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Purpose: The majority of patients with low-grade gliomas (LGGs) experience

tumor-related epilepsy during the disease course. Our study aimed to build a radiomic

prediction model for LGG-related epilepsy type based on magnetic resonance imaging

(MRI) data.

Methods: A total of 205 cases with LGG-related epilepsy were enrolled in the

retrospective study and divided into training and validation cohorts (1:1) according to

their surgery time. Seven hundred thirty-four radiomic features were extracted from

T2-weighted imaging, including six location features. Pearson correlation coefficient,

univariate area under curve (AUC) analysis, and least absolute shrinkage and selection

operator regression were adopted to select the most relevant features for the epilepsy

type to build a radiomic signature. Furthermore, a novel radiomic nomogram was

developed for clinical application using the radiomic signature and clinical variables from

all patients.

Results: Four MRI-based features were selected from the 734 radiomic features,

including one location feature. Good discriminative performances were achieved in both

training (AUC = 0.859, 95% CI = 0.787–0.932) and validation cohorts (AUC = 0.839,

95% CI = 0.761–0.917) for the type of epilepsy. The accuracies were 80.4 and 80.6%,

respectively. The radiomic nomogram also allowed for a high degree of discrimination.

All models presented favorable calibration curves and decision curve analyses.

Conclusion: Our results suggested that the MRI-based radiomic analysis may predict

the type of LGG-related epilepsy to enable individualized therapy for patients with

LGG-related epilepsy.
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INTRODUCTION

World Health Organization (WHO) grade II or low-grade glioma
(LGG) (1) accounts for the majority of primary brain tumors
in young adults (2, 3). The majority of patients with LGG
experiences tumor-related epilepsy (4, 5) that impacts their
quality of life and may contribute to long-term disability (6–
8). Broadly, the type of epilepsy can be generalized or focal
based on its presentation (9) and require different methods of
treatment. Generalized epilepsy occurs more frequently, is more
severe, and requires a relatively higher dose of antiepileptic
therapy with the potential for increased side effects, compared
to focal epilepsy. An accurate prediction of epilepsy type that
occurs in patients with brain tumors could allow customization
of antiepileptic therapy.

Radiomics is a research branch in the field of medical
imaging (10). Based on the rapid development of machine
learning and image processing techniques, radiomic analyses
have been successfully applied in the field of oncology (11–
16), including glioma (17). Magnetic resonance imaging (MRI)
is a routinely used diagnostic tool for glioma management. A
lot of tumor information that is not recognized by human eye
remains unmined (12). Radiomics can extract high-dimensional
radiomic features from medical images to fully exploit the
in-depth information of tumors (18). Based on T2-weighted
imaging (T2WI), Liu et al. successfully predicted the occurrence
of LGG-associated epilepsy by radiomic analysis (19). However,
the prediction of the type of epilepsy remains to be determined.

The current study conducted a radiomic analysis to explore
the relationship between quantitative radiomic features and the
type of tumor-related epilepsy in patients with LGG. Precise
radiomic predictionmodels for epilepsy type could be established
and further validated using the screened features.

METHODS

Patients
In this retrospective study, we consecutively enrolled a total of
205 patients with LGG who underwent surgery at the Beijing
Tiantan Hospital from September 2012 to December 2014. The
inclusion criteria of all enrolled cases were (a) pathologically
confirmed grade II gliomas according to WHO criteria 2016
(20) and (b) presurgical T2-weighted imaging. The exclusion
criteria of all enrolled cases were no craniotomy or stereotactic
biopsy before MRI scan. The enrolled cases were allocated to
either the training or the validation cohort according to the
surgery time with a 1:1 ratio, i.e., the first 102 cases enrolled
formed the training cohort, and the other 103 cases formed

Abbreviations: AC, anterior commissure; AUC, area under curve; DCA,

decision curve analysis; DICOM, Digital Imaging and Communications in

Medicine; FOS, first-order statistics; GLCM, gray-level co-occurrence matrix;

GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix;

IBE, International Bureau for Epilepsy; ICC, intraclass correlation coefficient;

ILAE, International League Against Epilepsy; LASSO, least absolute shrinkage

and selection operator; LGG, low-grade glioma; LOOCV, leave one out cross-

validation; MRI, magnetic resonance imaging; NGTDM, neighborhood gray-tone

difference matrix; ROC, receiver operating characteristic; ROI, region of interest;

WHO, World Health Organization

the validation cohort. Data on routine clinical variables were
collected, including age, gender, tumor pathology, and epilepsy
type. The present study further utilized clinical and MRI data
from all enrolled cases. The ethics committee of Beijing Tiantan
Hospital approved this study, and the requirement for informed
consent was waived. Our study was conducted in accordance
with the Declaration of Helsinki. The study design is illustrated
in Figure 1.

Patients were considered to have experienced tumor-related
epilepsy when a history of at least one seizure with the presence
of an enduring alteration (i.e., LGG) in the brain (21) was
reported. The history and type (generalized and focal) of epilepsy
were evaluated by an epileptologist based on the patient’s
presentation according to the classification and terminology of
the International League Against Epilepsy (9, 22). The epilepsy
type was determined consistently for all the enrolled patients with
a history of epilepsy based on the aforementioned criteria.

Brain MRI and Tumor Segmentation
All MRI examinations were performed using a Magnetom Trio
3.0 T scanner (Siemens, Erlangen, Germany) with a 12-channel
receive-only head coil scan acquisition. The T2WI parameters
were as follows: repetition time (TR), 5,800ms; echo time (TE),
110ms; flip angle, 150◦; the field of view (FOV), 240× 188 mm2;
voxel size, 0.6× 0.6× 5.0 mm3; and matrix, 384× 300. The MRI
data were stored in DICOM format.

Regions of interest (ROIs) of the gliomas were drawn by two
neuroradiologists with more than 5 years of clinical experience
with ITK-snap (www.itksnap.org). The neuroradiologists were
blinded to each other’s results. Gliomas were segmented on
each MRI slice. We defined ROIs of the LGGs as areas of the
MRI images that exhibited abnormal hyperintense signals. The
intraclass correlation coefficient (ICC) was used to assess whether
the segmentation results of the two doctors were significantly
different. No difference was defined as ICC >0.8. In the absence
of a difference, each patient would obtain a segmentation result
from one of the two neuroradiologists randomly.

Extraction of Quantitative Radiomic
Features
A total of 734 radiomic features were extracted based on the
research of Liu et al. (19) and Li et al. (23, 24), including 6 location
features, 17 first order statistics (FOS) features, 8 shape and size
features, 26 gray-level co-occurrence matrix (GLCM) features,
16 gray-level run-length matrix (GLRLM) features, 16 gray-level
size zone matrix (GLSZM) features, 5 neighborhood gray-tone
difference matrix (NGTDM) features, and 640 wavelet features.

The location features were extracted based on our previous
research (19) using (a) polar coordinates parameters (r, θ , andΦ)
based on the centroid of the tumor, and (b) City Block distance,
(c) Chebyshev distance, and (d) Euclidean distance from the
anterior commissure (AC) to the centroid of the tumor. The
FOS features reflected the distribution of voxel values within
the ROI 3D matrix and the overall information of the tumor.
The shape and size features reflected the volume, surface area,
and shape of the tumor. GLCM, GLRLM, GLSZM, and NGTDM
were collectively referred to as texture features. The GLCM
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FIGURE 1 | Study design and flowchart. The flowchart of the current study.

reflected the arrangement of voxels. The GLRLM reflected the
arrangement of voxels with equal voxel values. The GLSZM
reflected the characteristics of the homogeneous region. The
NGTDM reflected the difference between each voxel in the ROI
and the adjacent voxels. The wavelet features were calculated by
FOS, GLCM, GLRLM, GLSZM, and NGTDM features through
Coiflet 1 3D wavelet transform. The detailed information and
formulas for the detection of the 734 features were published in
our previous researches (19, 24).

Feature Selection and Radiomic Signature
Building
The 734 radiomic features were normalized before feature
selection using the z-score method. A univariate analysis was
used to screen the radiomic features. The criteria for screening
features include (a) p-values of Pearson correlation coefficient
<0.05 and (b) area under curve (AUC) of the radiomic features
>0.6. Least absolute shrinkage and selection operator (LASSO)
regression was widely used to compress the coefficients of
features and select features to prevent overfitting. Logistic
regression was used for data classification to build a reliable
prediction model. Thereafter, LASSO and logistic regression
were used to calculate the radiomic signature for epilepsy-
type prediction using Glmnet package (25). Features dimension
reduction and selection, i.e., univariate analyses and LASSO
regression, were based on the training cohort. The optimal value
of the LASSO’s parameter λ was determined by leave-one-out
cross-validation (LOOCV) using classification error as criterion
during the training phase. We calculated the radiomic signature
for the patients after determining the selected features’ values
using the optimal value of the LASSO’s parameter λ. Radiomic
signature was the linear weighting of the selected features’

coefficients. Radiomic analyses of the study were implemented
by MATLAB R2016a (MathWorks, Natick, MA).

Development of an Individualized
Prediction Model
Based on cohort of all patients, a multivariable logistic
regression analysis was built to predict epilepsy type with
clinical information, using the radiomic signature, age, gender,
and tumor pathology. Akaike’s information criterion was used
to select the indicator with the predictive ability for building
the multivariable logistic regression model (26, 27). With
this radiomics-based model, we also built a novel radiomic
nomogram for quantitative prediction of the epilepsy type (28).

Performance Evaluation of the Models
The classification performance of the radiomic signature and
radiomic nomogram was assessed by the receiver operating
characteristic (ROC) curves and AUCs in each cohort.
Calibration curves were plotted to assess the calibration
of the radiomic signature and radiomic nomogram (29),
accompanied by the Hosmer–Lemeshow test (30). Decision
curve analyses (DCAs) determined the clinical usefulness of the
radiomic signature and radiomic nomogram by quantifying the
net benefits at different threshold probabilities in cohort of all
patients (31).

Statistical Analysis
Age and radiomic signature were reported as median and range.
The differences between subgroups were assessed by independent
samples t-test. Gender and histopathology were reported in
frequencies and proportions, and differences between subgroups
were assessed by Fisher’s exact test. The statistical tests were
two sided, and p < 0.05 were defined as significant. Nomogram

Frontiers in Oncology | www.frontiersin.org 3 March 2020 | Volume 10 | Article 235

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Radiomics in LGG-Related Epilepsy

building and models’ validation were implemented with R
software (version 3.6.1, Vienna, Austria).

RESULTS

Demographic and Clinical Data
The main clinical and pathological characteristics of all 205
patients are listed in Table 1. Of the 205 enrolled patients,
139 (67.8%) had generalized and 66 (32.2%) had focal seizures.
Those with generalized epilepsy accounted for 72 (70.6%) and 67
(65.0%) patients, while those with focal epilepsy accounted for 30
(29.4%) and 36 (35.0%) patients in the training and validation
cohorts, respectively. There were no significant differences
between the two epilepsy types based on age, gender, and tumor
histopathology in cohort of all patients, training cohort, and
validation cohort. However, radiomic signature was significantly
different between the two epilepsy types (p < 0.001) and hence a
potential indicator for diagnosing the types of epilepsy.

Performance of Radiomic Signature
Based on the training cohort, a logistic regression prediction
model was constructed by integrating the four key radiomic
features selected using the univariate analyses and LASSO
regression (Table 2). The parameter λ = 0.067 was used as
the optimal value. The radiomic signature for each patient in
both cohorts was calculated with the train-based model. The
predictive ability of the radiomic signature was interpreted from
the ROC curve (Figure 2A), where it achieved a performance
with classification accuracy = 80.4%, AUC = 0.859 [95%
confidence interval (CI), 0.787–0.932] in the training cohort
and classification accuracy = 80.6%, AUC = 0.839 (95% CI,
0.761–0.917) in the validation cohort. The radiomic signature
demonstrated favorable calibration in the training and validation
cohorts (Figure 2B). The p-values of the Hosmer–Lemeshow
test for classification predictive ability of the radiomic signature
were 0.12 and 0.10, respectively. The DCA showed that using
radiomic signature to predict epilepsy type adds more benefit
than either the treat-all-patients scheme or the treat-none scheme
(Figure 2C).

Performance of Radiomic Nomogram
Radiomic nomogram for epilepsy type prediction was
developed based on the radiomic signature, age, and tumor
pathology data (Figure 3). It showed excellent performance
in predicting epilepsy type with AUC = 0.863 (95% CI,
0.810–0.916) in cohort of all patients (Figure 2D). The
calibration curve and DCA of the radiomic nomogram for the
epilepsy type prediction also demonstrated favorable results
(Figures 2E,F). The p-value of the Hosmer–Lemeshow test
was 0.11.

DISCUSSION

This study develops and presents a quantitative and
individualized epilepsy type radiomic prediction model using
a series of radiomic T2-weighted imaging features associated
with the type of LGG-related epilepsy. The results demonstrate
that the MRI-based radiomic model could successfully stratify
patients according to their epilepsy type. This easy-to-use

TABLE 2 | Four radiomic features selected by LASSO regression.

Radiomic features AUC p-values of

Pearson

Coefficients of

LASSO regression

CoifletLLL GLSZM

zone percentage

0.683 0.003 0.445876806974411

CoifletLLH NGTDM

contrast

0.650 0.029 0.135681539773941

CoifletLHL GLCM

maximum probability

0.685 0.023 0.336605042219162

Location features:

Chebyshev distance

0.656 0.032 0.281620532274246

p-values are the result of Pearson correlation coefficient.

AUC, area under curve; LASSO, least absolute shrinkage and selection operator; GLSZM,

gray-level size zone matrix; NGTDM, neighborhood gray tone difference matrix; GLCM,

gray-level co-occurrence matrix.

TABLE 1 | Clinical characteristic of patients in the training and validation cohorts.

Characteristics All cohort

(n = 205)

p-value Training cohort

(n = 102)

p-value Validation cohort

(n = 103)

p-value

G

(n = 139)

F

(n = 66)

G

(n = 72)

F

(n = 30)

G

(n = 67)

F

(n = 36)

Age, median (range) 37 (15–64) 39.5 (15–66) 0.181 36 (15–58) 35.5 (21–59) 0.995 41 (15–64) 44.5 (15–66) 0.118

Gender (%) 0.645 1.000 0.519

Male 85 (61) 43 (65) 44 (61) 18 (60) 41 (61) 25 (69)

Female 54 (39) 23 (35) 28 (39) 12 (40) 26 (39) 11 (31)

Tumor histopathology (%) 0.155 0.124 0.504

Oligodendrial glioma 97 (70) 39 (59) 48 (67) 15 (50) 49 (73) 24 (67)

Astrocytoma 42 (30) 27 (41) 24 (33) 15 (50) 18 (27) 12 (33)

Radiomic signature, mean ± SD 0.63 ± 1.04 −0.99 ± 1.39 <0.001 0.35 ± 0.83 −0.85 ± 0.85 <0.001 0.92 ± 1.17 −1.10 ± 1.73 <0.001

p-values of age and radiomic signature are the results of independent-samples t-tests; p-values of gender and tumor histopathology are the results of Fisher’s exact tests.

G, generalized; F, focal; SD, standard deviation.
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FIGURE 2 | Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analyses of models. (A) ROC curves and (B) calibration curves of

the radiomic signature in training and validation cohorts. (C) Decision curve analysis of the radiomic signature. (D) ROC curve and (E) calibration curve of the radiomic

nomogram in all patients’ cohort. (F) Decision curve analysis of the radiomic nomogram.

FIGURE 3 | Radiomic nomogram for prediction of epilepsy type. The radiomic-based nomogram was built using radiomics signature, age, and tumor pathology data.

nomogrammay be a powerful clinical tool for assisting clinicians
with personalized therapeutic decisions.

Treatment based on the type of LGG-related epilepsy allows
for a more targeted use of antiepileptic drugs, thus minimizing

therapy-related side effects in patients with LGG. However,
determining the epilepsy type based on its clinical presentation
imposes an apparent lag. Thus, there is a need for a clinical model
capable of predicting epilepsy type before treatment initiation. In
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this study, a newly developed radiomic signature and radiomic
nomogram predict the epilepsy type for each patient in the study.
Thus, patients identified as either generalized or focal epilepsy
are subjected to appropriate therapies. Therefore, the radiomic
signature and radiomic nomogram provided clinicians with a
reliable tool for better prediction of LGG-related epilepsy type.

For the better prediction of epilepsy type, a large number
of high-throughput radiomic features that were widely used in
previous radiomics studies (18) were also extracted in this study,
including location features designed for brain tumor studies by
Liu et al. (19). Specifically, we extracted many high-dimensional
features that are intuitively challenging to be recognized by
humans. Radiomic features provide abundant information on the
heterogeneity and microenvironments of gliomas (32), including
reliable information for its personalized treatment (33). The
use of radiomics-based research in the field of oncology has
indisputably impacted the survival outcomes (34, 35), lymph
node metastasis (36), and treatment responses (37–39).

Furthermore, based on the quantitative MRI features,
radiomic analyses have the ability to assess the clinical
characteristics and molecular background of gliomas (40, 41).
Therefore, this study further suggests the associations of
these radiomics-based MRI features with the type of LGG-
related epilepsy.

Tumor location is an influential factor associated with
LGG-related epilepsy. Several MRI-based studies indicate the
association between the involvement of eloquent (42), cortical
(45), and insular regions (43) with epilepsy occurrence, along
with the probabilistic risk atlas of LGG-related epilepsy (44).
However, there is a need to investigate and predict the type
of epilepsy. Furthermore, previous studies not only used the
location information as categorized data but also ignored the
imaging information inside the tumor area. Since various
subregions of a brain lobe may differently influence the
occurrence of epilepsy type, we used a quantitative description
of tumor location for brain tumors. The distances from the AC
to the centroid and the polar coordinates based on centroid of
the tumor accurately described tumor location. These location
features provide more detailed information for the radiomic
prediction models in the current study.

LASSO and logistic regression are widely accepted algorithms
in the field of machine learning. In this study, the 734 features
extracted could cause overfitting when building the radiomic
prediction model, which makes the model lose its generalization
ability. Therefore, we performed feature dimension reduction
and selection to detect the key features most closely related to
the type of epilepsy to improve the discriminative power in the
present model. The LASSO regression was used to achieve the
best performance in predicting the type of LGG-related epilepsy.
With features associated with epilepsy type, a prediction model
was constructed using logistic regression. As a sensitive and stable
machine learning method for dichotomous forecast, logistic
regression has been widely used in feature-based classification.
In the current study, the application of LASSO and logistic
regression raises the predictive capability of the established
model and consequently provided relatively high discrimination
accuracies and AUCs.

There are some limitations to the present study. First, the
diagnoses provided by experienced epileptologists was based on
clinical presentations, and patient’s epilepsy originations were
unconfirmed because the stereotactic electroencephalographic
data were incomplete. Second, the divergence of tumor
histopathology in causing various types of epilepsy was not
quantitatively assessed by the radiomic model in this study.
Third, a multicenter, prospective clinical trial is required
to address the limitation caused by small samples. Fourth,
the interpretability of radiomic features has always been an
intractable task in the study of radiomics.

CONCLUSIONS

Radiomic location features and wavelet-based textural features
are associated with the type of LGG-related epilepsy. Radiomics-
based prediction models allow for non-invasive, preoperative,
and low-cost prediction of epilepsy type. The results of this study
suggest that radiomics could be a reliable tool for personalized
treatment in patients with LGG-related epilepsy.
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