

NK activity

IT-139

THZ531

JQ1

Rapamycin

NSC305787

NSC668394

MS-275

(Entinostat)

UCN-01

sc-144

DF2156A

α-PD-1, α-Lag-3

Abs IL-2

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (OS)

Yes (BC)

(12)

(20)

(21)

(22)

(23)

(23)

(24)

(25)

(26)

(26)

(27)

Micrometastases Cell surface-

GRP78

PD-1

BMTP-78

Anti-PD-1 mAb

Yes (BC)

Yes (OS)

(11)

(28)

Macrometastases* Procaspase-3 PAC-1 Yes (OS) (29)

*Studies using an animal protocol where treatment was given after establishment of lung

metastases. OS, osteosarcoma; BC, breast cancer; Mel, melanoma; Col, colon cancer;

ESCC, esophageal squamous cell carcinoma.

to study OS cell adhesive properties under various physiologic
conditions (pH, temperature, shear flow) (174), cell morphology
in response to gradient molecules (175), and drug screening of
nanoparticle encapsulated chemotherapeutics (176).

Spontaneous and Immunocompetent Dog
Model of Metastasis
Conventional OS models for studying experimental therapies
most frequently are reliant upon xenogeneic and syngeneic
transplant models conducted in mice, however, the inclusion
of complementary model systems (CAM, PuMA, WHRIL,
engineered 3D biomimetics) have gained wider appeal and
scientific acceptance for improving predictive modeling of
cancer biology and metastasis. While xenogeneic models,
including patient derived xenografts, may provide information
pertaining to the sensitivity of human OS tissues or cell lines
to specific therapeutics, tumor-host interactions (especially
immunobiologic responses) are poorly recapitulated in
comparison to what occurs in people who develop OS
spontaneously. Although syngeneic models more accurately
represent immunologic tumor-host responses than xenogeneic
systems, the process of tumor formation and spontaneous
metastasis in any transplant model remains artificial, likely
underestimating the complexity for how OS naturally progresses
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in an immunocompetent host. To accurately identify and
expedite the clinical translation of novel therapeutics to people
with metastatic OS, the evaluation of experimental strategies,
in particular immune-based, should be conducted in the most
highly relevant and immunocompetent tumor model.

Besides people, canines are the only other large mammal that
spontaneously develops OS with substantive frequency. Canine
appendicular OS is the most common primary bone tumor in
dogs of large to giant skeletal size, and has been estimated to
affect at least 10,000 pet dogs every year in North America
(58), which is 10 times greater than the number of pediatric OS
patients diagnosed annually in the United States. The clinical
presentation, biologic behavior, natural disease progression, and
genetic signature of OS in dogs is similar to people (177–
179), and collectively emphasizes the comparative relevance
of dogs to serve as a model system for both discovery and
therapeutic investigations (180–184). This modeling strategy has
been advocated by leaders in the field of OS basic science
and clinical research, and ascribes value on the inclusion of
pet dogs with OS as a distinctively informative model system
for prioritizing novel therapeutic agents that target metastatic
progression (8).

STANDARD OF CARE AND THE UNMET
NEED FOR NEW ANTI-METASTATIC
THERAPIES

The current standard of care for human patients diagnosed
with OS remains largely unchanged from that first used in
the early 1980s (185), being neoadjuvant and adjuvant MAP
chemotherapy (methotrexate, doxorubicin, cisplatin) together
with aggressive local control by surgical excision (186). Building
on techniques pioneered in pet dogs with OS (187, 188), most
human patients diagnosed today benefit from limb salvage
reconstructive techniques that preserve limb function. With
these standard of care therapies, outcomes for patients with
localized disease increased markedly, such that up to 60% of
patients experience “cure” (5-year event-free survival) (189).
However, these outcomes have changed little over the last four
decades (190).

The factor that most strongly influences outcomes in human
patients is the presence or absence of metastatic lesions, usually
of the lung parenchyma. Patients who develop lung metastases,
whether at diagnosis or years after completing therapy, face a
dismal prognosis, with fewer than one in five patients surviving
more than 5 years beyond this event (189, 191).Multiple efforts to
improve this outcome through intensification of systemic therapy
or the introduction of novel regimens have not succeeded.

Patients with both resectable and unresectable metastatic
disease at relapse are usually offered systemic therapy, most
commonly with high dose ifosfamide (192) or multi-tyrosine
kinase inhibitors (193). Although these therapies do little to
effect long-term outcomes, they can facilitate short-term disease
control and prolong survival. While radiation has a relatively
minor role in the curative care of patients with either localized or
metastatic disease, modern techniques can be extremely helpful

in the palliative setting, providing excellent disease and symptom
control (194). The only intervention proven to offer hope for
long-term “cure” of disease in patients with metastases remains
surgical excision of all macrometastases, and several studies
suggest that up to 30% of patients who achieve complete surgical
remission will survive disease-free beyond 5 years (195–197).

NOVEL THERAPEUTIC STRATEGIES FOR
COMBATING PULMONARY METASTASES

Tumor-Specific Molecular Vulnerabilities
As mentioned previously, each step of the metastatic cascade
is a rate limiting step. For example, if a new drug can prevent
OS cells from leaving the primary tumor, invading local tissue,
or entering local blood vessels, then the metastatic cascade is
stopped in its tracks. Indeed, every step of the metastatic cascade
harbors several druggable targets in various types of cancer,
as summarized in Table 2. In the clinical setting, however, it
is presumed that patients with localized tumors already have
subclinical micrometastatic disease in the lung. Thus, targeted
therapies that act within the microenvironment of the primary
tumor may not necessarily be effective on tumor cells have
already spread to the lung since adaptation strategies depend
on the particular microenvironment the tumor cells reside. In
this scenario, therapeutic strategies that target the processes
involved in lung colonization and micrometastases formation
would be expected to be most effective in delaying metastatic
progression. Further basic research into the molecular pathways
underpinning OS lung colonization, micrometastases formation,
and the establishment of macrometastases is needed to uncover
more actionable targets.

Targeting the Tumor Microenvironment
Successful dissemination and colonization of distant tissues
by a tumor cell requires navigating a gauntlet of interactions
with normal cells and associated tissues (114). Each interaction
can either help or hurt that cancer cell’s chance of survival.
The striking tropism that OS displays for lung tissues
suggests that tumor cells elicit or receive signals from cells
within the lung metastatic niche that facilitate their survival.
Several emerging studies have defined characteristics of
that environment that might support tumor growth, many
of which constitute targetable vulnerabilities, including
pathways that promote dormancy, alter susceptibility to
chemotherapy, facilitate metastatic outgrowth, and the
maintenance of stemness.

Stromal elements produced by both host cells and tumor
cells may play a particular role in the survival of metastasis-
initiating cells and in the maintenance of their stem-like
features. Zhang and colleagues recently showed that FGF
signaling within the metastatic environment triggers a fibrogenic
program within disseminated tumor cells that promotes their
stemness and survival (198). Signals transduced by way of
mTOR complex 1 initiate this program, although the subsequent
production of fibronectin by OS cells can then maintain
this stem-like state independent of host signals, including
FGF. These studies stop short of testing the therapeutic
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potential of targeting these pathways, but existing agents
should facilitate future assessment of their capacity to affect
disease progression, most likely in preventing emergence of
late metastases.

The laboratories of Roberts and Camhave identified targetable
bi-directional signaling between OS cells and lung epithelial
cells that appears critical for metastatic colonization. Using a
combination of human tissues, xenografts, syngeneic mouse
models, and canine models of disease, they have shown how a
1Np63/IL6/CXCL8 signaling axis mediates tumor-host signaling
events critical to the metastatic process. In their model, tumor
cells primed by aberrant expression of 1Np63 (112) (an
alternative isoform of the p53 family member TP63) respond
to signals from lung epithelial cells by producing high levels of
IL6 and CXCL8 (199). Disruption of these cytokine/chemokine
signals effectively reduced metastasis formation. Indeed, more
than 80% of mice treated with inhibitors of both IL6 and
CXCL8 signaling survived long term, while 100% of mice
bearing the same tumors succumbed to metastatic disease
(26). Interestingly, this antimetastatic effect was only achieved
with combination therapy. Mice treated with one or the
other inhibitor showed only modest inhibition of metastasis,
suggesting some signaling pathway redundancies that remains
undefined. Unfortunately, inhibitors that proved effective in their
models are unlikely to be developed clinically. Work aimed
at identifying critical signaling nodes up- or down- stream of
these pathways may identify targets that are more effective
and druggable with small molecule inhibitors well-suited for
clinical implementation.

Signals that facilitate tumor cell survival within the metastatic
niche can emerge from either lung-resident cells or from cells
that invade that niche, often in response to tumor-derived
signals. For example, Baglio and colleagues have shown that
TGFβ expressed on the surface of extracellular vesicles from
OS cells can also elicit production of large amounts of IL6 by
mesenchymal stem cells (200). The release of this cytokine into
the metastatic niche triggers activation of STAT3 within the
tumor cells, which promoted proliferation of those metastatic
cells in their models. In evaluating the therapeutic relevance of
this phenomenon, they showed that the administration of anti-
IL6 antibodies reduced the number of metastatic lesions that
formed in their animals (200).

Some tumor-host interactions prove detrimental to the
survival of disseminated tumor cells. Kleinerman’s group has
made a series of observations that suggest most disseminated
tumor cells that reach the lung will be eliminated through
activation of a suicide signal when the FAS receptor expressed
on the surface of the tumor cells engages FAS ligand, which is
expressed constitutively within the lung (201). This phenomenon
results in the selection of a subpopulation of tumor cells that
are FAS-negative (202). Interestingly, they have shown that
FAS downregulation within this subset of malignant cells can
be reversed, as exposure to inhaled gemcitabine drives re-
expression of the FAS receptor, engaging the death-inducing
signaling complex and triggering apoptosis (203). Such therapies
have yet to be tested clinically in pediatric OS patients but
seem viable. As proof-of-concept, a study by Rodriguez and

colleagues demonstrated that pet dogs with macrometastatic
pulmonary OS receiving treatment with aerosolized gemcitabine
did result in the upregulation of FAS receptor and markers
of cell death by OS cells within pulmonary metastatic
lesions (204).

Searching for epigenetic changes that facilitate metastatic
colonization of lung tissue by OS cells, Morrow and colleagues
recently identified genetic loci that acquire enhancer activity in
cells with high metastatic potential (21). Among genes regulated
by these metastatic variant enhancer loci, Factor 3 (F3, a gene
which can activate blood clotting) demonstrated particular
importance for metastasis when evaluated functionally.
Disruption of F3 production by OS cells significantly impeded
metastatic colonization efficiency in animal models but did not
affect primary tumor growth (21). Interestingly, the importance
of blood clotting for lung colonization in OS may have been
suggested in previous work, lending credence to these findings
(205, 206). While this target has not been evaluated in a
therapeutic setting, F3 signaling (which triggers both clotting
and intracellular signal cascades) should be targetable using
existing, FDA-approved drugs (207).

Potential Metabolic Vulnerabilities of OS
The unique metabolic demands of the primary tumor vs.
metastasis are reflective of their different microenvironments
(cellular and extracellular components), nutritional availabilities,
and level of oxygenation. A rapidly growing primary tumor
mass requires a constant supply of energy (ATP) and
biomacromolecules (lipids, carbohydrates, and proteins) (208).
During glycolysis in normal cells, ATP is obtained from glucose
via the oxidation of its carbon bonds through mitochondrial
respiration, a process which also requires oxygen. However in
cancer cells, the glycolytic intermediate pyruvate is shuttled away
from the tricarboxylic acid cycle, and is fermented into lactic
acid, even in the presence or absence of oxygen—a phenomenon
called the Warburg effect; and several theories on how the
Warburg effect might benefit proliferating cancer cells has been
discussed elsewhere (209). Not surprisingly, subversion of the
Warburg effect has been observed in several OS cell lines such as
LM7 and 143B (210). Furthermore in a preclinical mouse model,
Hua and colleagues demonstrated LM8 tumor-bearing mice had
elevated levels of serum pyruvic acid and lactic acid compared
to healthy controls, which suggested that proliferating OS tumor
cells were highly glycolytic. The serum from tumor-bearing
mice also had higher levels of intermediate metabolites of the
tricarboxylic acid cycle compared to healthy controls, further
underscoring the higher energy demands of proliferating OS
cells within localized and metastatic sites (211). Interestingly,
the majority of circulating metabolites in serum were lowest at
initial primary tumor formation (week 1) and again at metastatic
progression (week 4) following LM8 inoculation, which could
suggest that similar global metabolic transformationmechanisms
were shared by OS cells during incipient primary tumor growth
and distant metastases development. Mechanistically, Hua
and colleagues suggested that the unexpected lower metabolic
profile in tumor-bearing mice identified at week 4 (metastatic
progression) may be due to tumor microenvironmental
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hypoxia that restricted OS cell growth and reduced cellular
metabolism, although this possibility wasn’t confirmed in their
study (211).

Surviving in the lung microenvironment presents a unique
set of metabolic challenges that are distinct from the primary
tumor. As mentioned previously, redox stress appears to be
a major microenvironmental stressor in the lung. Reactive
oxidative species (ROS) and reactive nitrogen species (RNS)
produced by the lung parenchyma can affect tumor cell
mitochondrial function in a number of ways (58, 212). For
example, it is generally known that excess ROS, such as
superoxide (O2

−), can modify mitochondrial DNA, which
in turn, can negatively affect the electron transport chain
(ETC), mitochondrial membrane potential, and ATP production
(213). Prolonged exposure to RNS such NO− can irreversibly
inhibit complex I of the ETC (214). Peroxynitrite (ONOO−),
another potent RNS, can inhibit multiple enzymes in the
mitochondria such as complexes I–IV, as well as aconitase
of the tricarboxylic acid cycle (214). Metabolic adaptation to
such oxidative stress would be a pro-survival phenotype that
would be selected for during the colonization process, and not
surprisingly, anti-oxidant responses which consists of either the
upregulation of redox-related enzymes or altered glutathione
(GSH) metabolism have been observed in metastatic breast
(63), melanoma (61), and osteosarcoma (21, 215). For example,
Ren and colleagues have found that metabolites in the GSH
metabolic pathway were found to be significantly altered in
highly metastatic OS cells compared to their clonally related,
low metastatic counterparts (215). Shuttling of metabolites into
the GSH pathway is important for producing GSH, which in
turn, react with and neutralize ROS and RNS to form less
reactive intermediates (216, 217). Other metabolic pathways
that were found to be altered in highly metastatic OS cells
include arginine, inositol, and lipid metabolic pathways. The
previously mentioned study by Hua and colleagues found
that serum metabolites of lipid metabolism were found to be
elevated in mice with lung metastases compared to tumor-
bearing mice with no metastases (211). These observations
noted by Hua and colleagues in a mouse model of OS are
congruent with global lipidomic studies identifying differences
between metastatic (143B) and non-metastatic (HOS) human
OS cell lines (218), as well as the recognized importance of
lipid metabolism in cancer metastases (219). Collectively, derived
from preclinical studies inclusive of cell lines and murine
models of cancer, evidence supports altered lipid metabolism
being important for metastasis progression; where increased
lipid production may address the heightened demand for
membrane synthesis during cell growth and organelle biogenesis.
As such, targeting unique metabolic demands of metastasis

offers a new avenue of anti-metastatic therapy. Indeed, Ren and

colleagues demonstrated that targeting the inositol metabolism

of metastatic OS cells prevented their growth in the lung

microenvironment (215). Further studies are needed to elucidate

whether other metabolic susceptibilities exist in metastatic OS,
and whether these metabolic susceptibilities can be exploited for
new therapeutics.

Leveraging the Immune System to Combat
OS Metastases
Recently, immunotherapy has been heralded as a breakthrough
for the management of diverse liquid and solid tumors, and
its ascension as a major therapeutic pillar is underscored
by a rapidly increasing number of FDA approved immune-
based treatments for cancers that are resistant to conventional
modalities. The anticancer activities of immunotherapies can
be ascribed to the cooperative effector functions exerted
by both the innate and adaptive immune arms, and while
immunotherapy is highly effective for certain solid tumors
like melanoma, renal cell carcinoma, and others, its promise
for benefiting patients diagnosed with metastatic OS remains
largely disappointing to date (220–223). Paradoxically, there is
convincing evidence that OS can be recognized by trafficking
immunocytes, yet successful exploitation of immunotherapeutic
strategies remains elusive. To accelerate the clinical deployment
of effective antitumor immune approaches for combating OS,
recent scientific investigations have focused on characterizing
the quantity, phenotype, dynamics, and functional nature of
immune cells that infiltrate into primary and metastatic OS
lesions, and these collective findings have been recently and
thoroughly summarized (223, 224).

By way of detailed analyses, several innate and adaptive
immunocytes have been identified to putatively participate in
the initiation or suppression of anti-OS immune responses
and include a plethora of diverse myeloid and lymphoid
cell types. Of the various immunocytes identified within the
OS microenvironment, both innate affector and adaptive
effector populations have been characterized, and include
antigen-presenting cells (macrophages/dendritic cells) and T
lymphocytes, respectively. Within primary OS lesions, tumor-
associated macrophages (TAMs) that can be distinguished
via genomic signatures, cell surface markers, and functional
activities (inflammation vs. immunosuppression) have received
considerable attention for their prognostic value and functional
role in OS metastasis (225–230). Most, but not all, investigations
have identified that increases in TAMs (quantity) or macrophage
infiltrate profiles (quality) favoring a M1-subtype polarization
(INOS+; pro-inflammatory) rather than a M2-subtype profile
(CD163+; immunosuppressive) are associated with better overall
survival in OS patients. Incongruent findings among studies
regarding the role of TAMs in OS biology could be related to the
inherent limitations of single timepoint tissue assessments which
fail to capture the dynamic nature of immune cell infiltration
within the tumor microenvironment. Nonetheless, the majority
of histologic findings provide supportive justification to
therapeutically manipulate TAMs profiles within OS lesions that
have potential to either favor immune activation (Mifamurtide)
(231) or inhibit M2-macrophage polarization (ATRA) (232, 233),
for the intended purpose of inhibiting metastatic progression.

Complementing the participatory role of TAMs,
several studies have focused on characterizing tumor
infiltrating lymphocytes (TILs) and their contribution to
metastasis immunobiology. Analyses of TILs within the
OS microenvironment have shown that both effector and
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suppressor T lymphocyte (CD3+) phenotypes participate in
shaping immunosurveillance of OS lesions (229, 230, 234–
236). Furthermore, several studies suggest that the density
(number) or phenotype (activated or exhausted) of effector
TILs within OS primary tumors correlate with prognosis. With
regards to TILs density, recent studies have demonstrated that
increases in the absolute number of CD8+ TILs or the ratio of
CD8+/Foxp3+ TILs significantly correlate with improved overall
survival (230, 234). Provocatively, the functional relevance of
TILs and operative checkpoint blockade mechanisms might
be especially important for metastases, as some studies have
found the density of TILs to be enriched in metastatic lesions
compared to primary tumors (236, 237). Despite the presence
of TILs within OS lesions, several studies suggest that the
activity of effector TILs might be attenuated, as supported by
the expression of exhaustion markers (PD-1, CTLA-4, Tim3)
by TILs and/or tumoral microenvironmental expression of
PD-L1 (227–229, 235–237). Collectively, these detailed studies
strongly suggest that OS lesions can be effectively infiltrated by
T lymphocytes, and that therapeutic modulation of checkpoint
blockade strategies could improve TILs effector capabilities.

With a basal understanding for the collection of immunocytes
that are present within primary tumor and metastatic OS
lesions, rational design of immunotherapeutic interventions
can be constructed. Through these concerted efforts, the
scientific and clinical oncology community can continue
to forge toward understanding fundamental anticancer
immune mechanisms and improving treatment outcomes
in patients with OS metastases through diverse immunologic
strategies, either singly or in combination with conventional
therapies (radiochemotherapy).

Immune Modulators
Immunomodulatory agents modify immune responses by
amplifying the recognition of cancer cells (immunostimulation)
or by attenuating the immunosuppressive activities exerted
by cancer cells within the local tumor microenvironment.
The innate arm of the immune system comprised of natural
killer cells, macrophages, dendritic cells, and primordial T cell
subsets (natural killer and γδ) are predominant effector targets
of immunomodulatory strategies. The clinical significance of
immunomodulatory interventions relevant to sarcomas was
noted over a century ago, when William Coley in 1891 reported
objective responses in a small minority (10%) of patients with
non-resectable sarcomas (bone and soft tissue) treated with
heat-inactivated Streptococcus pyogenes and Serratia marcescens
injections, termed Coley’s toxin (238). The potent anticancer
activities induced by bacterial products noted by Coley have been
corroborated in both canine and human OS patients that develop
surgical site infections (188, 239, 240), and mechanistically these
favorable immunologic effects have been attributed to toll-like
receptor activation with consequent amplified macrophage and
natural killer cell effector functions in mouse models of OS (241).

The clinical translation of immunomodulatory agents which
stimulate the innate immune arm for improving outcomes in
OS patients remain limited, but include liposome-encapsulated
muramyl tripeptide phosphatidylethanolamine (L-MTP-PE) and

cytokine-based therapies. Based upon its mechanism in vitro
and in preclinical investigations for activating monocytes and
macrophage to a tumoricidal state (242, 243), as well as its
unique evaluation singly or in combination with cisplatin
in pet dogs with OS (243, 244), clinical investigations of
MTP-based strategies have been conducted prospectively by
the Children’s Oncology Group consortium. In a seminal
study by Meyers and colleagues, the addition of MTP to
a MAP (methotrexate, doxorubicin, cisplatin) backbone in
patients with localized OS significantly improved 6-year overall
survival rate from 70 to 78% (245). Additionally in the
setting of metastatic and/or recurrent OS, the 5-year event
free survival rate of patients receiving chemotherapy alone
(26%) vs. chemotherapy with L-MTP-PE (42%) appeared
favorable (246), further supporting the clinical benefit of
this immunomodulatory strategy for delaying the natural
progression of OS pulmonary metastases. Complementing the
mechanism of L-MTP-PE, exogenous cytokine therapies have
also produced marginal improvements in patients diagnosed
with OS. In particular, INF-α-2b and IL-2 have been evaluated
in the adjuvant setting with either chemotherapy or other
immune-based strategies. Recently, the 3-year event free
survival benefit derived from adjuvant pegylated INF-α-2b
with MAP has been described in a large consortium trial
(EURAMOS-1) (247). While early results have not demonstrated
significant improvements in event free survival between
MAP alone (81%) vs. MAP with adjuvant pegylated INF-
α-2b (84%), long term follow up remains active and will
ultimately determine if adjuvant pegylated INF-α-2b has any
definitive immune activating role for improving the control of
OS micrometastases.

In the setting of macroscopic OS metastases, the tolerability
and potential benefit exerted by exogenous IL-2 has been
explored. In one study, Meazza and colleagues reported the
outcomes of 35 pediatric OS patients with macroscopic OS
treated with surgery and combinatorial chemoimmunotherapy
comprised of IL-2, MAP, ifosfamide, and lymphokine-activated
killer (LAK) cell infusion. While the study was not designed
to determine the immunobiologic benefit derived from IL-2
and LAK cell infusion, adverse effects associated with IL-2
therapy were tolerable (grade I and II) with most common side
effects being fever, flu-like symptoms, hypotension, and cytokine
release syndrome (248). In a different study, Schwinger and
colleagues reported the tolerability and activity of single-agent,
high-dose IV IL-2 therapy in 10 pediatric patients, in which 4
adolescents had metastatic OS (249). While 2 of 4 OS patients
achieved complete remission for 14 and 42 months in duration,
systemic toxicity associated with high-dose IV IL-2 therapy was
significant with 60–100% of treated patients experience some
form of grade III or IV clinical toxicity (fatigue, anorexia,
or diarrhea). Despite the high level of toxicity, this study
clearly demonstrated the potential for IL-2 to amplify anticancer
immune responses sufficient to regress macroscopic OS burdens.
In attempts to reduce the toxicity associated with systemic IL-
2, yet maintain favorable anticancer immune activities within
the anatomic site of metastases (lungs), two significant studies
have been conducted in pet dogs with pulmonary metastatic
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OS, which leverage innovative drug delivery or site-specific gene
transducing strategies. Khanna and colleagues evaluated the
feasibility and activity of aerosolizing liposome encapsulating IL-
2 in pet dogs and demonstrated that robust anticancer immune
effects could be induced within the pulmonary parenchyma
sufficient to cytoreduce macroscopic OS burdens (2 of 4,
CR) without significant toxicity (250). A complementary study
reported by Dow and colleagues investigated the activity of
intravenously administered liposome-DNA complexes (LDC)
encoding the IL-2 gene in dogs with macroscopic OS metastases
(251). Infusions of LDC was well-tolerated, generated systemic
immune activation, and transgene IL-2 expression within the
lung parenchyma. Furthermore, objective cytoreductive activities
(2 PR, 1 CR) were achieved in three of 20 dogs treated.

Monoclonal Antibodies
The engineering of monoclonal antibodies to enhance the
immune system’s attack on cancer cells has dramatically
expanded therapeutic options for multiple hematopoietic
and solid tumor histologies, and currently over a dozen
antibodies have received FDA approval for treating different
cancers (252). Upon binding to their cognate epitope,
monoclonal antibodies exert anticancer activities through
various methods including direct cell killing, immune-mediated
cell killing (phagocytosis, complement activation, or antibody-
dependent cellular cytotoxicity), or disruption of the tumor
microenvironment through vascular and stromal cell ablation.
While widely instituted and capable of dramatically improving
survival outcomes in patients diagnosed with specific forms
of hematopoietic cancers, the clinical impact of monoclonal
antibodies remains more limited for solid tumors, and almost
non-existent in aggressive sarcomas. In part, the restricted
application of monoclonal antibodies for OS metastases therapy
is driven by the limited expression of extracellular membrane
epitopes, as underscored in the study reported by Ebb and
colleagues whereby adjuvant trastuzumab (HER2 targeting
antibody) combined with chemotherapy failed to improve
outcomes in patients diagnosed with metastatic OS (253).
Nonetheless, several OS expressing epitopes remain a focus of
interest for improving the management of OS metastases, and
include GD2, GPNMB, and RANKL (254–257). In particular,
GD2 as a surface epitope on OS cells continues to be an actively
explored target with several ongoing clinical trials evaluating
various anti-GD2 antibody strategies.

In addition to monoclonal antibodies that target OS cells,
considerable focus has been on manipulating tumor-specific or
tumor microenvironmental (TME) cues with antibody strategies,
specifically enhancing the quantity and quality of intratumoral
infiltration with immune cell populations through blockade of
checkpoint signaling (258). Checkpoint blocking antibodies have
been a breakthrough for the management of diverse cancer
types including melanoma, non-small cell lung cancer, renal
cell carcinoma, bladder cancer, and head and neck cancers. For
these collective solid tumors, blockade of immune checkpoints,
including CTLA-4, PD-1, and PD-L1, with antibodies have
provided life-saving anticancer activities to a subset of patients
who would otherwise experience disease progression and death.

While several pieces of basic and clinical evidence support the
potential benefit of checkpoint inhibition for the treatment of
OS metastases including mutational burden, neoantigen load,
overexpression of PD-L1 by OS cells and tissue samples, and
preclinical activity of checkpoint inhibition in mouse models
of metastatic OS (259–262), the clinical activity of single-
or combined- checkpoint blockade in treating patients with
advanced OS have been largely unfavorable, with objective
response rates (CR or PR) ranging from 0 to 5% (NCT011445379,
Ipilimumab; NCT02500797 [Alliance A091401], Nivolumab +

Ipilimumab; NCT02301039 [SARC028], Pembrolizumab) (263).
Given these initial disappointing results, combination therapies
have been proposed whereby small molecule agents (Nab-
rapamycin, apatinib, axitinib) that target multiple signaling
pathways (mTOR, VEGFR1, VEGFR2, PDGFRβ, c-kit) should
be combined with checkpoint blockade antibodies in hopes of
improving response rates (264).

Vaccines
Tumor vaccines are an active form of immunotherapy in
which robust adaptive immunity is developed and cytotoxic T
lymphocytes are generated for recognizing and killing cancer
cells. The induction of antitumor responses against known or
unidentified tumor antigens can be achieved through vaccine
strategies inclusive of whole cells, lysates, proteins, DNA, RNA,
or peptides. For vaccine strategies to be effective, dendritic cells
must present tumor peptides within major histocompatibility
complexes, as well as costimulatory signals, to fully activate the
effector functions of cytotoxic T lymphocytes. Given the key role
of dendritic cells for initiating the activation and proliferation
of cytotoxic T lymphocytes with anticancer effector functions,
dendritic cell vaccines have been explored in patients with
metastatic OS through the conductance of two recent clinical
studies (265, 266). Miwa and colleagues evaluated 14 patients
with recurrent and/or metastatic OS who were treated with
6 weekly subcutaneous vaccinations with autologous dendritic
cells pulsed with autologous tumor lysate, TNFα, and OK-
432 (265). While treated patients did demonstrate systemic
immune activation represented by increases in circulating INFγ
and IL-12, none of the OS patients achieved an objective
response to dendritic vaccination alone. These negative findings
were consistent with an earlier study in which Himoudi and
colleagues evaluated 13 patients with relapsing OS treated
with intradermal vaccines of autologous dendritic cells matured
with autologous tumor lysate and keyhole limpet hemocyanin
(266). While the vaccination protocol was well-tolerated, tumor-
specific immune activation assessed by the identification of
INFγ secreting T cells (ELISPOT) was only observed in 3
patients, and none of the OS patients experience any measurable
reduction in macroscopic tumor burden. In light of these
initial disappointing studies with dendritic cell vaccination
in OS patients, ongoing efforts are focusing on innovative
combinatorial strategies to boost OS cell antigen expression, as
well as attenuate the localized immunosuppression associated
with the tumor microenvironment.

Recently, a vaccine strategy based upon the intravenous
infusion of a genetically modified, live attenuated Listeria
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monocytogenes which expresses three immunodominant
epitopes of HER2 has been evaluated for in patients with
HER2-expressing solid tumors (NCT02386501). This vaccine
construct (ADXS31-164) was granted Fast Track designation
by the FDA for treatment of patients with newly diagnosed,
non-metastatic, surgically-resectable OS, and patients will
be treated with this vaccine strategy through the Children’s
Oncology Group consortium. As a predecessor to the pediatric
trial, ADXS31-164 was piloted in pet dogs with OS and provided
valuable translational information. Mason and colleagues
demonstrated that treatment with ADXS31-164 induced HER2-
specific immunity in 15/18 dogs and resulted in a significant
increase in median disease-free interval (615 days) and median
survival (956 days) when compared to a historical control group.
Overall survival rates at 1, 2, and 3 years for dogs treated with
ADXS31-164 were 78, 61, and 50%, respectively (267).

Adoptive Cell Therapies
Adoptive cellular therapies involve the direct administration
of either innate (natural killer cells) or adaptive (cytotoxic
T lymphocytes) immune effector cell populations that have
been genetically manipulated. The infusion of cellular therapies,
specifically cytotoxic T lymphocytes into tumor-bearing patients,
circumvents the reliance of vaccine strategies to successfully
active a large population of tumor-specific effector lymphocytes
in the recipient host. For T-cell based strategies, adoptive cell
therapies rely upon the genetic engineering of T lymphocytes
to either express a known T cell receptor (transgenic TCR) or
chimeric antigen receptor (CAR), with both strategies resulting
in the production of T cells with defined specificity, which can
be MHC-restricted (transgenic TCR) or -unrestricted (CAR).
While CAR technology has clinically impacted the management
of hematopoietic cancers such as acute lymphoblastic leukemia
and diffuse large B-cell lymphoma, the application of CARs
for effectively treating OS metastases remains incompletely
defined. Recently, the results of a phase I/II clinical study
evaluating the tolerability and activity of HER2-CAR T cells
were reported by Ahmed and colleagues. In this study, 16
patients with recurrent and/or metastatic OS were treated with
escalating intravenous doses of T cells expressing an HER2-
specific CAR with CD28ζ signaling domain (268). Treatment
with HER2-CAR T cells was tolerable and induced systemic
inflammatory responses represented by elevations of circulating
IL-8. Additionally, following infusion persistence of HER2-CAR
T cells in circulation could be demonstrate, as well as their
trafficking to tumor sites. However, the clinical impact of HER2-
CAR T cells was marginal, with three OS patients experiencing
stable disease lasting 12-15 weeks, and the remainder of patients
having disease progression. While initial results with CAR T
cells have yet to meaningfully impact outcomes in metastatic OS
patients, strong enthusiasm exists for the continued exploration
of additional adoptive cell therapies that include anti-GD2 CAR
T cells, natural killer cells, transgenic TCR cells, and γδ T cells.

The development and clinical assessment of adoptive cell
therapies have been piloted in canine OS, providing valuable
preclinical data regarding feasibility and activity. For CART cells,
HER2 has also been explored as a target for canine OS, and Mata

and colleagues reported the successful development of HER2-
CAR T cells that killed HER2+ canine OS cell lines in an antigen
dependent manner (269). Additionally, combining radiation and
immunotherapy has been recently explored in a first-in-dog trial
of autologous natural killer (NK) adoptive cell therapy (270).
In this study, OS-bearing dogs were treated with a coarsely
fractionated radiation protocol consisting of 9Gy once weekly
for 4 treatments, with NK cells being harvested and expanded ex
vivo, and then delivered back to dogs by intratumoral injection
following the completion of radiation therapy. Of the 10 dogs
treated, 5 remained metastasis-free at 6 months, and one had
regression of a suspicious pulmonary nodule detected at the time
of diagnosis. While preliminary in nature, these studies in canine
OS provide the underpinnings to prospectively evaluate different
combinatorial strategies inclusive of adoptive cell therapies for
combating OS metastatic progression.

RELEVANCE OF PET DOGS FOR
REALIZING NOVEL OS METASTASES
THERAPEUTICS

In order for animal models of human pathologies to be useful
and informative, it is necessary for the experimental system
to be readily available and accurately recapitulate the natural
course of disease. For OS, where the genetic underpinnings are
chaotic and the etiopathogenesis remains elusive, the creation
of experimental model systems becomes fundamentally difficult,
and potentially flawed; as the blueprint of models are derived
from and constructed upon current understandings of disease
processes. Pet dogs that spontaneously develop OS have potential
to serve as excellent naturally-occurring models for diverse
comparative pathologies, including OS. Through collaborative
research efforts, canine OS can be uniquely positioned in
the scientific discovery pathway for understanding metastasis
biology, which can drive and accelerate the identification of
new promising anti-metastatic therapies. Several characteristics
of canine OS are noteworthy and with the continued inclusion
and future innovative addition of pet dogs as comparative OS
models, it would be expected that significant progress will be
made toward improving the outcomes of patients diagnosed with
OS metastases.

Abundance, Accelerated Natural Disease
Course, and Limited Cure Rate
Pediatric OS, by definition is categorized as a rare tumor (<15
cases per 100,000 people per year). For localized OS, surgery
and MAP chemotherapy in pediatric patients produces 5-year
event free survival in the majority (60–70%) of patients treated.
In this good responder population with favorable histologic
Huvos grade, the opportunity to clinically evaluate and realize
the anti-metastatic activity of novel therapies is narrow and
temporally protracted. While patients with recurrent and/or
metastatic OS can be readily included for investigating novel
therapies, biologic responses to experimental agents might differ
between macro- and microscopic disease settings, and confound
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the accurate identification of new agents with reproducible anti-
metastatic properties.

Canine OS is the most common primary bone tumor in
large and giant breed dogs, and has been estimated to affect
at least 10,000 pet dogs every year in North America (271),
which is a log order greater than the number of pediatric
OS patients diagnosed annually in the United States (800–
1,000 new cases/year). Conventional treatment with surgery and
chemotherapy improves outcomes in affected dogs, producing
a median survival time of ∼9 months (272). However, even in
treated dogs, death as a result of metastatic progression occurs
in 85–90% of patients within 2-years of diagnosis. While these
statistics for canine OS are sobering, when viewed through the
lens of comparative oncology, pet dogs offer an unprecedented
opportunity to be included in the evaluation and translation of
new anti-metastatic agents. Ultimately, through their purposeful
inclusion in drug assessment, pet dogs can accelerate the
identification of new agents which hold promise to improve
long term outcomes in both humans and canines diagnosed with
metastatic OS.

Comparable Anatomic-Sized Tumor
Burdens and Laws of Diffusion
Despite their accepted research value, some limitations of murine
models remain irreconcilable including the >103 difference
in anatomic size between mice (20 g) and humans (70 kg).
Specifically for the evaluation of novel drugs or drug delivery
strategies for combating OS metastatic progression, differences
in anatomic size and corresponding dimensions of metastatic
lesions can strongly bias treatment outcomes simply as a function
of tumor volume and interstitial pressures, as therapeutics
released into the pulmonary parenchyma are still governed by the
physical laws of diffusion prior to reaching their intended targets,
being OSmetastatic foci. Fick’s law of diffusion states that the rate
of movement (mass flux) can be modeled mathematically by the
following equation:

J = −D∗ 1C/1x

Where J represents mass flux, D represents molecular diffusivity
of a specific therapeutic agent within a microenvironment,
1C represents the change in concentration gradients, and 1x

represents distance of diffusion. Although several determinants
influence mass flux J (representing the movement of therapeutic
agents), diffusional distances within a chosen experimental
system directly affects the movement rates of therapeutics,
thereby having the potential to either positively (small anatomic
size and limited diffusion distances) or negatively (large anatomic
size and expansive diffusion distances) bias treatment outcomes.
As such, drugs that demonstrate potent activity inmurine models
of OS metastasis can be partially attributed to the diminutive
diffusion distances required to be traversed by therapeutic agents.
However, when translated to larger mammals including human
or canine OS patients, where diffusion distances are log orders
greater, achieving therapeutic response becomes more difficult
(158), if not impossible as governed by the laws of diffusion.
Governed by physical laws of diffusion, studies investigating

FIGURE 5 | Radiologic assessment and relevance of comparable anatomic

size and metabolic activity of OS tumors arising in pet dogs. (A) Early detection

of emerging pulmonary metastatic lesion (red arrowhead) with (B) subsequent

rapid macroscopic growth (red arrowhead) over a period of 8 weeks

documented by serial CT imaging. Metabolic activity of (C) primary bone OS

(Image courtesy of Kim Selting, UIUC) and (D) pulmonary metastases (Image

courtesy of Lynn Griffin, Colorado State University) using PET/CT imaging in

pet dogs with OS. UIUC, University of Illinois at Urbana-Champaign.

novel therapies for OS metastases would be most predictive
when evaluated in tumor model systems which most closely
approximate anatomic sizes at both the organism (human) and
target (OS metastases) levels. Under these assumptions, dogs
with OS can serve as excellent comparative models for pediatric
OS given comparable size in body mass and metastatic tumor
burdens (Figures 5A–D) as occurs in both adolescents and giant
breed dogs.

Natural Evolution and Immune
Competency
The natural development of cancer is dynamic, giving rise
to heterogenous cell populations that in aggregate form solid
tumors. Critically contributing to tumor mass evolution are
stromal cells within the tumor microenvironment. While
specific cell populations like fibroblasts and endothelial cells
within the microenvironment can be modeled reasonably
well in more sophisticated experimental systems, including
mouse models and engineered biomimetics, it remains
challenging to recapitulate the dynamic and heterogeneous
processes of immune surveillance and editing through existing
model systems. With the overwhelming focus on expanding
immunotherapeutic strategies for treating various forms of
cancer, the inclusion of a model system that firmly mimics
immune interactions between cancer and immune effector cells
remains of highest priority.
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Given the abundance of scientific and clinical evidence
supporting OS to be immunogenic in humans and dogs (273,
274), recent investigations have forged new ground which
clearly demonstrate the conserved immunologic signatures and
phenotypes shared between canine and human OS (275); and
these correlative investigations underscore the unique and high
valued information that might be gleaned from pet dogs in
regards to systemic and immune microenvironment signatures
that can be targeted and manipulated to thwart OS progression
and metastasis.

A few salient examples of conserved immune targets include
Foxp3 regulatory T cells, tumor-infiltrating macrophages, and
tumoral PD-L1 expressions. In dogs with OS, the participation
and prognostic value of regulatory T cells in systemic
and tumor microenvironmental immunosuppression has been
characterized. Biller and colleagues reported that a decreased
CD8+/Treg ratio was associated with significantly shorter survival
times in dogs with OS (276, 277), and these observations
in dogs corroborate findings identified in human OS patient
samples for the prognostic value of effector/suppressor T cell
ratios in predicting long-term outcomes (234). Recently, the
significance of tumor-infiltrating macrophages within primary
OS lesions have been studied in both dogs and humans. Withers
and colleagues characterized the innate and adaptive immune
infiltrates within primary OS lesions from 30 dogs and correlated
these findings with disease-free interval (278). In this study, the
magnitude (dichotomous cutoff of 4.7%) of tumor infiltrating
macrophages identified within the primary tumor correlated
with survival time, suggesting that macrophages may play an
integral role for inhibiting OS metastatic progression. These
findings in pet dogs closely mirror some investigations in human
OS patients, whereby tumor-infiltrating macrophages were also
associated with reduced metastasis and improved survival in
patients with high-grade OS (226). Lastly, PD-L1 expressions,
which serve as a therapeutic target for checkpoint inhibitor
strategies, have been studied in both canine and human OS
samples. In canine OS primary samples, Maekawa and colleagues
characterized PD-L1 expression across various canine tumor
histologies and identified seven out of 10 OS samples to stain
positively for PD-L1 (279). Comparatively, the expression of PD-
L1 in human OS tissue samples appears more restricted (229),
with potential enriched expressions in relapsed or metastatic
lesions compared to primary tumors (236, 237). In aggregate, the
immune signatures shared between canine and human OS are
highly comparable, and provides a rational scientific foundation
to leverage pet dogs for evaluating novel immune-based therapies
against OS metastases.

FUTURE DIRECTIONS

Research Awareness and Emphasis
Compared to the state of metastasis research in other types of
cancer such as breast (∼7,703 entries on PubMed) and prostate
(∼2,653 entries), basic metastasis research in OS (∼860 entries)
is taking its first furtive steps. Discovering new and critical
processes that contribute to OS metastasis biology will pave the
way for the development of novel anti-metastatic therapies that

can be integrated in the current standard of care. Paradigm shifts
in animal research should include a focus on lung colonization,
clearing or halting the progression of micrometastases, and
shrinkage of established metastases as being translational targets,
as recognized and supported by leaders in the OS field (3, 8).
Tumor cell dormancy in OS is also an area of much needed
research since dormant tumor cells are thought of as a reservoir
of future tumor recurrence (280, 281). Funding initiatives that
focus on metastasis biology discovery, “omic” approaches in
finding actionable targets involved in the metastatic cascade,
or re-purposing of existing clinical drugs and assessing their
anti-metastatic activity is sorely needed. Such experimental
approaches require investment in more animal work, specialized
equipment, and skilled personnel. Lastly, shifting the research
landscape to include more metastasis-focused initiatives requires
a voice from patient advocates, who are an integral part of
research funding.

Necessity and Benefits of Collaborative
Science
Fueled by increasing commitments of resources, veterinary
oncology collaborative groups have rapidly become more
organized, more agile, and more capable of efficiently conducting
high-value pilot studies, complex biology studies, and large
clinical trials in client-owned pets that develop cancer. The
Comparative Oncology Trials Consortium, headquartered
at NIH, has undertaken several initiatives to broaden the
comparative biology of human and canine cancers and
to improve the efficiency with which they can generate
pharmacokinetic, pharmacodynamic, and initial efficacy
data in canine clinical investigations that can guide human
trial development. Recent initiatives arising from the NIH
Cancer Moonshot program have recognized opportunities
for incorporating canine clinical trials into the evaluation of
immune-oncology approaches by funding several large grants
and spawning new comparative immuno-oncology consortia.

Intelligent use of the data arising from this work should
improve the likelihood of good outcomes in human clinical trials.
Coordination across canine clinical consortia, basic scientists,
and industry has become increasingly important. The ability to
share data and to plan collaboratively has been enhanced by
integration of veterinary oncologists into pediatric clinical trials
groups and vice-versa. Efforts led by a handful of philanthropic
groups to intensify dialog between these stakeholders have met
with increasing interest and engagement. These achievements
to date represent only initial forays into truly integrated drug
development and science—with opportunity far surpassing the
current actuality.

Growth of Comparative Oncology and
Coordination of Clinical Trials
With continued and growing interest of the scientific community
for including spontaneous tumor models to accelerate novel drug
development, comparative oncology centers of excellence must
keep pace and commensurately grow to meet the expectations
of an ever increasing desire for executing high-value clinical
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trials in an agile and efficient manner. To achieve these
deliverables, existing comparative oncology centers must expand
capacity, and new centers must develop. Incentivization for such
development can be achieved through different mechanisms
including active participation in Clinical and Translational
Science Awards (CTSA) program and integration with existing
Basic or Comprehensive Cancer Centers.

Central coordination and unification across participating
comparative oncology centers should be strongly advocated,
thereby increasing the efficiency and impact of ongoing and
future prospective clinical trials. Regional consortia operating
in silos will not likely maximize collaborative efforts, and have
potential to dilute limited shared resources and manpower.
Visionary and inclusive leadership in this arena is necessary,
and will ensure that all participating teams can be maximally
and directionally aligned for the greatest translational impact
as possible.

CONCLUSIONS

Cancer metastasis remains the leading cause of mortality for
people afflicted with diverse solid tumor histologies. While
tremendous advances in therapy have been achieved over
the past decade for some tumor types, the management
and outcomes of aggressive sarcoma metastases, including
OS, remains almost at a standstill. To impact the lives of
patients suffering from OS metastases, it will be necessary
to deepen our fundamental understanding of OS metastasis
and its specific vulnerabilities at both the cellular and
microenvironmental levels. Additionally, the translation of
new and promising therapeutic discoveries must be evaluated
using complementary model systems that faithfully recapitulate
natural metastatic disease progression in people. Given the
conserved biology of OS in humans and dogs, unique
opportunities exist for human and comparative oncology
researchers to engage in translationally impactful collaborations,

which uniquely include pet dogs with OS to expand the

understanding of metastasis biology and clinically realize the
activity of novel investigational therapeutics that target OS
metastatic progression.
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