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Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo

metabolites changes or characterizing the tumor microenvironment, non-invasive

imaging approaches play a fundamental role in elucidating several aspects of tumor

biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange

saturation transfer (CEST) approach has emerged as a new technique that provides high

spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis.

This mini-review describes CEST-based methods to non-invasively investigate tumor

metabolism and important metabolites involved, such as glucose and lactate, as well

as measurement of tumor acidosis. Approaches that have been exploited to assess

response to anticancer therapies will also be reported for each specific technique.
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INTRODUCTION

Outgrowing tumor mass typically displays an abnormal and disorganized vascular network, with
poor functional vessels and extended hypoxic region (1, 2). Hypoxia is considered one of the
major driving forces of tumorigenesis through the activation of the hypoxia-inducible factor 1
(HIF-1), that directly alters the expression of genes related to cell metabolism and proliferation
(3). The induced metabolic modification markedly responds to tumor requirement for survival
and expansion. On one side, the upregulation of the transmembrane receptor GLUT-1 ensures
increased glucose avidity as a metabolic source of proliferation (4). On the other side, the metabolic
switch to the glycolytic pathway exposes tumors to the paradoxically accumulation of acidic
metabolites, as lactic acid and hydrogen ions, that results to be toxic for cancer cells. Therefore,
the upregulation of dedicated proton transporters allows the extrusion of acidic products on
the extracellular microenvironment, guarantees the maintenance of an aberrant pH gradient and
induces the adaptation and clonal expansion of the most aggressive cells able to survive in such a
hostile environment (5–7).

Considering the strategic role of metabolism on tumorigenesis, several targeting therapies
have been developed to interfere with tumor expansion, alone or in combination with standard
therapeutic treatments (8–13). Therefore, approaches for in vivo assessing the response to
treatments and for improving tumor diagnosis are strongly required. In the clinical setting,
positron-emission tomography (PET) technique is routinely exploited for measuring glucose
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uptake via 18F-fluorodeoxyglucose (FDG) injection, although
radiation exposure limits repeated longitudinal studies (14–
16). Furthermore, magnetic resonance imaging (MRI) offers
a wide panel of approaches, by combining an optimal
tissue contrast and good spatial information with acceptable
sensitivity, to quantitatively interrogate several aspects of tumor
microenvironment, including tumor metabolism and acidosis
(17–20). One of the most promising and emerging technique
for investigating tumor metabolism is the chemical exchange
saturation transfer (CEST)-MRI (21, 22). CEST-MRI allows the
detection of molecules endowed with mobile protons in chemical
exchange with water. The application of radiofrequency (RF)
pulses at specific offsets, corresponding to the absorbance peak
of the mobile protons, nullifies the magnetization of the mobile
protons, that become “saturated.” The exchange of the saturated
protons with those of water molecules results in a transfer of
reduced magnetization, hence in a decrease of the water signal,
generating a (negative) contrast that can be detected by MRI.
Consequently, many endogenous (proteins, peptides, sugars) or
exogenous molecules owing exchangeable mobile protons can be
imaged by CEST-MRI (23–25).

In this mini review, we will focus on CEST-MRI as a novel
tool for imaging several aspects of tumor metabolism in both
preclinical and clinical settings.

IMAGING MOBILE PROTEINS (AMIDE
PROTON TRANSFER: APT)

Amide proton transfer (APT) imaging is a CEST-MRI approach
that can detect the amide protons of endogenous mobile
proteins and peptides that resonate at 3.5 ppm (26). APT
imaging has been initially exploited for studies of ischemic
stroke, neurologic disorders and brain tumors (27–32). Tumors
exhibit a close relationship between unregulated proliferation
and concentrations of mobile proteins, that may accumulate as
defective products (33). Especially in high grade malignant brain
tumors, the level of peptides and mobile proteins is substantially
elevated (34). In Yan et al. the APT signal was compared
between normal brain tissue and tumor in rats implanted with
gliosarcoma. This study demonstrated that higher APT contrast
in brain tumor correlated with an increased concentration
of cytosolic proteins (35). In addition, APT imaging has
been used for tumor characterization and diagnosis of brain
tumors in patients (36–39). Furthermore, it is possible to use
this innovative technique to differentiate between malignant
gliomas and malignant lymphoma (40), to discriminate solitary
brain metastases from glioblastoma (41) and to predict genetic
mutations in gliomas, in particular the isocitrate dehydrogenase
(IDH) mutation status (42, 43). Another feature that makes
APT particularly interesting is its ability to differentiate between
treatment-induced effects and true tumor progression (44,
45), providing a unique and non-invasive MRI biomarker for
distinguishing viable malignancy from radiation necrosis and
for predicting tumor response to therapy (46). In addition to
brain tumors, APT imaging has been investigated in breast and
prostate cancer. As it was demonstrated in brain tumors, APT

imaging is able to discriminate between prostate cancer and non-
cancer tissues, reporting an increase of cell proliferation rate and
cellular density in tumor regions (47). Furthermore, variations
in the APT signal have been observed in breast tumors, likely
reporting about therapeutic effects and transformation of breast
parenchyma (48, 49). In summary, APT imaging represents a
promising biomarker for monitoring tumor progression and
response to treatment and can be easily implemented in existing
clinical scanners, despite further work is needed to remove
confounding effects (protein concentration, pH, etc.) to the
observed APT contrast (50–54).

IMAGING GLUCOSE

Tumors typically display upregulated glucose uptake and
glycolytic metabolism (55). In the clinical setting, PET imaging
with the glucose analog FDG is considered the gold standard
technique for non-invasively mapping glucose uptake and for
assessing tumor response to conventional therapy (56). However,
high maintenance costs and side effects related to radioactivity
exposure of patients strongly limit the repeated applications of
radionuclide techniques (57). Therefore, the idea of exploiting
unlabeled D-glucose as an MRI contrast agent may represent
a cheaper and potential alternative to FDG without involving
ionizing radiations. Glucose molecules own five hydroxylic
groups in fast exchange rate (500–6,000Hz) with bulk water
protons that can provide CEST contrast at 1–1.2 ppm from
the water resonance (58, 59). The feasibility of imaging glucose
uptake with the CEST-MRI technique was demonstrated in
colorectal tumor xenograft murine models, with glucose contrast
(GlucoCEST) correlated to FDG accumulation as measured by
autoradiography (60). A different GlucoCEST contrast was also
reported between two human breast tumor models characterized
by different metabolic activity (58). In addition, the dynamic
measurement of GlucoCEST contrast enhancements upon time
(Dynamic Glucose Enhanced—DGE) following glucose injection
showed increased penetration in brain tumors compared to the
contralateral regions, demonstrating interesting application for
brain tumors due to the reduced permeability of the blood
brain barrier (61). One limitation of the GlucoCEST approach
is the fast metabolism of native glucose that results in CEST
contrast disappearance. Therefore, non-metabolizable glucose
derivatives have been investigated for achieving prolonged
contrast (=detectability) inside the tumor regions. Once
phosphorylated by hexokinase enzymes, 2-Deoxy-D-glucose
(2DG) remains entrapped in tumor cells and provides CEST
contrast for long time, up to 90min post injection (62, 63).
However, the high doses required to generate enough contrast
are not feasible for toxicity issues. A more promising molecule
that has been intensively studied is the non-metabolizable 3-
O-methyl-D-glucose (3OMG), that is considered non-toxic.
Several studies tested 3OMG in different breast cancer models
and showed higher uptake and CEST contrast in the more
aggressive tumors, in according with the results obtained by
FDG-PET (64–66). Beyond 3OMG, glucosamine (GlcN) and N-
acetyl glucosamine (GlcNAc) can accumulate in tumors that
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overexpress the glucose transporters GLUT1 and GLUT2. These
molecules were exploited as CEST contrast agents in breast and
melanoma murine cancer models with different aggressiveness
showing diverse accumulation inside the tumor (67, 68).
Interesting results have been also obtained with low-calorie
sweeteners, like sucralose, that was shown to provide CEST
contrast in glioma tumor regions, and maltitol, that showed
increased enhancement in brain tumors with compromised
blood brain barrier (BBB) (69, 70).

Due to the high safety profile of glucose, its first use in
patients was reported as early as 2015 in a glioma patients
by using a high-field (7T) scanner (71). In comparison with
the conventional small molecular weight Gd-based contrast
agent, different areas of contrast enhancement were detected,
suggesting that D-glucose may highlight tumor regions with
different perfusion or permeability properties (Figures 1A,B).
In addition, GlucoCEST contrast time curves highlighted
potentially distinct biological areas of the brain tumor 10min
after D-glucose bolus infusion (Figures 1B,C). Another study
investigated the GlucoCEST approach in head and neck cancer
patients with a 3T scanner (72). Increased GlucoCEST contrast
was registered in the tumor regions compared to muscle tissue
and GlucoCEST enhancements were moderately correlated with
FDG-PET results, despite a spatial mismatch likely reflecting the
different metabolism between FDG and glucose. To improve

the sensitivity of GlucoCEST, a similar approach that exploits
the chemical exchange of mobile protons based on the Spin
Lock method (dubbed CESL or chemical exchange spin lock)
has been proposed for detecting glucose (73, 74). First results
were obtained at high fields (9.4T) with a dynamic acquisition
following glucose injection in glioma patients, demonstrating the
feasibility of this approach for monitoring glucose accumulation
in human brain tumors. Other studies showed a different glucose
uptake in tumor brain regions in comparison to normal gray
matter ones at lower magnetic fields (75), thus demonstrating its
translational application at clinical level (76).

Overall, these results suggest that GlucoCEST could represent
a valid alternative to FDG-PET for tumor diagnosis and staging,
still several limitations, including reduced detectability at low
field and origin of the glucose-based contrast arising from
different compartments need to be tackled in the next years (77).

IMAGING TUMOR ACIDOSIS

Intracellular Tumor pH Imaging
The amine and amide concentration-independent detection
(AACID) approach is a recently developed CEST contrast
mechanism that has been shown to be sensitive to intracellular
pH changes (pHi). AACID CEST technique uses the ratio of the
CEST effects generated by amide (1ω = 3.50 ppm) and amine

FIGURE 1 | GlucoCEST imaging in human glioma tumor. (A) Anatomical (T2-weighted, left) and contrast-enhanced upon Gd-injection (T1-weighted, right) MR images

in a glioma patient. (B) GlucoCEST contrast maps calculated as Area Under the Curve (AUC) showed at several time periods (0–110 s, left panel; 110–295 s, middle

panel; 0295 s, right panel) indicate progressive accumulation of glucose inside tumor. (C) Dynamic glucoCEST contrast time curves for several brain regions (anterior

cerebral artery, tumor core, lateral tumor rim, and contralateral vessel area). These curves show that glucose accumulation in lateral and medial tumor rim starts after

100 s of infusion, whereas the enhancement in the core area does not change over time. Reproduced with permission from Xu et al. (71).
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(1ω = 2.75 ppm) protons from endogenous tissue proteins,
which are predominantly from the intracellular space, for
removing the concentration dependence. As a consequence, the
measured CEST effect is only pH dependent, allowing to measure
tumor intracellular pH (pHi) (78). McVicar et al. exploited the
AACID CEST technique in a glioblastoma murine model to
detect the selective acidification and decrease of pHi following the
treatment with lonidamide, an anticancer drug that inhibits the
monocarboxylic transporters (78). Similar results were obtained
in glioblastoma murine models upon the administration of
several pH-modulators such as topiramate, dichloroacetate and
cariporide (79–82).

Another non-invasive pH-weighted imaging technique is the
amine CEST approach, in which the amine protons (resonating
at 3 ppm) of glutamine or glutamate molecules provide a pH-
dependent (but not concentration independent) CEST contrast
for mapping acidic tumor regions. Harris et al. applied this
approach in both glioma murine models and in glioblastoma
patients to detect acidic tumors and response to bevacizumab
treatment (83, 84). Although the high translational potential of
these endogenous approaches, concerns related to their capability
to distinguish between intra- and extracellular pH contribution
are still under consideration. In addition, variation of amide
protons concentrations might be responsible of confounding
effects resulting in less reliable pH estimations.

A recent approach to uncouple the contribution of
concentration and exchange rate to the measured CEST contrast
is that based on the omega-plot technique, initially developed
to assess chemical exchange rates in paramagnetic contrast
agents (85). Such approach has been improved and exploited for
diamagnetic molecules in vitro (simulating complex endogenous
systems) by simultaneous determination of labile proton ratio
and exchange rate (that is dependent on pH) (86, 87). Although
not yet demonstrated, the omega plot approach may provide
useful information for intracellular pH, but further technical
advancements are needed to translate it in vivo.

Extracellular Tumor pH Imaging
To overcome the limitations of endogenous CEST-MRI
techniques, exogenous molecules have been exploited as
extracellular tumor pH reporters for CEST-MRI applications.
In the last decade, great expectations surrounded the class of
the X-ray FDA-approved iodinated contrast media, considering
their high safety profile and translational potential (88). Due to
their hydrophilic chemical structure, iodinated agents remain
confined outside the cells and can be visualized as perfusion
agents in tumor by CEST-MRI (89, 90). Their first application as
pH CEST-MRI agents involved the use of iopamidol (Isovue R©,
Bracco Diagnostic), possessing two amide proton pools that
can be saturated at 4.2 and 5.5 ppm (91, 92). The set-up of a
ratiometric procedure allows to accurately measure extracellular
tissue pH (pHe) in the pH range of 5.5–7.9, independently of the
contrast agent concentration, with an accuracy of 0.1 units at
several magnetic fields (93–95). CEST-MRI tumor pH imaging
was combined to FDG-PET to elucidate the deregulation of
tumor metabolism in a breast cancer model (96). This work
evidenced that tumor regions with more acidic pHe show

increased FDG uptake and demonstrated in vivo, for the first
time, the relationship between tumor acidosis and high glycolytic
rate. In addition, it provided evidence of the feasibility of
measuring tumor pH heterogeneity at the clinical field of 3T
(Figures 2A,B). The combination of CEST pH-imaging and
FDG-PET was then exploited for predicting the early therapeutic
efficacy of metformin in a preclinical model of pancreatic
cancer (98). In addition, the possibility to measure tumor pHe
opened new routes for monitoring the effect of novel anticancer
treatments that can reverse the glycolytic tumor phenotype (97).
Anemone et al. showed that this approach can monitor early pH
changes in a breast murine cancer model upon the treatment
with dichloroacetate, a small compound targeting mitochondria,
and that can be exploited to detect the onset of the resistance,
hence providing useful insights about the therapeutic efficacy
(Figures 2C,D).

Another iodinated agent used for pH mapping is iopromide
(Ultravist R©, Bayer Healthcare), that has two amide pools
resonating at 4.6 and 5.6 ppm that can be exploited to measure
tumor pH within the 6.5–7.2 range (99). CEST-MRI with
iopromide revealed that breast cancer models with different
histopathological features show significant differences in pHe
values and that tumor acidosis is associated with metabolic
biomarkers in B-lymphoma xenografts (100, 101). In addition,
a comparative study between iopromide and iopamidol showed
that although these agents measured similar pH values in vivo,
iopamidol reveals more accurate pH measurement (102).

One of the main advantages of this class of agents relies
in their very high safety profile for administration in patients.
Consequently, CEST-MRI pH imaging with iopamidol was
initially translated for measuring kidney and bladder pH in
healthy volunteers (103–105). Later on, the capability to provide
accurate tumor pH maps was demonstrated with iopamidol in
both breast and ovarian cancer patients showing acidic tumor
pH values (106). These preliminary results pointed out that
efficient translation still requires optimization of several aspects,
including acquisition protocol and data analysis to further
evaluate the diagnostic and therapeutic utility of tumor pH
mapping in the clinical setting. To this purpose, different studies
aimed to optimize RF irradiation, reduce respiration artifacts
and enlarge the body coverage acquisition have been performed
(107–109). In addition, new ratiometric approaches have been
formulated to extend the use of iodinated agents even with
a single resonating protons for pH measurements (110, 111).
Promising results have been obtained with iobitridol (Xenetix R©,
Guerbet), showing accurate pH measurement in murine tumors
once irradiated with different power levels (112).

PARACEST pH-responsive agents are characterized by a large
chemical shift of the mobile protons from the water peak that
should improve their detectability in comparison to DIACEST
molecules, as iodinated agents or glucose (23, 113). The Yb-
HPDO3A contrast agent has been exploited for measuring tumor
pHe in both melanoma and in glioma murine models (114,
115). Interestingly, in the melanoma model changes in tumor
pHe were observed and correlated with the tumor progression
stage. Similar approaches based on other PARACEST agents
allowed to measure tumor pHe in rat brain tumor models,
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FIGURE 2 | MRI-CEST tumor pH imaging upon iopamidol injection in murine tumors. (A) CEST-MRI pHe maps of a breast cancer tumor overlaid on anatomical MRI

image upon iopamidol injection (left) and FDG-PET image overlaid on CT image (middle) upon FDG injection in the same mouse. The tumor on the right side shows

lower pHe values in the MRI-CEST pHe map corresponding to higher FDG uptake in the PET image. (B) Correlation plot between FDG-PET uptake and tumor pHe

values shows a significant inverse correlation between FDG uptake (% ID/g) and tumor pH values. Reproduced with permission from Longo et al. (96). (C)

Representative CEST-MRI tumor pHe maps overimposed on anatomical reference images before, 3 and 15 days after treatment with dichloroacetate for treated and

untreated mice. Images show increased number of less acidic pixel in treated tumors upon dichloracetate therapy in comparison to control mates. (D) Bar graphs

show a significant reduction in tumor acidosis after 3 days of treatment in treated tumors compared to untreated mates, whereas a restoration of tumor acidosis, likely

reflecting the onset of tumor resistance is reported after 15 days of treatment (*P < 0.05, Student’s t test). Reproduced with permission from Anemone et al. (97).

although direct injection of the contrast agent in the tumor
and renal ligation were needed to maintain high concentrations
of the agent for measuring pH (116–118). Currently, the high
saturation power needed to generate enough CEST contrast
limits a wider applicability of these pH responsive PARACEST
agents, howevermolecules with optimal exchange rates have been
recently proposed (119).

IMAGING LACTATE

The preferential ATP production via glycolysis of glucose to
lactate leads to high lactate levels that some cancer cells can even
exploit as a metabolic fuel (120–122). Conventionally, lactate can
be observed and quantified byMagnetic Resonance Spectroscopy
(MRS) or by the recently developed hyperpolarization technique
(123–129). However, these methods are limited by low spatial
resolution and long acquisition times. The chemical shift of
the hydroxylic proton of the lactate is very close to the water
signal and renders quite difficult to directly detect lactate in
vivo by CEST imaging. However, correlation of the signal
arising from lactate between CEST and MR spectroscopy has
been performed in a lymphoma murine tumor upon lactate

infusion (130) or in a mitochondrial disease model (131). Other
approaches exploited lactate-responsive PARACEST contrast
agents for taking advantage of the larger chemical shift difference
of these molecules and the CEST contrast dependence with
lactate concentration (132, 133). Zhang et al. (134) demonstrated
the feasibility of this approach bymeasuring lactate excreted from
lung cancer cells in tissue culture.

CONCLUSION AND FUTURE
PERSPECTIVES

In summary, CEST-MRI imaging is a fast-expanding field
with enormous potential to assess several aspects of tumor
metabolism. Moreover, since tumor acidosis is a general feature
in all tumors, imaging tumor pH might become a powerful and
wide tool for oncological imaging at both preclinical and clinical
level. First studies in patients demonstrated the feasibility of these
novel imaging approaches for imaging human tumors. Further
improvements in fast acquisition sequences, post-processing and
standardization set-up are mandatory for the widespread use
of CEST-MRI in the clinical settings. Despite the fundamental
insights that imaging tumor acidosis with iopamidol can provide,
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additional studies are needed to validate it in comparison
to established clinical approaches and to demonstrate that it
can be exploited for monitoring treatment response to (novel)
anticancer therapies.

AUTHOR CONTRIBUTIONS

DL and LC conceived, structured, and edited the mini review
article. DL, LC, AA, MC, ACa, PI, CD, ACo, and MB each wrote
individual sections of themini review article and critically revised
it for intellectual content. All authors provided final approval of
the version of the article submitted for publication.

FUNDING

We gratefully acknowledge the support of the Associazione
Italiana Ricerca Cancro (AIRC MFAG #20153 to DL) and
Compagnia San Paolo project (Regione Piemonte, grant
#CSTO165925) and from the European Union’s Horizon 2020
research and innovation programme (Grant Agreement No.
667510) funding. LC was supported by the AIRC fellowship
for abroad Monica Broggi. The Italian Ministry for Education
and Research (MIUR) is gratefully acknowledged for yearly
FOE funding to the Euro-BioImaging Multi-Modal Molecular
Imaging Italian Node (MMMI).

REFERENCES

1. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment

at a glance. J Cell Sci. (2012) 125(Pt 23):5591–6. doi: 10.1242/jcs.

116392

2. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature.

(2000) 407:249–57. doi: 10.1038/35025220

3. Vaupel P. Metabolic microenvironment of tumor cells: a key factor in

malignant progression. Exp Oncol. (2010) 32:125–7.

4. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat

Rev Cancer. (2004) 4:891–9. doi: 10.1038/nrc1478

5. Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat.

Nat Rev Cancer. (2017) 17:577–93. doi: 10.1038/nrc.2017.77

6. Damaghi M, Wojtkowiak JW, Gillies RJ. pH sensing and regulation in

cancer. Front Physiol. (2013) 4:370. doi: 10.3389/fphys.2013.00370

7. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH,

Ibrahim-Hashim A, et al. Acidity generated by the tumor

microenvironment drives local invasion. Cancer Res. (2013) 73:1524–35.

doi: 10.1158/0008-5472.CAN-12-2796

8. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target

for cancer therapy: progress and prospects. Mol Cancer. (2013) 12:152.

doi: 10.1186/1476-4598-12-152

9. Neri D, Supuran CT. Interfering with pH regulation in tumours

as a therapeutic strategy. Nat Rev Drug Discov. (2011) 10:767–77.

doi: 10.1038/nrd3554

10. Pillai SR, Damaghi M, Marunaka Y, Spugnini EP, Fais S, Gillies RJ. Causes,

consequences, and therapy of tumors acidosis. Cancer Metastasis Rev. (2019)

38:205–22. doi: 10.1007/s10555-019-09792-7

11. Kolosenko I, Avnet S, Baldini N, Viklund J, De Milito A. Therapeutic

implications of tumor interstitial acidification. Semin Cancer Biol. (2017)

43:119–33. doi: 10.1016/j.semcancer.2017.01.008

12. Harguindey S, Arranz JL, Wahl ML, Orive G, Reshkin SJ. Proton

transport inhibitors as potentially selective anticancer drugs. Anticancer Res.

(2009) 29:2127–36.

13. De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump

inhibitors. Future Oncol. (2005) 1:779–86. doi: 10.2217/14796694.1.6.779

14. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging

in cancer detection and therapy response. Semin Oncol. (2011) 38:55–69.

doi: 10.1053/j.seminoncol.2010.11.012

15. Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging cancer

metabolism: underlying biology and emerging strategies. J Nucl Med. (2018)

59:1340–9. doi: 10.2967/jnumed.117.199869

16. Apostolova I, Wedel F, Brenner W. Imaging of tumor metabolism using

positron emission tomography (PET). Recent Results Cancer Res. (2016)

207:177–205. doi: 10.1007/978-3-319-42118-6_8

17. Anemone A, Consolino L, Arena F, Capozza M, Longo DL. Imaging

tumor acidosis: a survey of the available techniques for mapping in

vivo tumor pH. Cancer Metastasis Rev. (2019) 38:25–49. doi: 10.1007/

s10555-019-09782-9

18. Li Y, Park I, Nelson SJ. Imaging tumor metabolism using in vivo

magnetic resonance spectroscopy. Cancer J. (2015) 21:123–8. doi: 10.1097/

PPO.0000000000000097

19. Matsuo M, Matsumoto S, Mitchell JB, Krishna MC, Camphausen

K. Magnetic resonance imaging of the tumor microenvironment in

radiotherapy: perfusion, hypoxia, and metabolism. Semin Radiat Oncol.

(2014) 24:210–7. doi: 10.1016/j.semradonc.2014.02.002

20. Ramamonjisoa N, Ackerstaff E. Characterization of the tumor

microenvironment and tumor-stroma interaction by non-invasive

preclinical imaging. Front Oncol. (2017) 7:3. doi: 10.3389/fonc.2017.00003

21. van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST):

what is in a name and what isn’t? Magn Reson Med. (2011) 65:927–48.

doi: 10.1002/mrm.22761

22. Wu B, Warnock G, Zaiss M, Lin C, Chen M, Zhou Z, et al. An

overview of CEST MRI for non-MR physicists. EJNMMI Phys. (2016) 3:19.

doi: 10.1186/s40658-016-0155-2

23. Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to

applications, challenges and opportunities. J Magn Reson. (2013) 229:155–72.

doi: 10.1016/j.jmr.2012.11.024

24. Liu G, Song X, Chan KW, McMahon MT. Nuts and bolts of chemical

exchange saturation transfer MRI. NMR Biomed. (2013) 26:810–28.

doi: 10.1002/nbm.2899

25. Longo DL, Di Gregorio E, Abategiovanni R, Ceccon A, Assfalg M, Molinari

H, et al. Chemical exchange saturation transfer (CEST): an efficient tool

for detecting molecular information on proteins’ behaviour. Analyst. (2014)

139:2687–90. doi: 10.1039/C4AN00346B

26. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC. Using the amide

proton signals of intracellular proteins and peptides to detect pH effects in

MRI. Nat Med. (2003) 9:1085–90. doi: 10.1038/nm907

27. Zhou J. Amide proton transfer imaging of the human brain. Methods Mol

Biol. (2011) 711:227–37. doi: 10.1007/978-1-61737-992-5_10

28. Yu L, Chen Y, Chen M, Luo X, Jiang S, Zhang Y, et al. Amide

proton transfer MRI signal as a surrogate biomarker of ischemic stroke

recovery in patients with supportive treatment. Front Neurol. (2019) 10:104.

doi: 10.3389/fneur.2019.00104

29. Holmes HE, Colgan N, Ismail O, Ma D, Powell NM, O’Callaghan JM,

et al. Imaging the accumulation and suppression of tau pathology

using multiparametric MRI. Neurobiol Aging. (2016) 39:184–94.

doi: 10.1016/j.neurobiolaging.2015.12.001

30. Wells JA, O’Callaghan JM, Holmes HE, Powell NM, Johnson

RA, Siow B, et al. In vivo imaging of tau pathology using multi-

parametric quantitative MRI. Neuroimage. (2015) 111:369–78.

doi: 10.1016/j.neuroimage.2015.02.023

31. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC. Amide proton transfer

(APT) contrast for imaging of brain tumors. Magn Reson Med. (2003)

50:1120–6. doi: 10.1002/mrm.10651

32. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC. Detection of the ischemic

penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. (2007)

27:1129–36. doi: 10.1038/sj.jcbfm.9600424

33. Salhotra A, Lal B, Laterra J, Sun PZ, van Zijl PC, Zhou J. Amide proton

transfer imaging of 9L gliosarcoma and human glioblastoma xenografts.

NMR Biomed. (2008) 21:489–97. doi: 10.1002/nbm.1216

34. Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD. Magnetic

resonance image-guided proteomics of human glioblastoma multiforme. J

Magn Reson Imaging. (2003) 18:530–6. doi: 10.1002/jmri.10395

Frontiers in Oncology | www.frontiersin.org 6 February 2020 | Volume 10 | Article 161

https://doi.org/10.1242/jcs.116392
https://doi.org/10.1038/35025220
https://doi.org/10.1038/nrc1478
https://doi.org/10.1038/nrc.2017.77
https://doi.org/10.3389/fphys.2013.00370
https://doi.org/10.1158/0008-5472.CAN-12-2796
https://doi.org/10.1186/1476-4598-12-152
https://doi.org/10.1038/nrd3554
https://doi.org/10.1007/s10555-019-09792-7
https://doi.org/10.1016/j.semcancer.2017.01.008
https://doi.org/10.2217/14796694.1.6.779
https://doi.org/10.1053/j.seminoncol.2010.11.012
https://doi.org/10.2967/jnumed.117.199869
https://doi.org/10.1007/978-3-319-42118-6_8
https://doi.org/10.1007/s10555-019-09782-9
https://doi.org/10.1097/PPO.0000000000000097
https://doi.org/10.1016/j.semradonc.2014.02.002
https://doi.org/10.3389/fonc.2017.00003
https://doi.org/10.1002/mrm.22761
https://doi.org/10.1186/s40658-016-0155-2
https://doi.org/10.1016/j.jmr.2012.11.024
https://doi.org/10.1002/nbm.2899
https://doi.org/10.1039/C4AN00346B
https://doi.org/10.1038/nm907
https://doi.org/10.1007/978-1-61737-992-5_10
https://doi.org/10.3389/fneur.2019.00104
https://doi.org/10.1016/j.neurobiolaging.2015.12.001
https://doi.org/10.1016/j.neuroimage.2015.02.023
https://doi.org/10.1002/mrm.10651
https://doi.org/10.1038/sj.jcbfm.9600424
https://doi.org/10.1002/nbm.1216
https://doi.org/10.1002/jmri.10395
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Consolino et al. MRI-CEST Imaging of Tumor Metabolism and Acidosis

35. Yan K, Fu Z, Yang C, Zhang K, Jiang S, Lee DH, et al. Assessing amide

proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the

rat brain using proteomic analysis. Mol Imaging Biol. (2015) 17:479–87.

doi: 10.1007/s11307-015-0828-6

36. Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi

K, et al. Amide proton transfer imaging of adult diffuse gliomas:

correlation with histopathological grades. Neuro Oncol. (2014) 16:441–8.

doi: 10.1093/neuonc/not158

37. Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J. Amide

proton transfer imaging of human brain tumors at 3T. Magn Reson Med.

(2006) 56:585–92. doi: 10.1002/mrm.20989

38. Choi YS, Ahn SS, Lee SK, Chang JH, Kang SG, Kim SH, et al. Amide proton

transfer imaging to discriminate between low- and high-grade gliomas:

added value to apparent diffusion coefficient and relative cerebral blood

volume. Eur Radiol. (2017) 27:3181–9. doi: 10.1007/s00330-017-4732-0

39. Sakata A, Fushimi Y, Okada T, Arakawa Y, Kunieda T, Minamiguchi S,

et al. Diagnostic performance between contrast enhancement, proton MR

spectroscopy, and amide proton transfer imaging in patients with brain

tumors. J Magn Reson Imaging. (2017) 46:732–9. doi: 10.1002/jmri.25597

40. Jiang S, YuH,Wang X, Lu S, Li Y, Feng L, et al. MolecularMRI differentiation

between primary central nervous system lymphomas and high-grade gliomas

using endogenous protein-based amide proton transfer MR imaging at 3

Tesla. Eur Radiol. (2016) 26:64–71. doi: 10.1007/s00330-015-3805-1

41. Yu H, Lou H, Zou T, Wang X, Jiang S, Huang Z, et al. Applying

protein-based amide proton transfer MR imaging to distinguish solitary

brain metastases from glioblastoma. Eur Radiol. (2017) 27:4516–24.

doi: 10.1007/s00330-017-4867-z

42. Jiang S, Zou T, Eberhart CG, Villalobos MAV, Heo HY, Zhang Y, et al.

Predicting IDH mutation status in grade II gliomas using amide proton

transfer-weighted (APTw) MRI. Magn Reson Med. (2017) 78:1100–9.

doi: 10.1002/mrm.26820

43. Paech D,Windschuh J, Oberhollenzer J, Dreher C, Sahm F, Meissner JE, et al.

Assessing the predictability of IDHmutation andMGMTmethylation status

in glioma patients using relaxation-compensated multipool CEST MRI at

7.0 T. Neuro Oncol. (2018) 20:1661–71. doi: 10.1093/neuonc/noy073

44. Ma B, Blakeley JO, Hong X, Zhang H, Jiang S, Blair L, et al. Applying amide

proton transfer-weighted MRI to distinguish pseudoprogression from true

progression in malignant gliomas. J Magn Reson Imaging. (2016) 44:456–62.

doi: 10.1002/jmri.25159

45. Jiang S, Eberhart CG, Lim M, Heo HY, Zhang Y, Blair L, et al.

Identifying recurrent malignant glioma after treatment using amide

proton transfer-weighted MR imaging: a validation study with

image-guided stereotactic biopsy. Clin Cancer Res. (2019) 25:552–61.

doi: 10.1158/1078-0432.CCR-18-1233

46. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al.

Differentiation between glioma and radiation necrosis using molecular

magnetic resonance imaging of endogenous proteins and peptides. Nat Med.

(2011) 17:130–4. doi: 10.1038/nm.2268

47. Jia G, Abaza R,Williams JD, Zynger DL, Zhou J, Shah ZK, et al. Amide proton

transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson

Imaging. (2011) 33:647–54. doi: 10.1002/jmri.22480

48. Krikken E, Khlebnikov V, Zaiss M, Jibodh RA, van Diest PJ, Luijten PR, et al.

Amide chemical exchange saturation transfer at 7 T: a possible biomarker

for detecting early response to neoadjuvant chemotherapy in breast cancer

patients. Breast Cancer Res. (2018) 20:51. doi: 10.1186/s13058-018-0982-2

49. Dula AN, Arlinghaus LR, Dortch RD, Dewey BE, Whisenant JG, Ayers

GD, et al. Amide proton transfer imaging of the breast at 3 T: establishing

reproducibility and possible feasibility assessing chemotherapy response.

Magn Reson Med. (2013) 70:216–24. doi: 10.1002/mrm.24450

50. Zaiss M, Windschuh J, Paech D, Meissner JE, Burth S, Schmitt B, et al.

Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased

insight into NOE and amide signal changes in human glioblastoma.

Neuroimage. (2015) 112:180–8. doi: 10.1016/j.neuroimage.2015.02.040

51. Windschuh J, Zaiss M, Meissner JE, Paech D, Radbruch A, Ladd ME,

et al. Correction of B1-inhomogeneities for relaxation-compensated CEST

imaging at 7 T. NMR Biomed. (2015) 28:529–37. doi: 10.1002/nbm.3283

52. Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, et al. Inverse Z-

spectrum analysis for spillover-, MT-, and T1 -corrected steady-state pulsed

CEST-MRI–application to pH-weighted MRI of acute stroke. NMR Biomed.

(2014) 27:240–52. doi: 10.1002/nbm.3054

53. Yuwen Zhou I, Wang E, Cheung JS, Lu D, Ji Y, Zhang X, et al. Direct

saturation-corrected chemical exchange saturation transfer MRI of glioma:

simplified decoupling of amide proton transfer and nuclear overhauser effect

contrasts.Magn Reson Med. (2017) 78:2307–14. doi: 10.1002/mrm.26959

54. Wu Y, Chen Y, Zhao Y, Yang S, Zhao J, Zhou J, et al. Direct radiofrequency

saturation corrected amide proton transfer tumor MRI at 3T. Magn Reson

Med. (2019) 81:2710–9. doi: 10.1002/mrm.27562

55. Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST

MRI. NMR Biomed. (2019) 32:e3943. doi: 10.1002/nbm.3943

56. Gambhir SS. Molecular imaging of cancer with positron emission

tomography. Nat Rev Cancer. (2002) 2:683–93. doi: 10.1038/nrc882

57. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps

ME. A tabulated summary of the FDG PET literature. J Nucl Med. (2001)

42(5 Suppl):1S−93S.

58. Chan KW, McMahon MT, Kato Y, Liu G, Bulte JW, Bhujwalla ZM, et al.

Natural D-glucose as a biodegradable MRI contrast agent for detecting

cancer.Magn Reson Med. (2012) 68:1764–73. doi: 10.1002/mrm.24520

59. Zaiss M, Anemone A, Goerke S, Longo DL, Herz K, Pohmann R,

et al. Quantification of hydroxyl exchange of D-Glucose at physiological

conditions for optimization of glucoCEST MRI at 3, 7 and 9.4 Tesla. NMR

Biomed. (2019) 32:e4113. doi: 10.1002/nbm.4113

60. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V,

Johnson SP, et al. In vivo imaging of glucose uptake and metabolism in

tumors. Nat Med. (2013) 19:1067–72. doi: 10.1038/nm.3252

61. Xu X, Chan KW, Knutsson L, Artemov D, Xu J, Liu G, et al. Dynamic glucose

enhanced (DGE) MRI for combined imaging of blood-brain barrier break

down and increased blood volume in brain cancer.Magn Reson Med. (2015)

74:1556–63. doi: 10.1002/mrm.25995

62. Nasrallah FA, Pages G, Kuchel PW, Golay X, Chuang KH. Imaging brain

deoxyglucose uptake andmetabolism by glucoCESTMRI. J Cereb Blood Flow

Metab. (2013) 33:1270–8. doi: 10.1038/jcbfm.2013.79

63. Rivlin M, Horev J, Tsarfaty I, Navon G. Molecular imaging of tumors and

metastases using chemical exchange saturation transfer (CEST)MRI. Sci Rep.

(2013) 3:3045. doi: 10.1038/srep03045

64. Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by

chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose.Magn

Reson Med. (2014) 72:1375–80. doi: 10.1002/mrm.25467

65. Rivlin M, Navon G. 3-O-Methyl-D-glucose mutarotation and proton

exchange rates assessed by (13)C, (1)H NMR and by chemical exchange

saturation transfer and spin lock measurements. J Biomol NMR. (2018)

72:93–103. doi: 10.1007/s10858-018-0209-y

66. Rivlin M, Navon G. CEST MRI of 3-O-methyl-D-glucose on different breast

cancer models.Magn ResonMed. (2018) 79:1061–9. doi: 10.1002/mrm.26752

67. Rivlin M, Navon G. Glucosamine and N-acetyl glucosamine as new CEST

MRI agents for molecular imaging of tumors. Sci Rep. (2016) 6:32648.

doi: 10.1038/srep32648

68. Longo DL, Moustaghfir FZ, Zerbo A, Consolino L, Anemone A, Bracesco

M, et al. EXCI-CEST: Exploiting pharmaceutical excipients as MRI-CEST

contrast agents for tumor imaging. Int J Pharm. (2017) 525:275–81.

doi: 10.1016/j.ijpharm.2017.04.040

69. Bagga P, Haris M, D’Aquilla K, Wilson NE, Marincola FM, Schnall

MD, et al. Non-caloric sweetener provides magnetic resonance

imaging contrast for cancer detection. J Transl Med. (2017) 15:119.

doi: 10.1186/s12967-017-1221-9

70. Bagga P, Wilson N, Rich L, Marincola FM, Schnall MD, Hariharan H, et al.

Sugar alcohol provides imaging contrast in cancer detection. Sci Rep. (2019)

9:11092. doi: 10.1038/s41598-019-47275-5

71. Xu X, Yadav NN, Knutsson L, Hua J, Kalyani R, Hall E, et al.

Dynamic glucose-enhanced (DGE) MRI: translation to human scanning

and first results in glioma patients. Tomography. (2015) 1:105–14.

doi: 10.18383/j.tom.2015.00175

72. Wang J, Weygand J, Hwang KP, Mohamed AS, Ding Y, Fuller CD, et al.

Magnetic resonance imaging of glucose uptake and metabolism in patients

with head and neck cancer. Sci Rep. (2016) 6:30618. doi: 10.1038/srep30618

73. Schuenke P, Koehler C, Korzowski A,Windschuh J, Bachert P, LaddME, et al.

Adiabatically prepared spin-lock approach for T1rho-based dynamic glucose

Frontiers in Oncology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 161

https://doi.org/10.1007/s11307-015-0828-6
https://doi.org/10.1093/neuonc/not158
https://doi.org/10.1002/mrm.20989
https://doi.org/10.1007/s00330-017-4732-0
https://doi.org/10.1002/jmri.25597
https://doi.org/10.1007/s00330-015-3805-1
https://doi.org/10.1007/s00330-017-4867-z
https://doi.org/10.1002/mrm.26820
https://doi.org/10.1093/neuonc/noy073
https://doi.org/10.1002/jmri.25159
https://doi.org/10.1158/1078-0432.CCR-18-1233
https://doi.org/10.1038/nm.2268
https://doi.org/10.1002/jmri.22480
https://doi.org/10.1186/s13058-018-0982-2
https://doi.org/10.1002/mrm.24450
https://doi.org/10.1016/j.neuroimage.2015.02.040
https://doi.org/10.1002/nbm.3283
https://doi.org/10.1002/nbm.3054
https://doi.org/10.1002/mrm.26959
https://doi.org/10.1002/mrm.27562
https://doi.org/10.1002/nbm.3943
https://doi.org/10.1038/nrc882
https://doi.org/10.1002/mrm.24520
https://doi.org/10.1002/nbm.4113
https://doi.org/10.1038/nm.3252
https://doi.org/10.1002/mrm.25995
https://doi.org/10.1038/jcbfm.2013.79
https://doi.org/10.1038/srep03045
https://doi.org/10.1002/mrm.25467
https://doi.org/10.1007/s10858-018-0209-y
https://doi.org/10.1002/mrm.26752
https://doi.org/10.1038/srep32648
https://doi.org/10.1016/j.ijpharm.2017.04.040
https://doi.org/10.1186/s12967-017-1221-9
https://doi.org/10.1038/s41598-019-47275-5
https://doi.org/10.18383/j.tom.2015.00175
https://doi.org/10.1038/srep30618
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Consolino et al. MRI-CEST Imaging of Tumor Metabolism and Acidosis

enhanced MRI at ultrahigh fields. Magn Reson Med. (2017) 78:215–25.

doi: 10.1002/mrm.26370

74. Schuenke P, Paech D, Koehler C, Windschuh J, Bachert P, Ladd ME, et al.

Fast and quantitative T1rho-weighted dynamic glucose enhanced MRI. Sci

Rep. (2017) 7:42093. doi: 10.1038/srep42093

75. Paech D, Schuenke P, Koehler C, Windschuh J, Mundiyanapurath

S, Bickelhaupt S, et al. T1rho-weighted dynamic glucose-enhanced

MR imaging in the human brain. Radiology. (2017) 285:914–22.

doi: 10.1148/radiol.2017162351

76. Herz K, Lindig T, Deshmane A, Schittenhelm J, Skardelly M, Bender B,

et al. T1rho-based dynamic glucose-enhanced (DGErho)MRI at 3 T: method

development and early clinical experience in the human brain. Magn Reson

Med. (2019) 82:1832–47. doi: 10.1002/mrm.27857

77. KimM, Torrealdea F, Adeleke S, RegaM, Evans V, Beeston T, et al. Challenges

in glucoCEST MR body imaging at 3 Tesla. Quant Imag Med Surg. (2019)

9:1628–40. doi: 10.21037/qims.2019.10.05

78. McVicar N, Li AX, Meakin SO, Bartha R. Imaging chemical exchange

saturation transfer (CEST) effects following tumor-selective acidification

using lonidamine. NMR Biomed. (2015) 28:566–75. doi: 10.1002/nbm.3287

79. Marathe K, McVicar N, Li A, Bellyou M, Meakin S, Bartha R. Topiramate

induces acute intracellular acidification in glioblastoma. J Neurooncol. (2016)

130:465–72. doi: 10.1007/s11060-016-2258-y

80. Albatany M, Li A, Meakin S, Bartha R. Dichloroacetate induced intracellular

acidification in glioblastoma: in vivo detection using AACID-CEST MRI at

9.4 Tesla. J Neurooncol. (2018) 136:255–62. doi: 10.1007/s11060-017-2664-9

81. Albatany M, Li A, Meakin S, Bartha R. In vivo detection of acute

intracellular acidification in glioblastoma multiforme following

a single dose of cariporide. Int J Clin Oncol. (2018) 23:812–9.

doi: 10.1007/s10147-018-1289-0

82. AlbatanyM,OstapchenkoVG,Meakin S, Bartha R. Brain tumor acidification

using drugs simultaneously targeting multiple pH regulatory mechanisms. J

Neurooncol. (2019) 144:453–62. doi: 10.1007/s11060-019-03251-7

83. Harris RJ, Cloughesy TF, Liau LM, Prins RM, Antonios JP, Li D,

et al. pH-weighted molecular imaging of gliomas using amine chemical

exchange saturation transfer MRI. Neuro Oncol. (2015) 17:1514–24.

doi: 10.1093/neuonc/nov106

84. Yao J, Tan CHP, Schlossman J, Chakhoyan A, Raymond C, Pope WB,

et al. pH-weighted amine chemical exchange saturation transfer echoplanar

imaging (CEST-EPI) as a potential early biomarker for bevacizumab

failure in recurrent glioblastoma. J Neurooncol. (2019) 142:587–95.

doi: 10.1007/s11060-019-03132-z

85. Dixon WT, Ren J, Lubag AJ, Ratnakar J, Vinogradov E, Hancu I,

et al. A concentration-independent method to measure exchange

rates in PARACEST agents. Magn Reson Med. (2010) 63:625–32.

doi: 10.1002/mrm.22242

86. Wu R, Xiao G, Zhou IY, Ran C, Sun PZ. Quantitative chemical exchange

saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-

corrected inverse CEST ratio asymmetry for simultaneous determination

of labile proton ratio and exchange rate. NMR Biomed. (2015) 28:376–83.

doi: 10.1002/nbm.3257

87. Sun PZ, Wang Y, Dai Z, Xiao G, Wu R. Quantitative chemical exchange

saturation transfer (qCEST) MRI–RF spillover effect-corrected omega plot

for simultaneous determination of labile proton fraction ratio and exchange

rate. Contrast Media Mol Imaging. (2014) 9:268–75. doi: 10.1002/cmmi.1569

88. Longo D, Aime S. Iodinated contrast media as pH-Responsive CEST agents.

In: McMahon MT, Gilad AA, Bulte JBM, Van Zijl PCM, editors. Chemical

Exchange Saturation Transfer Imaging. Singapore: Pan Stanford Publishing

(2017). p. 447–66. doi: 10.1201/9781315364421-20

89. Longo DL, Michelotti F, Consolino L, Bardini P, Digilio G, Xiao

G, et al. In vitro and in vivo assessment of nonionic iodinated

radiographic molecules as chemical exchange saturation transfer magnetic

resonance imaging tumor perfusion agents. Invest Radiol. (2016) 51:155–62.

doi: 10.1097/RLI.0000000000000217

90. Anemone A, Consolino L, Longo DL. MRI-CEST assessment of tumour

perfusion using X-ray iodinated agents: comparison with a conventional Gd-

based agent. Eur Radiol. (2017) 27:2170–9. doi: 10.1007/s00330-016-4552-7

91. Longo DL, Dastru W, Digilio G, Keupp J, Langereis S, Lanzardo S, et al.

Iopamidol as a responsive MRI-chemical exchange saturation transfer

contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T.

Magn Reson Med. (2011) 65:202–11. doi: 10.1002/mrm.22608

92. Aime S, Calabi L, Biondi L, De Miranda M, Ghelli S, Paleari L, et al.

Iopamidol: exploring the potential use of a well-established x-ray contrast

agent for MRI.Magn Reson Med. (2005) 53:830–4. doi: 10.1002/mrm.20441

93. Longo DL, Busato A, Lanzardo S, Antico F, Aime S. Imaging the pH

evolution of an acute kidney injury model by means of iopamidol, a MRI-

CEST pH-responsive contrast agent. Magn Reson Med. (2013) 70:859–64.

doi: 10.1002/mrm.24513

94. Longo DL, Cutrin JC, Michelotti F, Irrera P, Aime S. Noninvasive evaluation

of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI.

NMR Biomed. (2017) 30:e3720. doi: 10.1002/nbm.3720

95. Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ. A generalized

ratiometric chemical exchange saturation transfer (CEST) MRI approach for

mapping renal pH using iopamidol. Magn Reson Med. (2018) 79:1553–8.

doi: 10.1002/mrm.26817

96. Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M,

et al. In vivo imaging of tumor metabolism and acidosis by combining

PET and MRI-CEST pH imaging. Cancer Res. (2016) 76:6463–70.

doi: 10.1158/0008-5472.CAN-16-0825

97. Anemone A, Consolino L, Conti L, Reineri F, Cavallo F, Aime S, et al. In

vivo evaluation of tumour acidosis for assessing the early metabolic response

and onset of resistance to dichloroacetate by using magnetic resonance pH

imaging. Int J Oncol. (2017) 51:498–506. doi: 10.3892/ijo.2017.4029

98. Goldenberg JM, Cardenas-Rodriguez J, Pagel MD. Preliminary results that

assess metformin treatment in a preclinical model of pancreatic cancer

using simultaneous [(18)F]FDG PET and acidoCESTMRI.Mol Imaging Biol.

(2018) 20:575–83. doi: 10.1007/s11307-018-1164-4

99. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD. Evaluations

of extracellular pH within in vivo tumors using acidoCESTMRI.Magn Reson

Med. (2014) 72:1408–17. doi: 10.1002/mrm.25053

100. Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD.

Evaluations of tumor acidosis within in vivo tumor models using parametric

maps generated with acido CEST MRI.Mol Imaging Biol. (2015) 17:488–96.

doi: 10.1007/s11307-014-0816-2

101. Chen LQ, Howison CM, Spier C, Stopeck AT, Malm SW, Pagel MD, et al.

Assessment of carbonic anhydrase IX expression and extracellular pH in

B-cell lymphoma cell line models. Leuk Lymphoma. (2015) 56:1432–9.

doi: 10.3109/10428194.2014.933218

102. Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, et al.

A comparison of iopromide and iopamidol, two acidoCEST MRI contrast

media that measure tumor extracellular pH. Contrast Media Mol Imaging.

(2015) 10:446–55. doi: 10.1002/cmmi.1647

103. Muller-Lutz A, Khalil N, Schmitt B, Jellus V, Pentang G, Oeltzschner G, et al.

Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR

scanner.MAGMA. (2014) 27:477–85. doi: 10.1007/s10334-014-0433-8

104. Keupp J, Heijman E, Langereis S, Grull H, Longo DL, Terreno E, et al.

Respiratory triggered chemical exchange saturation transfer mri for pH

mapping in the kidneys at 3T. In: Proceedings of the 19th Annual Meeting

of ISMRM (Montreal, QC, Canada) (2011). p. 690.

105. Keupp J, Dimitrov I, Langereis S, Togao O, Takahashi M, Sherry A. Non-

invasive cest-mri measurement of pH in the human kidneys using an

approved ct contrast agent. In: Proceedings of the 19th Annual meeting of the

ISMRM (Montreal, QC, Canada) (2011). p. 810.

106. Jones KM, Randtke EA, Yoshimaru ES, Howison CM, Chalasani P, Klein RR,

et al. Clinical translation of tumor acidosis measurements with AcidoCEST

MRI.Mol Imaging Biol. (2017) 19:617–25. doi: 10.1007/s11307-016-1029-7

107. Sun PZ, Longo DL, Hu W, Xiao G, Wu R. Quantification of iopamidol

multi-site chemical exchange properties for ratiometric chemical exchange

saturation transfer (CEST) imaging of pH. Phys Med Biol. (2014) 59:4493–

504. doi: 10.1088/0031-9155/59/16/4493

108. Jones KM, Randtke EA, Howison CM, Pagel MD. Respiration gating and

Bloch fitting improve pH measurements with acidoCEST MRI in an ovarian

orthotopic tumor model. Proc SPIE Int Soc Opt Eng. (2016) 9788:978815.

doi: 10.1117/12.2216418

109. Randtke EA, Granados JC, Howison CM, Pagel MD, Cardenas-Rodriguez J.

Multislice CEST MRI improves the spatial assessment of tumor pH. Magn

Reson Med. (2017) 78:97–106. doi: 10.1002/mrm.26348

Frontiers in Oncology | www.frontiersin.org 8 February 2020 | Volume 10 | Article 161

https://doi.org/10.1002/mrm.26370
https://doi.org/10.1038/srep42093
https://doi.org/10.1148/radiol.2017162351
https://doi.org/10.1002/mrm.27857
https://doi.org/10.21037/qims.2019.10.05
https://doi.org/10.1002/nbm.3287
https://doi.org/10.1007/s11060-016-2258-y
https://doi.org/10.1007/s11060-017-2664-9
https://doi.org/10.1007/s10147-018-1289-0
https://doi.org/10.1007/s11060-019-03251-7
https://doi.org/10.1093/neuonc/nov106
https://doi.org/10.1007/s11060-019-03132-z
https://doi.org/10.1002/mrm.22242
https://doi.org/10.1002/nbm.3257
https://doi.org/10.1002/cmmi.1569
https://doi.org/10.1201/9781315364421-20
https://doi.org/10.1097/RLI.0000000000000217
https://doi.org/10.1007/s00330-016-4552-7
https://doi.org/10.1002/mrm.22608
https://doi.org/10.1002/mrm.20441
https://doi.org/10.1002/mrm.24513
https://doi.org/10.1002/nbm.3720
https://doi.org/10.1002/mrm.26817
https://doi.org/10.1158/0008-5472.CAN-16-0825
https://doi.org/10.3892/ijo.2017.4029
https://doi.org/10.1007/s11307-018-1164-4
https://doi.org/10.1002/mrm.25053
https://doi.org/10.1007/s11307-014-0816-2
https://doi.org/10.3109/10428194.2014.933218
https://doi.org/10.1002/cmmi.1647
https://doi.org/10.1007/s10334-014-0433-8
https://doi.org/10.1007/s11307-016-1029-7
https://doi.org/10.1088/0031-9155/59/16/4493
https://doi.org/10.1117/12.2216418
https://doi.org/10.1002/mrm.26348
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Consolino et al. MRI-CEST Imaging of Tumor Metabolism and Acidosis

110. Wu R, Longo DL, Aime S, Sun PZ. Quantitative description of

radiofrequency (RF) power-based ratiometric chemical exchange

saturation transfer (CEST) pH imaging. NMR Biomed. (2015) 28:555–65.

doi: 10.1002/nbm.3284

111. Arena F, Irrera P, Consolino L, Colombo Serra S, Zaiss M, Longo DL. Flip-

angle based ratiometric approach for pulsed CEST-MRI pH imaging. J Magn

Reson. (2018) 287:1–9. doi: 10.1016/j.jmr.2017.12.007

112. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S. A

general MRI-CEST ratiometric approach for pH imaging: demonstration of

in vivo pH mapping with iobitridol. J Am Chem Soc. (2014) 136:14333–6.

doi: 10.1021/ja5059313

113. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE.

CEST and PARACEST MR contrast agents. Acta Radiol. (2010) 51:910–23.

doi: 10.3109/02841851.2010.502126

114. Delli Castelli D, Ferrauto G, Cutrin JC, Terreno E, Aime S. In vivo maps

of extracellular pH in murine melanoma by CEST-MRI. Magn Reson Med.

(2014) 71:326–32. doi: 10.1002/mrm.24664

115. Ferrauto G, Di Gregorio E, Auboiroux V, Petit M, Berger F, Aime

S, et al. CEST-MRI for glioma pH quantification in mouse model:

Validation by immunohistochemistry. NMR Biomed. (2018) 31:e4005.

doi: 10.1002/nbm.4005

116. Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD. Measuring in

vivo tumor pHe with CEST-FISP MRI. Magn Reson Med. (2012) 67:760–8.

doi: 10.1002/mrm.23038

117. Liu G, Li Y, Sheth VR, Pagel MD. Imaging in vivo extracellular

pH with a single paramagnetic chemical exchange saturation transfer

magnetic resonance imaging contrast agent. Mol Imaging. (2012) 11:47–57.

doi: 10.2310/7290.2011.00026

118. Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, et al.

Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas.

NMR Biomed. (2016) 29:309–19. doi: 10.1002/nbm.3466

119. Fernando WS, Martins AF, Zhao P, Wu Y, Kiefer GE, Platas-Iglesias C, et al.

Breaking the barrier to slow water exchange rates for optimal magnetic

resonance detection of paraCEST agents. Inorg Chem. (2016) 55:3007–14.

doi: 10.1021/acs.inorgchem.5b02850

120. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, et al.

Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in

mice. J Clin Invest. (2008) 118:3930–42. doi: 10.1172/JCI36843

121. Semenza GL. Tumor metabolism: cancer cells give and take lactate. J Clin

Invest. (2008) 118:3835–7. doi: 10.1172/JCI37373

122. Rattigan YL, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod

JW, et al. Lactate is a mediator of metabolic cooperation between

stromal carcinoma associated fibroblasts and glycolytic tumor cells

in the tumor microenvironment. Exp Cell Res. (2012) 318:326–35.

doi: 10.1016/j.yexcr.2011.11.014

123. Glunde K, Bhujwalla ZM. Metabolic tumor imaging using

magnetic resonance spectroscopy. Semin Oncol. (2011) 38:26–41.

doi: 10.1053/j.seminoncol.2010.11.001

124. Serrao EM, Brindle KM. Potential clinical roles for metabolic imaging

with hyperpolarized [1-13C]pyruvate. Front Oncol. (2016) 6:59.

doi: 10.3389/fonc.2016.00059

125. Brindle KM. Imaging metabolism with hyperpolarized (13)C-labeled cell

substrates. J Am Chem Soc. (2015) 137:6418–27. doi: 10.1021/jacs.5b03300

126. Viale A, Reineri F, Dastru W, Aime S. Hyperpolarized (13)C-pyruvate

magnetic resonance imaging in cancer diagnostics. Expert Opin Med Diagn.

(2012) 6:335–45. doi: 10.1517/17530059.2012.687372

127. Reineri F, Daniele V, Cavallari E, Aime S. Assessing the transport rate of

hyperpolarized pyruvate and lactate from the intra- to the extracellular space.

NMR Biomed. (2016) 29:1022–7. doi: 10.1002/nbm.3562

128. Hovener JB, Pravdivtsev AN, Kidd B, Bowers CR, Gloggler S, Kovtunov KV,

et al. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem

Int Ed Engl. (2018) 57:11140–62. doi: 10.1002/anie.201711842

129. Durst M, Koellisch U, Daniele V, Steiger K, Schwaiger M, Haase A, et al.

Probing lactate secretion in tumours with hyperpolarised NMR. NMR

Biomed. (2016) 29:1079–87. doi: 10.1002/nbm.3574

130. DeBrosse C, Nanga RP, Bagga P, Nath K, Haris M, Marincola F, et al.

Lactate chemical exchange saturation transfer (LATEST) imaging in vivo A

biomarker for LDH activity. Sci Rep. (2016) 6:19517. doi: 10.1038/srep19517

131. Saito S, Takahashi Y, Ohki A, Shintani Y, Higuchi T. Early detection

of elevated lactate levels in a mitochondrial disease model using

chemical exchange saturation transfer (CEST) and magnetic resonance

spectroscopy (MRS) at 7T-MRI. Radiol Phys Technol. (2019) 12:46–54.

doi: 10.1007/s12194-018-0490-1

132. Aime S, Delli Castelli D, Fedeli F, Terreno E. A paramagnetic MRI-CEST

agent responsive to lactate concentration. J Am Chem Soc. (2002) 124:9364–

5. doi: 10.1021/ja0264044

133. Zhang L, Martins AF, Zhao P, Tieu M, Esteban-Gomez D, McCandless

GT, et al. Enantiomeric recognition of d- and l-lactate by CEST with the

aid of a paramagnetic shift reagent. J Am Chem Soc. (2017) 139:17431–7.

doi: 10.1021/jacs.7b08292

134. Zhang L, Martins AF, Mai Y, Zhao P, Funk AM, Clavijo Jordan MV,

et al. Imaging extracellular lactate in vitro and in vivo using CEST

MRI and a paramagnetic shift reagent. Chemistry. (2017) 23:1752–6.

doi: 10.1002/chem.201604558

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Consolino, Anemone, Capozza, Carella, Irrera, Corrado, Dhakan,

Bracesco and Longo. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 9 February 2020 | Volume 10 | Article 161

https://doi.org/10.1002/nbm.3284
https://doi.org/10.1016/j.jmr.2017.12.007
https://doi.org/10.1021/ja5059313
https://doi.org/10.3109/02841851.2010.502126
https://doi.org/10.1002/mrm.24664
https://doi.org/10.1002/nbm.4005
https://doi.org/10.1002/mrm.23038
https://doi.org/10.2310/7290.2011.00026
https://doi.org/10.1002/nbm.3466
https://doi.org/10.1021/acs.inorgchem.5b02850
https://doi.org/10.1172/JCI36843
https://doi.org/10.1172/JCI37373
https://doi.org/10.1016/j.yexcr.2011.11.014
https://doi.org/10.1053/j.seminoncol.2010.11.001
https://doi.org/10.3389/fonc.2016.00059
https://doi.org/10.1021/jacs.5b03300
https://doi.org/10.1517/17530059.2012.687372
https://doi.org/10.1002/nbm.3562
https://doi.org/10.1002/anie.201711842
https://doi.org/10.1002/nbm.3574
https://doi.org/10.1038/srep19517
https://doi.org/10.1007/s12194-018-0490-1
https://doi.org/10.1021/ja0264044
https://doi.org/10.1021/jacs.7b08292
https://doi.org/10.1002/chem.201604558
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging
	Introduction
	Imaging Mobile Proteins (Amide Proton Transfer: APT)
	Imaging Glucose
	Imaging Tumor Acidosis
	Intracellular Tumor pH Imaging
	Extracellular Tumor pH Imaging

	Imaging Lactate
	Conclusion and Future Perspectives
	Author Contributions
	Funding
	References


