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Ammonium tetrathiomolybdate (ATTM) has been used in breast cancer therapy for

copper chelation, as elevated copper promotes tumor growth. ATTM is also an identified

H2S donor and endogenous H2S facilitates VitB12-induced S-adenosylmethionine

(SAM) generation, which have been confirmed in m6A methylation and lung cancer

development. The m6A modification was recently shown to participate in lung

adenocarcinoma (LUAD) progression. These conflicting analyses of ATTM’s anticancer

vs. H2S’s carcinogenesis suggest that H2S should not be ignored during LUAD’s

treatment with ATTM. This study was aimed to explore ATTM’s effects on LUAD

cells and mechanisms associated with H2S and m6A. It was found that treatment

with ATTM inhibited cell growth at high concentrations, while enhanced cell growth

at low concentrations in three LUAD cell lines (A549, HCC827, and PC9). However,

another copper chelator triethylenetetramine, without H2S releasing activity, was not

found to induce cell growth. Low ATTM concentrations also elevated m6A content in

A549 cells. Analysis of differentially expressed genes in TCGA cohort indicated that

m6A writer METTL3 and reader YTHDF1 were upregulated while eraser FTO was

downregulated in LUAD tissues, consistent with the findings of protein expression

in patient tissues. ATTM treatment of A549 cells significantly increased METTL3/14

and YTHDF1 while decreased FTO expression. Furthermore, inhibition of m6A with

shMETTL3 RNA significantly attenuated eukaryotic translation initiation factor (eIF)

expressions in A549 cells. Correlation analysis indicated that small nuclear ribonucleic

protein PRPF6 was positively expressed with YTHDF1 in LUAD tissues. Knockdown

of YTHDF1 partially blocked both basal and ATTM-induced PRPF6 expression, as well

as A549 cell growth. Lastly, ATTM treatment not only raised intracellular H2S content
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but also upregulated H2S-producing enzymes. Exogenous H2S application mimicked

ATTM’s aforementioned effects, but the effects could be weakened by zinc-induced

H2S scavenging. Collectively, H2S impedes ATTM-induced anticancer effects through

YTHDF1-dependent PRPF6 m6A methylation in lung adenocarcinoma cells.

Keywords: H2S, m
6A methylation, Ammonium tetrathiomolybdate, lung cancer, PRPF6

INTRODUCTION

Ammonium tetrathiomolybdate (ATTM), with the formula
(NH4)2MoS4, is a strong copper chelator. It has been clinically
used in the treatment of copper toxicosis for Wilson’s disease.
At high concentrations, copper is also known to promote
angiogenesis, metabolism and oxidative phosphorylation,
thereby leading to tumor growth (1–3). Consequently, copper-
chelating agents, like ATTM and triethylenetetramine (TETA),
have been investigated in the treatment of cancers, including
breast cancer, thyroid cancer and liver cancer (4–8). Additionally,
copper-dependent enzyme, superoxide dismutase (SOD) 1, has
been reported to facilitate lung adenocarcinoma (LUAD)
development (9). Therefore, ATTM therapy may theoretically be
extended to LUAD.

Interestingly, our lab and others have recently discovered
ATTM is a pH-dependent hydrogen sulfide (H2S) donor (10,
11). There is no doubt that the development of ATTM as
a therapeutic candidate must consider ATTM being both a
copper chelator and a H2S releaser. It should be noted that
the links between H2S and cancer development is still under
debate (12). Some studies showed that elevated H2S can induce
angiogenesis and tumor cell proliferation, thereby contributing
to cancer development (13–15). H2S was also involved in
VitB12-induced S-adenosylmethionine (SAM) generation (16),
and high VitB12 has been found to raise the risk of lung
cancer (17). Notably, in lung cancer tissues, endogenous H2S
and its producing enzymes, like cystathionine beta-synthase
(CBS), cystathionine gamma lyase (CSE, also known as CTH)
and 3-mercaptopyruvate sulfurtransferase (3-MST), are highly
expressed thereby benefiting cancer development (18, 19).

N6-Methyladenosine (m6A) methylation is one major
type of mRNA modification, dynamically modulated by the
corresponding writers, erasers and readers (20). The m6A
methylation can differentially influence all fundamental aspects
of mRNA metabolisms, including splicing, stability, and
translation efficiency, when read by different m6A readers (21–
23). Recently, the m6Amethylation has been implicated in cancer
pathogenesis, due to its induction of cell proliferation, invasion
and immune disorders (24–28). Analysis of the cancer genome
atlas (TCGA) cohort and recent studies (29, 30) indicated that
m6A writer, methyltransferase like (METTL) 3 is upregulated in
LUAD. The eraser, fat mass and obesity-associated gene (FTO),
is downregulated. Both increased METTL3 and decreased FTO
strongly suggest that LUAD tissues exhibit high m6A levels.
However, no direct evidence has shown H2S can regulate m6A
methylation, although H2S enhances SAM generation (16), a
cofactor of METTL3/14 complex. We therefore hypothesize that

m6A methylation is likely to be affected by H2S derived from
ATTM and participate in LUAD development.

In the present study, we observed the effects of ATTM on
lung adenocarcinoma cells and explored the roles of m6A in
this process. Furthermore, we assessed the medication of H2S
in ATTM-induced tumor cell proliferation, invasion and growth.
Lastly, a purposive strategy was developed to overcome ATTM’s
side-effects in LUAD therapy.

MATERIALS AND METHODS

Materials
ATTM and antibodies against METTL3 and METTL14 were
purchased from Sigma-Aldrich Co. (St. Louis, MO, US).
Antibodies against FTO and YTHDF1 were purchased from
Abcam (Plc.Cambridge, MA, US). CuSO4 and Zn(OAc)2 were
purchased from Meilun Biotechnology Co. (Dalian, China).
TRIzolTM Regent (Invitrogen) was provide by Thermo Fisher
Scientific Co. (Shanghai, China). GemcellTM fetal bovine serum
(FBS) was supplied by Gemini Company (Woodland, US).

Cell Culture, Growth, Proliferation, and
Invasion Assays
Lung adenocarcinoma cell lines (A549 and HCC827) were
purchased from Cell Bank of Type Culture Collection of Chinese
Academy of Sciences (Shanghai, China), and PC9 was obtained
from ATCC. The cells were maintained in RPMI-1640 medium
supplemented with 10% FBS at 37◦C under an atmosphere of 5%
CO2 and 95% air. They were passaged and harvested with 0.25%
trypsin every other day.

Cell number was measured with Cell Counting Kit (CCK)-
8 provided by Dojindo Lab (Kyushu, Japan). A549, HCC827,
and PC9 cells were plated in 96-well plates at a density of 7,
000 cells/well. When grown to ∼60–70% confluence, the cells
were treated correspondingly. After the treatments, the CCK-
8 solution (100 µL) at a 1:10 dilution with FBS-free medium
was added to each well-followed by a 2-h incubation at 37◦C.
Absorbance (A) was measured at 450 nm with a microplate
reader (Molecular Devices, US).

Cell proliferation was tested with BeyoClickTM 5-Ethynyl-2′-
deoxyuridine (EdU) kit (Haimen, China). After the treatment of
A549 cells with ATTM for 48 h, EdU incorporation assay was
performed according to the manufacturer’s instructions.
TMB-derived color was measured at 630 nm with the
microplate reader.

Cell invasion was observed with Transwell Migration Assay,
as described (31) with modifications. RPMI-1640 medium (1%
FBS) containing ATTM or Na2S in the absence or presence
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of Zn(OAc)2 was added to the lower chambers of the 12-well
format transwells (8 µm-pore, BD Biosciences). A549 cells were
seeded in the upper chambers at 105 cells per well, following a
48 h-culture. After that, the transwells were fixed in methanol,
and stained with Giemsa solution. The unmigrated cells were
removed from the top of the membranes using cotton swabs.
To quantify the number of migrated cells in the bottom of the
membrane, four random images of each group were taken at 10×
under a lightmicroscope.Migrated cell number was counted with
Image J software.

Quantification of m6A RNA Methylation
After treatments of A549 cells with increasing concentrations of
ATTM for 24 h, total RNA was extracted using TaKaRa MiniBest
kits (Kusatsu, Japan) and quantitated with NanoDrop 1000
spectrophotometer (Thermo Fisher, US). The m6A RNA was
detected with EpiQuik m6A RNA Methylation Colorimetric kit
(Farmingdale, US). Briefly, 200 ng of fresh extracted RNA sample
was added into strip wells with RNA high binding solution,
and incubated for 90min at 37◦C. After three washes, capture
antibody, detection antibody, and enhancer solutionwere applied
in turn, and incubated for 1 h at 37◦C. After washes, color
developing solution was added and incubated for 6min in the
dark. When the solution became blue in the m6A positive wells,
stop solution was added to turn the color into yellow. Lastly, the
absorbance of stable yellow was measured at 450 nm with the
microplate reader.

Western Blotting for Protein Expression
After exposed to 60µM ATTM for 24 h, A549 cells were
collected and split at 4◦C. Total proteins in the lysate were
quantitated with a BCA kit. Thirty micrograms of total protein
sample were loaded in SDS-PAGE and electrophoresed. At the
end of electrophoresis, the proteins were transferred to PVDF
membranes. The membranes were blocked with 5% fat-free milk
in Tris-base buffered saline containing 0.1% Tween-20 (TBS-T)
for 1 h at room temperature, and then incubated with the primary
antibodies against m6A related proteins (METTL3, METTL14,
FTO, and YTHDDF1), and H2S-producing enzymes (CSE,
CBS, and MPST), respectively, with gentle agitation overnight
at 4◦C. After three washes, corresponding HRP-conjugated
secondary antibodies were applied and incubated for 1.5 h at
room temperature. The signal was visualized using an enhanced
chemiluminescence detection system. The intensity of bands was
quantified with Image J software.

Analysis of TCGA Database and
Measurement of Protein Expression of
LUAD Patients
Transcriptional expressions of m6A or H2S related genes in
primary tumor tissues and adjacent tissues of LUAD patients,
as well as correlation analysis in tumor tissues, were performed
through TCGA cohort research tool (UALCAN). Furthermore,
the protein expressions of METTLE3, METTL14, and FTO
in LUAD patients were verified with Western blotting assay
as above.

Gene Knockdown
Gene expression microarray data were downloaded at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76367 (29).
METTL3 was knocked down through short hairpin (sh) RNA in
A549 cells, and gene expression was profiled by high throughput
sequencing. Selected genes of eukaryotic translation initiation
factors (eIFs) were shown as the maximum vs. minimum of the
ratio shMETTL3 to shGFP.

Small interfering RNA (siRNA) against human YTHDF1
(Gene ID: 54915) was synthesized by GenePharma Co., Ltd
(Shanghai, China). YTHDF1 siRNA and control random non-
targeting siRNA were transfected into the A549 cells using
Lipofectamine 2000 (Invitrogen, USA) (32). To raise the
transfection efficiency, the cells were incubated with 20 nM
YTHDF1 siRNA or Control siRNA for 6 h followed by a
24-h culture. The silencing ability was evaluated by Western
blotting assay.

Quantitative Polymerase Chain Reaction
for PRPF6 Gene Expression
Total RNAs were extracted from A549 cells and quantitated
as above. First-strand cDNA was synthesized using TaqMan
SYBR R© Premix Ex TaqTM II (Tli RNase H Plus) virus reverse
transcriptase and 2 µg RNA template in 20 µL reaction volume.
The cDNA was used for real-time PCR with Prime Script RT
reagent kit with gDNA Eraser (Life Technologies, US). Actin
was used to normalize the expression of PRPF6. The results
were analyzed using the comparative Ct method (2-11Ct
with logarithmic transformation). Primer sequences were
displayed as below: PRPF6 forward 5-GTCATGCGTGCCGT
GATTG-3 and reverse 5-TCCAGGGCATTGTGGGCTA-3,
Actin forward 5-TGGCACCCAGCACAATGAA-3 and reverse
5-CTAAGTCATAGTCCGCCTAGAAGCA-3. PCRs were carried
out as follows: initial denaturation at 95◦C for 30 s, 40 cycles
of 95◦C for 5 s, 60◦C for 34 s, and 95◦C for 15 s, 60◦C for 1 h,
followed by a final extension at 95◦C for 15 s.

Measurement of H2S Levels
ATTM-mediated H2S generation in cells was determined with a
H2S fluorescent probe WSP-5 (33). A549 cells were inoculated
in 24-well plates and grown to 60∼70% confluence. After treated
with ATTM, the cells were incubated with 10µM WSP-5 in 1%
FBS medium at 37◦C for 30min in the dark. Cell imaging was
carried out after a slight wash with PBS. The intracellular H2S-
triggered fluorescence was visualized under AMG fluorescence
microscopy (Advanced Microscopy Group, US).

For H2S scavenging induced by Zn(OAc)2, CuSO4, FeCl3
or VitB12 was observed through a Unisense H2S micro-sensor
(Tueager 1, Denmark) (34). Into 5 mL PBS buffer, fresh Na2S
stock solution was added to produce a 100µM Na2S solution.
When the curve reached the peak and kept stable, the same dose
of above compounds was immediately added, respectively. The
curves were recorded correspondingly with the H2S sensor. For
Zn(OAc)2 or CuSO4-induced continuous H2S scavenging from
ATTM solution was recorded for 6 h. Into 20 mL of 500µM
ATTM solution (pH 5), fresh Zn(OAc)2 or CuSO4 stock solutions
was added, respectively, to produce a 250µM solution. Real-time
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FIGURE 1 | Effects of copper chelators on LUAD cell growth and proliferation. After treatment with increasing concentrations of ATTM (A) or TETA (B) for 48 h, cell

number of three cell lines (A549, HCC827, and PC9) was counted with CCK-8 assay. (C) After ATTM treatment for 48 h, the proliferation of A549 cells was tested with

BeyoClickTM EdU kit. Data are expressed as mean ± SD of four independent experiments. *P < 0.05, **P < 0.01 vs. Control group.

H2S content was monitored with the H2S sensor and quantified
against a standard curve.

Statistical Analysis
The experiment data are presented as means ± standard
deviation (SD). Significance between groups was evaluated by
one-way analysis of variance (ANOVA) followed by Student-
Newman-Keuls test using GraphPad Prism 8 software (SanDiego,
US). A probability <0.05 was considered statistically significant.

RESULTS

Low ATTM Levels Enhanced Growth of
Lung Adenocarcinoma Cells
As shown in Figure 1A, treatment with high concentrations
(≥250µM) of ATTM for 48 h remarkably reduced cell number,
in three types of lung adenocarcinoma cells (A549, HCC827, and
PC9). However, at low concentrations (from 60 to 125µM), the
treatment distinctively increased cell number. Notably, another
copper chelator TETA, without H2S releasing activity, was not
found to elevate cell number at the same treatment profile
(Figure 1B). Furthermore, 60–125µMof ATTM treatment could
also induce A549 cell proliferation as evaluated by EdU assay
(Figure 1C). The result indicates that low ATTM concentrations
are able to promote lung adenocarcinoma growth.

ATTM Induced mRNA m6A Methylation in
Lung Adenocarcinoma A549 Cells
To understand why ATTM enhanced lung adenocarcinoma
growth, A549 cells were selected as a representative in
the following experiments. Since mRNA m6A methylation
is involved in a variety of cancer growth including lung
adenocarcinoma, intracellular m6A mRNA level was then
investigated. As shown in Figure 2A, the m6A mRNA content
was significantly elevated after the exposure of A549 cells to
60µM ATTM for 24 h. However, the treatment duration (half
of 48 h) did not alter cell number (Figure 2B) or growth status
(Figure 2C). Notably, analysis of TCGA cohort shows that LUAD
condition significantly upregulates the m6A writer METTL3,
while downregulates them6A eraser FTO (Figure 2D). The result

indicates that ATTM can trigger mRNAm6Amethylation before
cell growth in lung adenocarcinoma cells.

Upregulated m6A Methylation Was
Involved in LUAD Progression and
ATTM-Induced mRNA Translation in Lung
Adenocarcinoma A549 Cells
To uncover the mechanisms underlying the increased m6A
mRNA levels in ATTM-treated cells, m6A related proteins
were detected with Western blot. As shown in Figures 3A,C,
comparing with the adjacent tissues, the writer (METTL3
and METLL14) expressions were upregulated in tumor
tissues of LUAD patients, while the eraser FTO expression
was downregulated. Importantly, the writer (METTL3 and
METLL14) expressions in A549 cells could also be upregulated,
while the eraser FTO could be downregulated under ATTM
treatment (Figures 3B,D), supporting the finding of the
increased intracellular m6A content. To confirm the roles
of m6A methylation, we investigated gene expression profile
in METTL3 knockdown A549 cells. As shown in Figure 3E,
shRNA-mediated METTL3 knockdown significantly inhibited
the expressions of translation initiation factors, including eIFs
(2B3, 3B, 3C/CL, 3D, 3IP1, 4A1, and 5/5A). This suggests that
m6A methylation is necessary to translation process in A549
cells, and that the elevated m6A levels may be important for
LUAD progression and ATTM-induced tumor growth.

YTHDF1 Mediated ATTM-Induced Growth
in Lung Adenocarcinoma A549 Cells
Although the increased m6A writer METTL3/14 and the
decreased eraser FTO can result in the enhancement of m6A
content, it is them6A readers that directly determine the outcome
of m6AmethylatedmRNA.With TCGA cohort, we examined the
four common m6A readers (YTHDF1, YTHDF2, YTHDF3, and
YTHDC1) in LUAD tumor samples and normal samples, and
found YTHDF1 highly expressed in tumor tissues (Figure 4A).
The increased YTHDF1 continuously expressed within various
stages of LUAD (Figure 4B). Importantly, it was found that
treatment of A549 cells with 60µM ATTM for 24 h remarkably
upregulated YTHDF1 protein expression (Figure 4C). After
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FIGURE 2 | Effects of ATTM on mRNA m6A methylation in A549 cells. The cells were treated with ATTM at concentrations ranging from 0 to 60µM for 24 h. (A) The

content of m6A mRNA was measured with a commercial kit (PC, positive control; NC, negative control). (B) The cell number was tested with CCK-8 assay. Data are

presented as mean ± SD. n = 4. *P < 0.01 vs. Control group. (C) Growth of quiescent A549 cells and cells exposed to 60µM ATTM for 24 h were captured using

digital microphotograph. (D) Expressions of the m6A writers (METTL3, METTL14, and WTAP) and erasers (FTO and ALKBH5) were analyzed between LUAD primary

tumor tissues (n = 515) and normal tissues (n = 59) in TCGA cohort. Data are showed as median ± quartile. **P < 10−4 vs. Normal tissues.

knockdown of YTHDF1 with siRNA in A549 cells (Figure 4D),
both basal and ATTM-triggered cell growth were attenuated
(Figure 4E).

YTHDF1-Mediated Cell Growth Was
Associated With PRPF6 Induction in
ATTM-Treated A549 Cells
To explore targets involved in YTHDF1-mediated A549 cell
growth, we screened genes that are positively correlated with
YTHDF1 in TCGA LUAD cohort. As shown in Figure 5A,
PRPF6 was found to be positively expressed with YTHDF1 in
LUAD tissues (r= 0.72). Similar to YTHDF1’s expression profile,
the increased PRPF6 expression lasted various stages of LUAD
(Figure 5B). Furthermore, qPCR analysis showed that PRPF6
mRNA level was significantly reduced after YTHDF1 knockdown
in A549 cells. Additionally, the knockdown attenuated ATTM-
induced PRPF6 mRNA expression (Figure 5C). The result
reveals that PRPF6 may be a potential target gene involved in
YTHDF1-mediated A549 cell growth.

H2S Was Significant to ATTM-Induced
A549 Cell Growth and m6A Methylation
ATTM was previously demonstrated to generate H2S on
acid conditions in our lab. As shown in Figure 6A, the
exposure of A549 cells to ATTM markedly raised intracellular

H2S levels. With TCGA cohort, we studied endogenous H2S
synthetase expressions and, found that CSE/CTH, CBS and
MPST expressions were enhanced in tumor tissues comparing
with normal samples (Figure 6B). Additionally, the exposure
of A549 cells to 60µM ATTM for 24 h obviously upregulated
CBS andMPST expressions (Figures 6D,E), however, remarkable
change of CSE was not found (Figure 6C). Notably, direct H2S
donation (Na2S) could also inducem

6Amethylation (Figure 6F),
as well as cell growth (Figure 6G), proliferation (Figure 6H)
and invasion (Figures 6I,J), indicating H2S being an effector in
ATTM-induced m6A methylation and cell growth.

H2S Scavenging Attenuated ATTM-Induced
A549 Cell Growth and m6A Methylation
Since the enhanced H2S generation was involved in ATTM-
induced A549 cell growth and m6Amethylation, scavenging H2S
might overcome these side-effects of ATTM. Through testing
several common H2S scavengers, it was found that Zn(OAc)2
and CuSO4 had powerful ability to remove H2S, while the
ability of VitB12 and FeCl3 was weak or even undetectable
(Figure 7A). Additional cell viability examination showed that
both Zn(OAc)2 and CuSO4 were non-toxic at concentrations
<25µM (Figures 7B,C).

To make sure H2S is necessary to ATTM-induced biological
process in A549 cells, we observed the scavenging effect
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FIGURE 3 | Effects of lung cancer condition and ATTM treatment on m6A related protein expression. (A) Confirmed LUAD patient tumor tissues and normal adjacent

tissues, as well as (B) A549 cells treated with 60µM ATTM for 24 h and normal cells, were collected and split. Total proteins were used for Western blot assay to

measure the expressions of METTL3, METTL14, and FTO. Corresponding quantifications were shown as (C,D), respectively. Data are presented as mean ± SD. n =

2. *P < 0.05, **P < 0.01 vs. Control group. (E) A549 cells transfected with shMETTL3 or shGFP were collected and gene expression was profiled by high throughput

sequencing. Representative genes of eukaryotic translation initiation factors (eIFs) were analyzed and shown as the maximum vs. minimum of the ratio of shMETTL3

to shGFP (GSE76367).

of Zn(OAc)2 or CuSO4 on ATTM-induced H2S release
within a period of 6 h. As shown in Figure 8A, adding
25µM Zn(OAc)2 or CuSO4 time-dependently attenuated
ATTM-induced H2S release. Notably, application of 25µM
Zn(OAc)2 inhibited ATTM-induced cell growth (Figure 8B),
proliferation (Figure 6H) and invasion (Figures 6I,J). More

importantly, Zn(OAc)2 was also able to attenuate ATTM-
induced m6A methylation (Figure 8C). Collectively, the
result suggests that H2S is necessary and sufficient to
ATTM-induced biological changes, and scavenging H2S
can potentially overcome ATTM’s side-effects in lung
cancer treatment.
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FIGURE 4 | Roles of YTHDF1 in ATTM-induced growth of A549 cells. (A) Expressions of m6A readers (YTHDF1, YTHDF2, YTHDF3, and YTHDC1) and a potential

target gene (PRPF6) were compared between LUAD patient primary tumor tissues (n = 515) and normal tissues (n = 59) in TCGA cohort. Data are shown as median

± quartile. **P < 10−7 vs. Normal tissues. (B) YTHDF1 gene expression in normal tissues and various LUAD stage tissues was analyzed in TCGA cohort. Data are

shown in the box plot. (C) After treatment of A549 cells with 60µM ATTM for 24 h, YTHDF1 protein expression was measured with Western blot assay, and the

densitometric analysis was performed. Data are shown as mean ± SD. n = 2. *P < 0.05 vs. Control group. (D) A549 cells were incubated with YTHDF1 siRNA or

Control siRNA for 6 h followed by a 24-h culture, and the interference efficiency was determined with Western blot assay. (E) Normal A549 cells and YTHDF1-knocked

down cells were treated with 60µM ATTM for 48 h, and cell counting assay was performed. Data are presented as mean ± SD. n = 4. **P < 0.01 vs. Control siRNA

cells, #P < 0.01 vs. ATTM-free cells.

FIGURE 5 | Identification of PRPF6 as a target gene of YTHDF1. (A) TCGA-based correlation analysis between PRPF6 and YTHDF1. (B) PRPF6 gene expression in

normal tissues and various LUAD stage tissues was analyzed through TCGA cohort. Data are shown in the box plot. (C) Normal A549 cells and YTHDF1-knocked

down cells were treated with 60µM ATTM and then mRNA was extracted for analysis of PRPF6 expression with qPCR. Data are shown as mean ± SD. n = 4. *P <

0.01 vs. ATTM-free cells. #P < 0.01 vs. Control siRNA cells.

DISCUSSION

In the present study, ATTM was found to promote cell growth,
proliferation and invasion in lung adenocarcinoma cells, through
YTHDF1-dependent PRPF6m6Amethylation. H2S was involved
in the above effects of ATTM. Importantly, scavenging H2S
was proved to overcome the side-effects of ATTM in lung
cancer therapy.

Copper ions are known to essentially maintain organism
functions by regulating activity of key enzymes, like cytochrome
C oxidase and SOD. However, its aberrant increase in plasma
usually leads to pathological consequences, including Wilson’s
disease and cancers. During cancer development, high contents
of copper are believed to enhance angiogenesis and blood supply,
as well as activity of mitochondrial cytochrome C oxidase,
thereby promoting solid tumor growth and metastasis (1–3, 35).
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FIGURE 6 | Roles of H2S in ATTM-induced m6A methylation and growth in A549 cells. (A) A549 cells were treated with normal medium (Control) and 60µM ATTM for

3 h. Intracellular H2S content was observed with H2S fluorescent probe WSP5 staining followed by fluorescence photography. (B) Expressions of H2S synthetases

(CSE, CBS and MPST) were compared between LUAD patient primary tumor tissues (n = 515) and normal tissues (n = 59) in TCGA cohort. Data are showed as

median ± quartile. *P < 10−6, **P < 10−11 vs. Normal tissues. (C–E) After treatment of A549 cells with 60µM ATTM for 24 h, the expressions of CSE (C), CBS (D),

and MPST (E) were measured with Western blot, and then densitometric analysis were performed. Data are shown as mean ± SD. n = 2. *P < 0.05 vs. Control.

(F) A549 cells were treated with increasing concentrations of Na2S for 24 h, intracellular m6A mRNA was tested with a commercial kit. (G) A549 cells were treated

with the indicated concentrations of Na2S for 24 and 48 h, respectively. The cell number was measured with CCK-8 assay. (H–J) A549 cells were treated with 60µM

ATTM or 120µM Na2S in the absence or presence of 25µM Zn(OAc)2 for 48 h. Cell proliferation was tested with EdU incorporation assay (H). Cell invasion was

observed with Transwell Migration Assay (I) and migrated cells were counted using ImageJ software. Data are presented as the mean ± SD. n = 4. *P < 0.05, **P <

0.01 vs. Control/Medium. #P < 0.05, ##P < 0.01 vs. Zn(OAc)2 free group.
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FIGURE 7 | H2S removing efficiency and cell toxicity of the indicated H2S scavengers. (A) After adding 100µM Na2S, the same amount of indicated H2S scavengers,

including Zn(OAc)2, CuSO4, FeCl3 and VitB12, were added, respectively. The content of H2S molecule was monitored with a Unisense H2S microsensor. (B–C) A549

cells were treated with increasing concentration of Zn(OAc)2 (B) or CuSO4 (C) for 24 h. The cell number was measured with CCK-8 assay. Data are shown as the

mean ± SD. n = 4. *P < 0.05, **P < 0.01 vs. Control group.

Consequently, chelating agents of copper ions, like ATTM and
TETA, have become promising anticancer drugs. The clinical
trials of ATTM in breast cancer have recentlymade great progress
(4–6). Notably, SOD1, a copper-dependent enzyme, was reported
to participate in lung cancer growth and has become a significant
therapeutic target (9). Therefore, ATTM may exert anticancer
effects in lung adenocarcinoma through reduction of copper
ions. In this study, at high concentrations, ATTM could indeed
inhibit the growth of lung adenocarcinoma cells. However, at low
concentrations, ATTMdistinctively promoted tumor cell growth,
as well as proliferation and invasion. The result was different
from the reported effects of ATTM in breast cancer (6) and
BRAF-driven papillary thyroid cancer (8), which suggests that
the findings in other cancers should not be simply transplanted
to lung cancer.

To uncover the mechanisms underlying ATTM-induced
LUAD cell growth at low concentrations, we investigated mRNA
m6A methylation, which has been involved in different cancer
growth, like liver cancer (25), endometrial cancer (26), and
leukemia (36). The m6A writer METTL3 has also been reported
to promote lung cancer survival, growth, and invasion (29).
We therefore speculated that the aberrant m6A methylation was
involved in ATTM-induced growth of LUAD cells. By measuring
m6A content in A549 cells, we found that the treatment with
ATTM for 24 h significantly enhanced intracellular m6A content,

while it did not significantly alter cell growth, suggesting m6A
methylation occurs earlier than cell growth. Generally, m6A
methylated mRNA can be synthesized via methyltransferase
complex m6A writer, mainly consisting of METTL3, METTL14,
and WTAP. Meanwhile, CH3- can also be erased from the RNA
using FTO and ALKBH5. Therefore, the process is dynamic and
reversible (37). The increased METTL3 and decreased FTO in
the present TCGA analysis indicate that the dysregulated writer
and/or eraser may be responsible for the increased m6A content
in lung adenocarcinoma cells. This finding was supported
by protein measurement in LUAD patients. Importantly, we
found that the treatment with ATTM significantly augmented
METTL3, but reduced FTO protein expression. ATTM could
also upregulate METTL14 expression, which was not consistent
with the TCGA analysis. We hypothesize that this difference may
be due to the uncertainty of gene expression between mRNA
level and protein level. Notably, for the increased METTL3
and decreased FTO, the present experiment matched the TCGA
analysis. Such unique expressions, we believe, contribute to
ATTM-induced m6A increase in A549 cells.

However, the roles of m6A in cancer biology are complicated
and conflicting, i.e., tumor growth or anti-tumor (38). In
addition, the binding of target mRNA with the writers or erasers
is usually instantaneous. Therefore, it may be significant to
examine the roles of m6A readers. To date, YT521-B homology
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FIGURE 8 | Effects of H2S scavengers on ATTM-induced A549 cell growth and m6A methylation. (A) ATTM solutions were prepared in the presence or absence of

25µM Zn(OAc)2 or CuSO4. Subsequently, released H2S was recorded for 6 h with a H2S micro-sensor. (B) A549 cells were treated with 60µM ATTM for 48 h in the

absence or presence of 25µM Zn(OAc)2 or CuSO4. The cell number was measured with CCK-8 assay. (C) A549 cells were treated with 60µM ATTM for 24 h in the

absence or presence of 25µM Zn(OAc)2 or CuSO4. Intracellular m
6A mRNA was tested with a commercial kit. Data are shown as the mean ± SD. n = 4. **P < 0.01

vs. Control. #P < 0.05, ##P < 0.01 vs. ATTM alone group.

(YTH) domain family of proteins, like YTHDF1, YTHDF2,
YTHDF3, and YTHDC1, have been identified as m6A readers.
YTHDF1-mediated mRNA spicing can increase translation
efficiency, whereas YTHDF2-mediated mRNA decay will inhibit
gene expression (21). The TCGA analysis indicates that the
expression of YTHDF1, instead of YTHDF2/3 or YTHDC1, was
markedly increased in LUAD tissues. In A549 cells, the elevated
m6Amainly induced gene translation, evidenced by shMETTL3-
mediated eIFs’ downregulation (29). Western blot test showed
that YTHDF1 expression could be upregulated by ATTM.
Significantly, YTHDF1 siRNA inhibited basal and ATTM-
induced cell growth, confirming the involvement of YTHDF1 in
basal and environment-stimulated lung tumorigenesis.

As an m6A reader, it is necessary to discover YTHDF1’s target
genes. The TCGA analysis shows that PRPF6 (a small nuclear
ribonucleic protein) is positively expressed with YTHDF1.
The GEO analysis shows that PRPF6 can be attenuated
through METTL3 knockdown (shGFP 1023 vs. shMETTL3
848). Additional analysis of MeT V2.0 m6A database indicates
that m6A PRPF6 mRNA can be discerned and read by
YTHDF1 in Hela cells via GRAC motif (R is G or A)
(21). Actually, PRPF6 has been reported to promote lung
cancer growth (39, 40). With these bioinformatics analyses
and reports, PRPF6 is probably a target gene of YTHDF1.
Importantly, the present experiment showed that ATTM
treatment not only induced YTHDF1 expression, but also
enhanced PRPF6 mRNA abundance. Both basal and ATTM-
induced PRPF6 upregulation was significantly reduced by
YTHDF1 knockdown, which was supported by previous reports
(39, 40). As documented, the increased PRPF6 can alter the
constitutive and alternative splicing of ZAK kinase, thereby
activating cancer-related pathways, like AP-1, ERK, and JNK
(41). In sum, it is believed that ATTM treatment upregulated

METTL3/14 and downregulated FTO, raising intracellular m6A
mRNA like PRPF6. Furthermore, these specific mRNAs were
read by YTHDF1, and the spicing and translation of cancer
growth-related genes were induced, thereby promoting LUAD
tumor growth.

Significantly, we dissected the cause of ATTM-induced
m6A methylation and cell growth. Copper chelating can exert
anticancer effects through inhibiting angiogenesis (4, 6, 8).
However, apart from copper chelating, ATTM can release H2S
(10, 11). Studies have shown that the homeostasis of H2S
is essential in organisms (42–46). In this study, we found
that intracellular H2S level was markedly raised after ATTM
treatment. Nevertheless, another copper chelator without H2S
releasing ability, TETA, did not alter tumor cell growth. Direct
H2S donation exerted similar effects to ATTM. The effects of
ATTM or H2S could be abolished by CuSO4 or Zn(OAc)2.
Besides H2S releasing, we found ATTM induced the expressions
of H2S-production enzymes, which have been reported to
participate in survival and chemoresistance of LUAD cells (18).
Therefore, H2S is significant and necessary for ATTM-induced
m6A methylation and lung cancer growth.

In healthy individuals, plasma free copper ion content is
<20µM (47), but for cancer patients, the recommended daily
ATTM dosage was 90mg (48). Therefore, the initial plasma
ATTM should be much higher than that of free copper ions, so
the free ATTM will release H2S during the clinical application
(11). Of course, zinc application maybe overcomes ATTM’s
side-effects in LUAD therapy, while copper should not be
recommended because of its tumorigenesis risk.

Interestingly, during the examination of VitB12 roles, it was
found that VitB12 enhanced ATTM-induced LUAD cell growth
(Supplementary Figure 1), unlike zinc or copper’s inhibitory
effects. However, both our study and previous reports suggest
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FIGURE 9 | ATTM-produced H2S induces mRNA m6A methylation and

promotes lung adenocarcinoma growth.

VitB12 is a H2S scavenger (34, 49). In fact, it has been documented
that high VitB12 can raise the risk of lung cancer (17). H2S
can also facilitate VitB12-induced SAM generation (16) that is
the first substrate of METTTL3/14 complex. These findings
further support H2S-induced m6A methylation promotes LUAD
tumor growth.

In conclusion, the present study demonstrated that ATTM
can induce m6A methylation through upregulation of METTL3
and downregulation of FTO in LUAD cells. YTHDF1-mediated
PRPF6 expression is probably a pivotal reason. The effects of
ATTM are closely associated with H2S generation (Figure 9).
For the first time, this work reveals a potential risk and
mechanism for ATTM application in LUAD treatment.
Meanwhile, this is the first report on the roles of H2S in
m6A methylation.
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