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Metabolic reprogramming is prevalent in cancer, largely due to its altered chemical

environments such as the distinct intracellular concentrations of O2, H2O2 and H+,

compared to those in normal tissue cells. The reprogrammedmetabolisms are believed to

play essential roles in cancer formation and progression. However, it is highly challenging

to elucidate how individual normal metabolisms are altered in a cancer-promoting

environment; hence for many metabolisms, our knowledge about how they are changed

is limited. We present a novel method, CaMeRe (CAncer MEtabolic REprogramming),

for identifying metabolic pathways in cancer tissues. Based on the specified starting and

ending compounds, along with gene expression data of given cancer tissue samples,

CaMeRe identifies metabolic pathways connecting the two compounds via collection

of compatible enzymes, which are most consistent with the provided gene-expression

data. In addition, cancer-specific knowledge, such as the expression level of bottleneck

enzymes in the pathways, is incorporated into the search process, to enable accurate

inference of cancer-specific metabolic pathways. We have applied this tool to predict

the altered sugar-energy metabolism in cancer, referred to as the Warburg effect, and

found the prediction result is highly accurate by checking the appearance and ranking

of those key pathways in the results of CaMeRe. Computational evaluation indicates

that the tool is fast and capable of handling large metabolic network inference in cancer

tissues. Hence, we believe that CaMeRe offers a powerful tool to cancer researchers for

their discovery of reprogrammed metabolisms in cancer. The URL of CaMeRe is http://

csbl.bmb.uga.edu/CaMeRe/.
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INTRODUCTION

Metabolic reprogramming in cancer, recognized as one of the cancer hallmarks (1), refers to the
phenomenon that cancer cells reprogram some of their metabolisms, largely driven by the unique
chemical microenvironment in cancer tissues, including reduced intracellular concentrations of
O2 and H+, and increased H2O2 level. For example, when the O2 level is low, O2 consuming
reactions tend to be repressed. Similarly, H+ consuming reactions will be down-regulated when
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the H+ level is low or pH is high. An elevated level of H2O2

may drive increased syntheses of various macromolecules with
anti-oxidative properties such as polyunsaturated fatty acids (2).
Some reprogrammed metabolisms are believed to also support
the needs of rapid cell proliferation, survival in harsh conditions,
migration and metastasis, and resistance to cancer treatments
(3, 4).

The first reprogrammed metabolism in cancer was discovered
by Otto Warburg in 1927. His seminal observation was that
cancer cells tend to produce Adenosine triphosphates (ATPs) via
glycolysis rather than the normal and more efficient respiration
pathway, hence resulting in increased glycolysis, which has
served as the basis for cancer detection via Positron emission
tomography–computed tomography, and been widely referred
to as the Warburg Effect (5, 6). Since then, a long list
of reprogrammed metabolisms has been identified. Examples
include elevated glycolysis in support of ATP production,
increased glutaminolysis, persistent up-regulation of amino acid,
sugar and lipid metabolisms, de novo synthesis of nucleotides,
simultaneous synthesis and degradation of triglycerides and
phospholipid among others [(7); Zhou et al., under review].
Some reprogrammed metabolisms could considerably deviate
from the original metabolism. Examples of the sort include
the truncated pathway of tryptophan degradation; rerouting
of the removal process of the waste ammonia of amino acid
metabolisms from urea cycle to polyamine production and
release; and branched chain amino acid metabolisms. Published
studies have suggested that these reprogrammed metabolisms
or some of them may play causal roles in cancer formation
and evolution. Hence, it is essential to identify the detailed
pathways of such reprogrammed metabolisms to understand
how they may contribute to tumorigenesis. As of now, a
few such rewired metabolisms have been well-elucidated such
as glutaminolysis, the Warburg effect, and truncated pathway
of tryptophan degradation but many are yet to be fully
analyzed and elucidated. Among the few well-elucidated rewired
metabolisms, they have all been essentially done manually based
on available experimental data. The field will clearly benefit from
an automated capability for inference of rewired metabolisms
in cancer.

We have developed an open-access web server called CaMeRe
(CAncer MEtabolic REprogramming) to search for promising
rewired metabolic pathways in cancer cells for specified starting
and ending compounds, and gene-expression data of cancer
tissues. Using an unbiased search approach, CaMeRe could not
only recover well-established pathways, but also predict novel
metabolic processes. Currently the server is developed to use
expression data in The Cancer Genome Atlas (TCGA) database
and it can also analyze the datasets from users.

A number of computational tools whose functions are similar
to CaMeRe are publicly available, including MRE (8), FMM
(9), PHT (10), and Metabolic PathFinding (11) which also
have the function of searching for novel metabolic pathways.
We summarize these methods in Table 1. The main differences
between CaMeRe and these tools are the focus on metabolic
reprogramming in cancer and its novel search criteria. For
example, some existing path-searching tools, such as FMM and
PHT, use the length of routes as the search criterion, which does

TABLE 1 | A summary of path-searching tools in the public domain.

Tool Data source Ranking

criteria

Information of

output pathway

References

CaMeRe Humancyc

database, The

Cancer Genome

Atlas (TCGA)

database

Bottleneck, SV Metabolic routes,

all reactions in the

routes, all enzymes

of reactions, search

criteria score

–

MRE Verified KEGG

reactions

Fraction of

conversions via

normalized

Boltzmann

weights

Required

metabolites, EC

numbers for

enzymes, genes for

foreign enzymes,

reaction free

energy, competing

native reactions

(8)

FMM KEGG reactions Number of

reaction steps

EC numbers for

enzymes,

availability of each

enzyme in various

host organisms,

suggestion for

foreign enzymes

(9)

PHT KEGG reactions Number of

reaction steps

EC numbers for

enzymes, local and

global

compound

similarities for each

reaction step

(10)

Metabolic

PathFinding

LIGAND

database

The connectivity

of a compound

Textual description

of the paths found

and graphical

representation

(11)

not capture the needs for inference of novel pathways in cancer.
In comparison, CaMeRe provides multiple search criteria to the
user, including the standard derivation (SV) of the expression
levels of the candidate enzymes in a target pathway and the
expression level of the rate-limiting enzyme. More importantly,
compared to other existing publicly available tools, CaMeRe
offers the search in 14 cancer types and allows the user to upload
their genes and their corresponding expression levels to highlight
enzymes that are significantly different than the expression data
from TCGA.

MATERIALS AND METHODS

Data Resource
CaMeRe makes use of two data resources. The first is the
HumanCyc database (12), which Q4 provides an encyclopedic
reference on human metabolic pathways and is used for
construction of pathway models as graphs. It consists of 2,835
enzymatic reactions, 3,543 enzymes and 1,843 compounds in
human. The other one is the TCGA database, composing of
multiple omic data, particularly transcriptomic and genomic
data of 33 cancer types. There are 307,935 samples for the
fourteen of these cancer types and 673 samples for controls. By
combining both of the databases, CaMeRe is able to map the
human metabolic pathways and omic data to each other as the
reference and performs cross-over analysis.
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Functionalities of CaMeRe
CaMeRe prompts the user to select the cancer type, provide a
number of search parameters including weight measures and
search criteria, and specify the starting and ending compounds

of the target pathway (8). Weight measures, including mean,
median and standard deviation (SV) of a given list of gene
expression data from TCGA, represent the level of expression of
a gene that corresponds with a specific enzyme. Search criteria

FIGURE 1 | The interface of CaMeRe to search for metabolic pathways in cancer tissues.

FIGURE 2 | Visualization of a metabolic pathway. The red node is the starting compound and the yellow one is the ending compound. A user can check the details of

all edges and nodes by clicking on each of them to obtain detailed information about specific enzymes or compounds.
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include bottleneck and stability, which take the lowest weight in
the route and the SV of the entire route as the ranking metric,
respectively. Bottleneck encourages the “short slab” to be as high
as possible and stability expects the SV as low as possible.

To make the tool as user-friendly as possible, CaMeRe
provides an auto-completion function when a user types in the
name of a compound along with a page listing all possible
compound names for the user to select. A user can manually
change the default values for various search parameters including
the maximum number, N, of reactions in the target pathway and
maximumnumber, K, of pathways in the final output. The default
values of N and K are 8 and 10, respectively.

Once these parameter values are set, CaMeRe will generate
top-K metabolic pathways ranked with the criteria set by the
user, all the involved reactions and enzymes for each pathway
along with the values of the search criteria. To facilitate a user
to better understand the search results, a visualization module is
developed and incorporated into CaMeRe. The user can visualize
an entire pathway by clicking on its name, examine the details
of the pathway, such as individual reactions, and go to each link
provided by the output to check details about specific compounds
or enzymes in HumanCyc. The interface of CaMeRe is shown in
Figures 1, 2.

CaMeRe allows its users uploading their cancer data during
searching pathways to find the enzymes which are up-regulated
or down-regulated compared to the expression level of enzymes
from our TCGA data. A user-provided file should be a
two-column CSV file including gene symbol and its RNA-
sequence expression data. CaMeRe will highlight the enzymes
corresponding to the genes whose fold changes between uploaded
data and our TCGA data larger than 2 or less than 0.5. The
up-regulated and down-regulated enzymes will be denoted as red
and green in the result, respectively. These highlighted enzymes
are significantly different than the expression data from TCGA
and they are worth being explored further.

Workflow of CaMeRe
Figure 3A shows the workflow of the pathway-searching
function of CaMeRe. It uses a weighted graph to represent a

TABLE 2 | The number of enzymes whose fold change (calculated by mean,

median, and SV of enzyme expression vector, respectively) in cancer vs. control

samples is larger than the threshold (1.5 or 2), where 2,969 is the total number of

human enzymes included in our system.

Mean Median SV

Fold change > 1.5 1,166/2,969 1,049/2,969 1,853/2,969

Fold change > 2 438/2,969 255/2,969 1,115/2,969

metabolic network with compounds as nodes and reactions as
edges collected from HumanCyc. A depth-first search algorithm
(13) is used to generate all possible pathways that connect the
starting compound to the ending compound via a collection of
relevant enzymes.

After the search is done, top-K routes are then selected from
all candidate pathways ranked by the specified search criteria.
All the selected pathways are shown as a table consisting of all
the compounds, reactions linking the compounds along with
the enzymes catalyzing the reactions and the value calculated,
according to the search criteria. Figure 3B shows the workflow
for pathway prediction over the gene-expressions of the specified
cancer samples. A user can upload the CSV file during searching
pathways and CaMeRe will highlight the enzymes corresponding
to the genes whose fold changes between uploaded data and
our TCGA data larger than 2 or less than 0.5. Finally, a table
containing all this information will be output.

Construction of Metabolic Network
To ensure the feasibility of CaMeRe, we calculate the fold change
of Emean, Emedium, and ESV , referring to the mean, median and SV
of enzyme expression vector, respectively, between normal and
tumor samples for every enzyme (Table 2). The results reveal that
there are huge differences between tumor and normal samples,
hence CaMeRe truly focuses on cancermetabolic reprogramming
rather than focusing on the samples whose expression is similar
to normal samples.

FIGURE 3 | (A) Workflow of pathway searching function of CaMeRe. (B) Workflow of analyzing the uploaded cancer samples.
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To construct a target metabolic network, we pre-process the
reaction data from HumanCyc. We integrate these reaction data
to construct a metabolic network. We define each compound
as a node in the metabolic network. For each pair of reactant
and product, we build an edge. In this part, we ignore the
common compounds (such as H2O, H

+, ATP, and ADP) to be
the intermediate products through a metabolic route because
they connect with lots of compounds, and these redundant
connections could largely increase the complexity of pathway
searching. Then, the weight of each edge is assigned to be the
expression level of enzyme calculated by the selection of weight
measures from users. Through combining gene expression data
of cancer samples and the existing graph, the metabolic network
is generated. Finally, the genes whose mean value of the
expression vector <1 are removed to eliminate the effect from
unexpressed genes. We also consider that there can be more than
one edge between two compounds, but the final network should
only have one edge. For example, if there are three edges R1, R2,
and R3 between two compounds A and B, we will compare the
mean of enzyme expression vector among R1, R2, and R3, and
retain the highest one.

RESULTS

Performance
To estimate the running time of CaMeRe, we randomly
selected 100 pairs of compounds from HumanCyc, and set the
largest number of reactions and number of routes as 10 and
100, respectively. It took 1.5 s on average. When the default
parameters were set as (N = 8, K = 50), it only needed 0.6 s
on average.

To evaluate the feasibility of CaMeRe, we selected eight
known pathways with striking features in cancer metabolic
reprogramming including glycolysis, glutaminolysis, pentose
phosphate pathway (PPP), mitochondrial biogenesis, fatty acid
oxidation, electron transport chain (ETC), tricarboxylic acid
cycle (TCA cycle) and fatty acid synthesis (3). Here are how
these pathways work in cancer. Glycolysis generates 2 ATP
per glucose consumed and provides materials for PPP (14)
and PPP supplies tumors with ribose-5-phosphate which is a
major element for nucleotide synthesis (15). In addition, fatty
acid synthesis is indispensable for formation of new cellular
membranes and proliferation. Fatty acid oxidation (16) generates
the energy for cancer cells. Fatty acids are oxidized to generate
acetyl-CoA which could fuel the TCA cycle to generate flavin
adenine dinucleotide reduced. This compound donates electrons
to mitochondrial ETC for ATP generation. Mitochondrial
biogenesis (17) is also essential because mitochondria are not
only the energy generators but also the factories for synthesizing
many essential metabolites for cancer growth, proliferation,
and metastasis. As mentioned above, these 8 pathways are the
key changes in cancer metabolic reprogramming because they
provide cancer cells with not only essential energy but also
important precursors to support large-scale biosynthesis, rapid
proliferation, continuous growth, tissue invasion, metastasis,
survival and resistance to anti-cancer therapies.

TABLE 3 | The results of searching the key pathways and their relevant

compounds in cancer metabolic reprogramming.

Pathway Starting

compound

Ending

compound

Found/Not

found

PPP D-ribulose

5-phosphate

D-xylulose

5-phosphate

Found

Glycolysis beta-D-

fructofuranose

6-phosphate

Fructose

1,6-bisphosphate

Found

Fatty acid oxidation Coenzyme A Acetyl-CoA Found

Fatty acid synthesis – – Not found

Glutaminolysis L-glutamine L-aspartate Found

ETC NADH NAD+ Found

TCA cycle acetyl-CoA NADH Found

Mitochondrial

biogenesis

Pyruvate (R)-lactate Found

“Found” means the corresponding pathway was identified by CaMeRe among the

top three.

We took the relevant compounds of these 8 pathways as input
and output (12), and searched these compounds by CaMeRe
to test the feasibility of our tool. The searching results are
summarized in Table 3 which shows that 7 pathways have been
identified among the top three by CaMeRe, which suggests the
accuracy of CaMeRe as 87.5%. It demonstrates that CaMeRe
could identify most well-known metabolic reprogramming
in cancer.

Case Study
In order to evaluate the usability of CaMeRe, three instances
including glycolysis pathway, hexosamine metabolic pathway
and pentose phosphate pathway (PPP) were studied in details.
Considering the NADH and biochemical pathways of Warburg
effect, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a
cytosolic enzyme and a housekeeping gene, which has pleiotropic
functions in both glycolysis and non-glycolytic pathways (18).
GAPDH is also one of the targets for modification during
cancer reprogramming such as the methylation directed by
coactivator-associated arginine methyltransferase 1 (CARM1 or
PRMT4) (19). In general, from the perspective of biochemistry,
GAPDH involves in the transformation from glyceraldehyde-
3-phosphate (G-3-P) to 1,3-diphosphoglycerate (1,3BPG) (20),
which is exactly one of the significant biochemical reactions
of glycolysis. Searching with the initial compound as D-
glyceraldehyde 3-phosphate and the terminal compound as 1,3-
bisphospho-D-glycerate (also named as 1,3-diphosphoglycerate)
with given parameters [maximum number of reactions: 8, weight
measurement: mean, search criteria: bottleneck, cancer type:
Bladder Urothelial Carcinoma (BLCA)]. According to the results
that CaMeRe returned, 100 metabolic routes can be identified in
total. However, the search results in Figure 4 suggest GAPDH as
the key enzyme in the most outstanding route with one reaction
from the G3P to 1,3BPG, which is verified by previous studies as
one of the significant pathways in the reprogramming.
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Except for the glycolysis, the glucose can be diverted
and transformed to β-N-acetyl-glucosamine (GlcNAc) (21)
through the hexosamine metabolic pathway (HBP) (22),
which is highly activated in tumor cells (23) and tightly
related to multiple cellular processes, such as amino acid
metabolism, nucleotide metabolism and salvage pathway (24).

Glutamine-Fructose-6-Phosphate Transaminase (GFPT1),
also alternatively named Glutamine:fructose-6-phosphate
amidotransferase 1 (GFAT1), is a well-known glucose-related
protein, which catalyze the reaction from the beta-D-
fructofuranose 6-phosphate to the L-glutamate (25, 26)
(Figure 5) and acts as the rate-limiting enzyme in the HBP

FIGURE 4 | The result of searching from D-glyceraldehyde 3-phosphate to 1,3-bisphospho-D-glycerate exhibits in the first line whose bottleneck largely surpasses

the second line’s, which means the expression level of the enzyme involved in the reaction route 1 is much higher than that in the reaction route 2 and suggests the

conspicuousness of reaction route 1.

FIGURE 5 | Reaction catalyzed by GFAT1.

FIGURE 6 | The result of searching from beta-D-fructofuranose 6-phosphate to L-glutamate exhibits in BLCA.
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FIGURE 7 | The result of searching from beta-D-fructofuranose 6-phosphate to L-glutamate exhibits in normal tissue.

that is also one of the protein glycosylation pathways (27). The
expression of GFPT1 is highly upregulated in many cancers like
pancreatic cancer compared to the normal tissue (28), since
it can generate the uridine diphosphate N-acetylglucosamine
(UDP-GlcNAc) to keep the level of glycosylated proteins (24)
and regulate the function of proteins. When searching with the
initial compound as beta-D-fructofuranose 6-phosphate and
the terminal compound as L-glutamate (maximum number
of reactions: 8, weight measurement: mean, search criterion:
bottleneck, cancer type: BLCA), the direct biochemical reaction
from beta-D-fructofuranose 6-phosphate to the L-glutamate,
which is catalyzed by GFPT1, ranks at the top (Figure 6).
However, when searching in the normal tissue with the
same criteria, the outstanding routes change to other longer
reaction routes and GFPT1 is not involved in those reactions.
The direct reaction route between beta-D-fructofuranose
6-phosphate to the L-glutamate shows smaller sorting value
compared to other significant routes and ranks only 9th in the
route list (Figure 7), suggesting that the reprogramming
indeed happens in the tumor tissue rather than the
normal tissues.

PPP is also a branch from the glycolysis pathway and the
major source of nicotinamide adenine dinucleotide phosphate
(NADPH) (29). Since most of the cancer cells produce a high
level of ROS than normal cells that is hazardous in some
cases (30), such as oxidative stress (31), and chemotherapies
(32), PPP is evolved for cancer cells to produce a high
level of NADPH to alleviate ROS. Some tumors involve
unique metabolic reactions to avoid cell death with the high
activation of the anabolic glucose enzyme phosphogluconate
dehydrogenase (PGD), which can synthesize the pentose riboside
precursors and NADPH from substrates in the PPP. PGD
is one of the key enzymes in cancer reprogramming, and
the loss-of-function of PGD will cause a significant effect on
the reprogrammed epigenetic state, malignant gene expression
and anabolic glucose metabolism (33). The PGD involves in
the reaction from D-gluconate 6-phosphate to D-ribulose 5-
phosphate. By using CaMeRe, the corresponding reaction with
the PGD involved could also be identified in multiple cancers,
such as Bladder Urothelial carcinoma (BLCA) (Figure 8), Breast
invasive carcinoma (BRCA) (Figure 9) and Thyroid carcinoma
(THCA) (Figure 10).

DISCUSSION

In this paper, we proposed CaMeRe, an open-access web server to
explore the metabolic reprogramming in cancers for promising
metabolic routes and analyze cancer samples uploaded by users.
It could assist biologists to discover the existing metabolic routes
and excavate their internal connectivity. CaMeRe could also
explore previously unknown metabolic routes to shed light on
further research.

To evaluate the performance, we estimated the computational
running time of CaMeRe, which shows its rapid response to
output the results for users. Next, we estimated the accuracy

of CaMeRe by searching the 8 key pathways published in
the recent studies and the results show that 7 of them could

be identified by CaMeRe among the top hits. It shows the
credibility of this tool to explore unknown pathways in the cancer
metabolic reprogramming. Then, several case studies reported

in the literature are elucidated to demonstrate the application
of CaMeRe further. In this part, the second case shows that the

fold change of the expression level of GFAT1 between BLCA
and normal samples exceeds 1.5. It implies the huge difference
in the metabolic reprogramming pathways between cancer and
normal samples.

We also found some limitations of CaMeRe to overcome,
as followings. (1) The limitation of searching criteria. In the
future, the synthetic quantity of some specific materials (such
as H+ and ATP) in the metabolic routes could also be the
searching criteria applied in heuristic search and it will further
extend the field of interest from biologists. For instance, the
consumption and production of H+ could be used to understand
the pH changes in the cancer cells which is also an essential
point of view to explore cancer (34). The consumption and
production of ATP or ADP could also be used to study the
energy system in the cancer cells (35). In addition, we could
set more published compounds of interests to be the searching
criteria in the future. (2) Collecting the Kcat , the catalytic rate
constant (36), of the enzymes. In our metabolic network, the
reaction rate is more convincing to be the weights than the
enzymatic concentration. Under the hypothesis of sufficient
substrates, the relationship between the maximum reaction
rate and the enzymatic concentration is Vmax = Kcat[E]0
where [E]0 refers to the initial enzymatic concentration (37).
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FIGURE 8 | The result of searching from D-gluconate 6-phosphate to D-ribulose 5-phosphate in BLCA.

FIGURE 9 | The result of searching from D-gluconate 6-phosphate to D-ribulose 5-phosphate in Breast invasive carcinoma (BRCA).

FIGURE 10 | The result of searching from D-gluconate 6-phosphate to D-ribulose 5-phosphate in Thyroid carcinoma (THCA).

More collection of Kcat values of enzymes will improve the
practicability of the metabolic network (3). The limitation
of data resource. In Table 3, we did not find the relevant
compound of fatty acid synthesis, which is indeed reported in the
literature, one possible reason of this is due to the limited data
resource. In the future, the combination with other databases,
such as Kyoto Encyclopedia of Genes and Genomes (KEGG)
Databases (38) that integrates chemical, genomic information

and the management of synonyms among compounds should
be conducted.

In summary, by estimating the performance and case studies,
we demonstrated that CaMeRe could be used to explore cancer
metabolic reprogramming as a promising tool. We will keep
updating new release in the future and expect that CaMeRe could
contribute to the research of cancer metabolic reprogramming in
the future.
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