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The term “big data” refers broadly to large volumes of data, often gathered from several

sources, that are then analyzed, for example, for predictive analytics. Combining and

mining genetic data from varied sources including clinical genetic testing, for example,

electronic health records, what might be termed as “recreational” genetic testing such as

ancestry testing, as well as research studies, provide one type of “big data.” Challenges

and cautions in analyzing big data include recognizing the lack of systematic collection

of the source data, the variety of assay technologies used, the potential variation in

classification and interpretation of genetic variants. While advanced technologies such

as microarrays and, more recently, next-generation sequencing, that enable testing

an individual’s DNA for thousands of genes and variants simultaneously are briefly

discussed, attention is focused more closely on challenges to analysis of the massive

data generated by these genomic technologies. The main theme of this review is to

evaluate challenges associated with big data in general and specifically to bring the

sophisticated technology of genetic/genomic testing down to the individual level, keeping

in mind the human aspect of the data source and considering where the impact of the

data will be translated and applied. Considerations in this “humanizing” process include

providing adequate counseling and consent for genetic testing in all settings, as well as

understanding the strengths and limitations of assays and their interpretation.

Keywords: big data, predictive analytics, precision medicine, cancer risk prediction, clinical genetics/genomics,

direct-to-consumer testing, data sharing

INTRODUCTION

Precision medicine in cancer treatment is defined by the National Cancer Institute as a “genetic
understanding” of cancer, offering a specific treatment tailored to an individual (1). Cancer results
from a variety of factors, both genetic and environmental. The developmental path to the actual
tumor results from an accumulation of genetic changes which vary across and within tumors.
Some of these genetic changes are inherited germline mutations, but the majority are somatic
changes, uncorrected by DNA repair processes, that result from exposures or random events. These
genetic changes may present treatment targets; however, the genetic changes are heterogeneous
and specific actionable treatment targets may be rare. To detect these changes, data on many
tumors in many patients are required. Similarly, germline genetic changes that are inherited may
increase susceptibility to cancer either directly by affecting key proteins such as those critical to
repairing DNA damage or by increasing susceptibility to effects of cancer-causing environmental
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factors. These germline changes may also be very rare; thus,
analysis of large datasets is required to determine if there is an
association with cancer development and to determine if the
changes are useful in predicting risk.

The search for treatment targets and for predictive analytics
has fueled the demand for large data sets, i.e., “big data.”
Despite the current widespread use of the term, no consistent
or single definition of “big data” has been agreed on (2–5). The
online Oxford Dictionaries definition is: “extremely large data
sets that may be analyzed computationally to reveal patterns,
trends, and associations, especially relating to human behavior
and interactions” (6). In essence, “big data” denotes any data set
large enough to permit valid use of statistically based analytical
methods to extract a level of knowledge in an area of interest.

This massive data collection requires combining data from
varied sources, collected in disparate manners and assayed using
multiple techniques. The specific application of big data to be
discussed in this paper is genomics and related omics as they feed
into clinical management of patients.

These large data sets can be extremely complex, typically
characterized by references to the “Vs” [high volume, velocity,
variety, veracity, value, variability (4, 5, 7, 8)]. The growth in
acquiring and using “big data” is due to a variety of factors
including an increase in research and clinical applications
of genetic findings, pharmaceutical company interest in large
datasets to develop and apply targeted treatments, consumer
interest in genetic tests for ancestry and medical applications,
and a growth in the direct-to-consumer genetic test market.
“Big Data” is now big business and growing. The market for
genetic testing is projected to exceed $22 billion by 2024 (9).
Companies now produce, buy, and sell genetic data. Buyers of
data include researchers and pharmaceutical companies. Sellers
include companies that provide genetic testing and/or companies
that build and sell access to large data sets (data aggregators),
as well as a new developing market for individuals, not just the
companies, to benefit monetarily from the selling of their data
to companies (10). Companies that market DNA data also may
offer to perform testing. With this developing business around
producing and sharing data, outside of the clinical setting, the
danger exists of losing site not only of both how the data were
collected and assayed, but also of the individual who is sharing
the most intimate of data, their genetic profile.

The sharing and aggregation of genetic information into large
data sets may obscure the fact that the basic underlying source of
each data point is an individual. Individuals provide the data, the
data frommany are aggregated, and ultimately the information is
translated back to an individual. Thus, analyzing and interpreting
big data require recognizing the individual source of the data,
how the data are obtained, stored, and assayed and analyzed,
and how, ultimately, to apply them. In essence, the data must
always be viewed and used with the humanity of the individuals
providing their genetic material kept in mind.

The main theme of this review is to discuss challenges
associated with big data in general and specifically to bring the
sophisticated technology of genetic/genomic testing down to the
individual level, where the impact of the data will be translated
and applied. The latter activities reflect the “humanizing” of big

data as applied to genomic medicine. This article will address
analytical aspects of both genetics and genomics data and their
evolution over time.Whereas, “genetics” involves the functioning
and make-up of individual genes, the field addressed by big
data sets containing genetic information is “genomics”: genomics
deals with all genes in an organism and their inter-relationships
(11). The additional complexity in such big data has downstream
implications for clinical interpretation and management for the
individual. For this article, we will use the term “genetics” to
include both genetics and genomics data, and we will address
primarily germline genetics (i.e., also genomics), as elaborated
below. Finally, as we review the sequential stages of genetic
testing, we wish to re-emphasize the need to consider the
relationship of each technical phase of the pipeline to the human
being who is the source of the genetic material being analyzed.

CHALLENGES TO ANALYSIS OF GENOMIC

AND MEDICAL DATA FOR DISCOVERY OF

CLINICALLY RELEVANT GENETIC

VARIANTS

Laboratory Testing of Germline DNA

Variants
Testing of the germline for DNA variants, passed from one
generation to the next, that confer deleterious phenotypic
attributes has evolved radically over the years. This is largely
in response to the evolution of technologies that enable
massive testing of the genome (12), including microarrays but
especially next-generation sequencing (13, 14). The huge data
sets generated by these methods pose major challenges to the
next stage in the pipeline: bioinformatic analysis and statistical
validation. Such laboratory technologies allied with their follow-
up bioinformatic analyses provide the venue through which
“big data” are generated, and then funneled down into clinically
interpretable genetic information, i.e., that which is directly
relevant to the patient.

Challenges to analyzing genomic data for knowledge
discovery begin in the laboratory at the technical level in
the choice and conduct of specific approaches to sample
preparation and laboratory analysis (15). The challenges
continue downstream with the initial phases of the bioinformatic
pipeline for identification of clinically relevant variants. These
initial challenges involve selection of algorithms for optimal
filtering of genetic variants and are followed down the pipeline
through selection of appropriate algorithms at all subsequent
informatic stages necessary to identify meaningful variants (15).
Furthermore, the very large number of loci interrogated in
such discovery research represent individual tests for clinically
relevant genetic variants, posing the statistical challenge inherent
in multiple testing and concerns about identifying false positives.
The quality of the data generated at the end of this genomic
pipeline, i.e., the data on which clinical associations will be based,
must be carefully monitored throughout. Bias and variable
thresholds for calling individual genetic variants as clinically
relevant can feed into erroneous conclusions drawn from data.
Scrutiny of the findings at each stage of the pipeline is essential
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to maximize the chance of identifying true positive variants
and avoid missing false negatives. Furthermore, impediments
to generation of accurate, meaningful data are not limited
to technical decisions but are subject as well to inconsistent
communications among researchers with differing expertise at
each stage of the genomic pipeline (15). Cautionary approaches
are therefore necessary if the users of the genomic findings in the
healthcare setting can trust the quality of the underlying data.

Addressing the Limitations of Genomic

Technologies: Analytic Validity and

Probabilistic Outcomes
The laboratory technologies allied with their follow-up
bioinformatic analyses provide the venue through which
“big data” are generated, and then funneled down into clinically
interpretable genetic information, where “humanization” of
the “big data” needs to be emphasized. This stage is where the
“variety” attribute of generated data must be sifted through to
glean out irrelevant findings and select for meaningful outcomes
that are potentially pertinent to clinical interpretation. Key
to humanizing the data is communicating to the patient the
limitations at the clinical level of the transmitted information,
both technical and genetic.

The platforms most commonly used to identify
pathogenic variants in the clinical setting are single
nucleotide polymorphism (SNP) chip (microarray)-based
and next generation sequencing (next gen sequencing)-based
technologies. Although they are used in standard clinical
practice, caution must be exercised in interpreting the results
of these analytic tools. They are not perfect, and the limitations
of the diagnostic accuracy, or analytic validity (16), of a given
platform must be considered when communicating results to a
patient. This is particularly true of SNP chips. When juxtaposed
against results obtained from next gen sequencing, the diagnostic
accuracy of SNP chips has been shown to be uncertain when
used to detect rare pathogenic variants in the general population
(17). The analytic validity of such rare variants is poor, leading
to a very high false discovery rate. Thus, although SNP chips are
useful for assessing the presence of common variants in a given
population, such as polymorphisms, this does not translate into
the rare variants relevant to clinical genetic diagnoses. Similar
limitations exist for SNP chips from different manufacturers.
This contrasts with sequencing platforms which are not affected
by the same technical issues as chips and are therefore more
accurate in genotyping rare variants (17).

Even in a setting of strong analytic validity, as seen with
sequencing, many uncertainties remain. An accurately identified
variant may have questionable clinical validity, the strength
of its association with the phenotypic outcome of interest
(16, 18), i.e., disease, being uncertain. These unknowns are
inherent in the probabilistic nature of phenotypic expression
of genetic variants. Patients may assume that identification of
a pathogenic variant equates to certain development of the
associated disease, whereas incomplete penetrance is generally
the rule in heritable diseases such as adult cancers. Nevertheless,
the actual penetrance of rare alleles is uncertain and can

be over-estimated by clinical ascertainment methods (19).
Even greater uncertainty exists for variants with unknown
pathogenicity, namely “variants of uncertain significance,” or
VUSs. Without humanizing such findings by communicating
the absence of documented clinical relevance to the patient,
unnecessary anxiety may be provoked and avoidable invasive
treatment interventions undertaken. Finally, documentation
of analytic and clinical validity is not sufficient to make
a genetic test truly useful to the patient. The test must
have clinical utility in that it lays the groundwork for
beneficial interventions, whether pharmaceutical, surgical, or
behavioral, without overriding risks (16). By establishing that
a genetic test can lead to a clinically actionable intervention,
the role played by big data in performance of the test
becomes humanized.

CHALLENGES TO MANAGEMENT OF BIG

DATA: GENOMIC AND CLINICAL DATA

Ethical Challenges
Ethical issues evolving from the amassing of genetic data
should be addressed by researchers, health care providers and
companies. Subsequent use of “big data” must consider the
selective nature of the source of the data, i.e., the patient, and the
generalizability as well as the absolute necessity to prevent data
breaches and ensure data security (8). Informed consent is an
essential part of this process. The sharing of information from big
data accumulated from thousands of individuals, has long raised
concerns about maintaining individual privacy while advancing
our understanding of genetic associations that will promote
public health (8, 20, 21). The potential disregard of maintaining
genetic privacy has led to anxiety about sequelae involving
discrimination in multiple aspects of life, including employment
and health insurance (20). While the Genetic Information
Nondiscrimination Act (GINA) was enacted to prohibit such
discriminatory behavior, additional domains (e.g., life, disability,
and long-term care insurance) have remained vulnerable to
misuse of genetic information (20). The ethical issues arising
from the need to optimize these two “goods”– health vs.
privacy—while balancing the risks and benefits emerging from
this process (22) constitute an essential part of humanizing the
big data.

Security Challenges
Although security challenges overlap those inherent in the ethical
concerns just described, a number of issues relating to security
merit independent mention. Data needs to be accessible and
at the same time secure. Security must guarantee privacy of
data relating to the individual. An actual set of criteria, FISMA
(Federal Information Security Management Act), provides a
framework to guide protections of any information involving
government activities. The private sector parallel is HIPAA
(Health Insurance Portability and Accountability Act), which is
widely adhered to in healthcare settings. These security concerns
are becoming increasingly challenging due to the explosion of big
data and their storage on multiple cloud resources (23).
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Challenges to Management of Data Size

and Data Storage (the Silo Problem)
The huge size of big data, exacerbated by its continuous growth
in volume, poses challenges to storage (5, 24). Traditionally data
have been generated and stored in isolated compartments that
may even differ qualitatively from each other. As an example,
different departments in the same organization may store data
in their own data bases, resulting in “data silos.” The content
of siloed data in different departments may overlap but be
encoded using differing terminology such that these data cannot
“speak to each other.” This creates a serious impediment to
integrated analyses of healthcare-related data across siloes; such
analyses are critical to understanding factors affecting health-
directed outcomes, including genetics. Among critical siloed data
sets are Electronic Health Records (EHRs) (23), valuable for
generating trends and predictive models, including genomic and
pharmacogenomic markers (5, 25). The huge size of certain
types of data, i.e., genomic data, which must be integrated with
other data types of smaller size but much greater complexity,
i.e., phenotypic data as contained in the EHR, poses additional
challenges, which will be discussed below.

Challenges to Management of Data in

Unstructured Formats (26)
Frequently superimposed on the sheer size and ongoing
growth of the data is the extreme architectural complexity
of the data. The complexity of certain types of data (e.g.,
genomic) poses daunting challenges to being moved from
home storage to an analytic environment. Unstructured data
does not conform to a consistent accessible framework and
language. Therefore, it needs to be converted into a structured
readable format in order to identify useful information. In
the clinical genomic setting, this conversion to a structured
format is essential to teasing out genetic variants that are
clinically meaningful and actionable. Historically, medical
charting was entirely unstructured, comprising handwritten
notes interspersed with machine-generated data, such as
laboratory values. The EHR represents a first step at structuring
such patient data by providing a consistent template for entries
of medical information (23). However, data derived from the
EHR are of multiple types (27). One estimate has 80% of data
contained in EHRs as unstructured (26, 28). These varied entries
in the EHR have value in that they can be used to formulate
phenotypic classifications of patients. The technical challenges
to this conversion process involve sophisticated algorithms
using machine learning, natural language processing (NLP), and
artificial intelligence (AI) (26). In the clinical genetic setting,
examples of unstructured data that are difficult to convert to
structured formats include EHRs, genomics, and other omic
datasets. Commonly, for example, integration of the EHR
with genomic and other types (e.g., biospecimen) of clinically
relevant data results in questionable phenotypic diagnoses due
to inaccurately determined correlations (29, 30). In essence,
challenges to data quality, reliability, accuracy and integration
must always be addressed. The ultimate goal is to discover
associations between genetic/genomic variations and clinical

phenotypes that are accurate and clinically meaningful in that
they can be used to manage patient care, essentially creating
predictive models (26).

Challenges to Data Sharing
Essential to gleaning meaningful, actionable information from
large data sets, in any context, is sharing of data among data
producers (31). Given the need for as much data as possible
to deduce clinically meaningful genomic variants, sharing of
data among source clinical sites is critical, especially for rare
genetic diseases (32). A guideline known as FAIR (Findable,
Accessible, Interoperable, and Reusable) has been developed to
guide investigators in managing the sharing of big data (33). To
optimize the quality and usefulness of shared data sets, regulatory
policies governing all genomic-related data generated by NIH-
funded research have been established. Such Genomic Data
Sharing (GDS) policies are specific to given types of data (34).

Challenges to Testing of the Individual, i.e.,

the Data Source
Sources for large analytic data sets, i.e., “big data,” include
data from clinical settings as well as genetic testing companies.
Thus, potential selection factors for who gets testing will affect
the results and interpretation. Until recently, the ordering of
cancer genetic tests for cancer susceptibility syndromes for those
diagnosed with cancer or with a strong family history of cancer
was done in the clinical setting, after genetic counseling by a
qualified health care provider. More recently, cancer genetic
testing, as well as other health-related genetic testing, has
expanded beyond the clinical setting, with companies advertising
and offering testing directly to consumers without the need for
involving a health care provider, or offering the test with a
company-provided physician to order the test. The benefit of
direct-to-consumer testing is potentially improved accessibility
through convenience of in-home testing, bypassing requirements
for health care provider visits, and lower cost tests. Data sets
with a preponderance of clinically sourced data are likely to have
higher risk individuals than direct-to-consumer or consumer-
driven genetic testing. Also, in contrast to direct-to-consumer
generated data, clinical settings are more likely to have extensive
family history information, which is critical for interpreting test
results. However, the extensive family history documentation
may or may not be adequately or accurately transmitted to the
“big data” compilation.

The individual who is the source of the data, the researcher
analyzing it, and the clinicians who use the results of analyses
should have a broad understanding of the process of consent,
genetic testing, its benefits, harms and limitations, the potential
implications of data sharing and with whom genetic testing
results are shared. Immersed in the massive amounts of
information and issues surrounding the use of genetic/genomic
data at the clinical level, the input source of these data—the
patient/individual—and the process of generating the data may
be overlooked.

Pre-test counseling prior to proceeding with genetic testing is
recommended because of the complexity of genetic information,
and the need to anticipate how that information will be used for
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subsequent management of risk. Counseling includes several key
components: medical and family history, risk assessment, risk
perception, discussion of the most appropriate test, benefits and
limitations of testing, communication with family members, and
follow-up management (35, 36). This patient-centered approach
espouses shared decision making, a process by which the patient
has an informed discussion with the health care provider about
the above issues, taking into consideration their personal values
and whether or not to pursue genetic testing. Pre-test genetic
counseling informs the individual and facilitates shared decision
making while ensuring patient autonomy in the process (37)
and is recommended by the U. S. Preventive Services Task
Force (USPSTF) (38) and the National Comprehensive Cancer
Network (NCCN) (39) in appropriate situations. Unlike other
medical tests, genetic testing has implications for the family
members, leading to issues such as how to communicate test
results to family members as well as how the data may be
shared. These downstream components of the genetic pipeline
illustrate the strong human element with which the process
culminates. Those using big data should ensure that the
individual’s preferences are respected and that they are informed
of the potential broad sharing of data. Similarly, when applying
information gathered from analyses of “Big Data,” the uncertainty
that may be introduced by the methodologic issues in data
generating activities as noted previously should be considered.
Progress in technical and computational methodologies has
simplified the generation of massive genomic analyses but
limitations still exist.

SUMMARY

The application of technologies to generate and interpret big
data related to genetic testing holds promise for the future
of cancer medicine. The practice of “precision medicine,”
in which the diagnostic and therapeutic interactions are
tailored to a given patient, should benefit considerably
from modern genomic technologies. Unquestionably

genetic understanding is a key component of this approach
to patient care, given the foundational role played by
cumulative somatic mutations in carcinogenesis (40). Precision
medicine must be built on precision data. The sources of
the data used in “big data” should be stated along with the
characterization of the population source, specimen source
and preparation, assays used and analytic methods and
algorithms employed. At the application and interpretation
of data, the “precision” of precision medicine derives as
much from an understanding of the psychological and social
setting and needs of the patient and from the standard
clinical attributes that brought the individual to the medical
system as from the genetic underpinnings of the cancer
or cancer risk. The composite of all these attributes makes
the focus on a given patient truly precise, humanizing the
process of incorporating genetic content into the practice of
cancer medicine.

The potential of technology to improve the public health
is unquestionable. However, understanding how technical
platforms that analyze large-scale data feed into clinically
relevant information can be daunting for patients and healthcare
providers without specific genomic training. In this paper we
have drawn attention to the many challenges and limitations as
well as benefits associated with analyzing and applying big data
to clinical applications. Our goal has been to point the way to
demystifying the complexity of “big data” so that recipients of
its benefits, patients and providers, will be in a better position
to make appropriate clinical decisions. In this sense, we have
attempted to “humanize big data,” by unraveling its many
components in an effort to make its meaning, if not all its details,
more accessible to non-specialists.
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