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T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm

whose classification is still based on immunophenotypic findings. Frontline treatment

encompass high intensity combination chemotherapy with good overall survival;

however, relapsing/refractory patients have very limited options. In the last years,

the understanding of molecular physiopathology of this disease, lead to the

identification of a subset of patients with peculiar genetic profile, namely “early T-cell

precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to

frontline allogeneic bone marrow transplant. In general, the most common mutations

occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive

prognostic impact. Other pathogenic steps encompass transcriptional deregulation

of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including

IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway,

ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered

expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic

landscape of the disease paves the way to the use of novel targeted drugs that might

improve the outcome, particularly in relapse/refractory patients. In this review, we analyse

available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical,

prognostic, and therapeutic significance.

Keywords: T-cell acute lymphoblastic leukemia, genome, molecular, target therapies, early T cell precursors acute

lymphoblastic leukemia

INTRODUCTION

T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/-LL) is an aggressive hematological tumor,
driven by malignant transformation and expansion of T-cell progenitors. T-ALL and T-LL are
distinguished by the presence of more or<20%marrow blasts, respectively (1, 2). The 2016 revision
of WHO classification added a provisional entity called Early T-cell precursor (ETP) ALL. This
subset is characterized by a unique immunophenotypic (reduced expression of T-cell markers,
CD1a, CD8, and CD5) and genetic profile, indicating only limited early T-cell differentiation, with
retention of some myeloid and stem cell characteristics (2).

Current treatment of T-ALL consists of high intensity combination chemotherapy, resulting in
high overall survival, with the best outcomes observed in pediatric patients (3). Despite the high
response rates after first-line therapy, about 20% of pediatric and 40% of adult patients will relapse
(4). Differently from B-cell precursors ALL, where highly effective monoclonal antibodies as well
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as CD19 targeting chimeric antigen receptor (CAR) T-cells have
been developed, in T-ALL only the purine nucleoside analog
nelarabine is licensed for relapsed/refractory patients (1, 5).
Relapsed/ refractory T-ALL treatment is therefore an unmet need
and only new targeted drugs will have the potential to overturn
the outcome of these patients.

The purpose of this review is to analyse available data
on T-ALL pathogenesis, starting with a brief description
of current T-ALL classification and treatment, and then
focusing on molecular aspects of clinical, prognostic, and
therapeutic significance.

RESULTS

Snapshot on T-ALL Diagnosis,
Classification, and Therapy
Diagnosis of T-cell ALL relies on a combination of morphology,
immunophenotype, and cytogenetic features, many of which
inform prognosis and treatment choices. The morphological
distinction between L1 and L2 blasts has now lost clinical
relevance since more precise immunophenotypic categories
have been set. One of the most widely used is the European
Group for the Immunological Characterization of Leukaemias
subclassification based on the various stages of T-cell maturation
(6). T-lymphoblasts are TdT+ and show positivity for
cytoplasmic CD3, the only lineage specific marker. The
variable expression of CD1a, CD2, CD4, CD5, CD7, and CD8
distinguishes pro-, pre-, cortical, and mature T-ALL. As regards
the relationship between immunophenotype and prognosis,
the best outcomes have been observed in the cortical T-cell
ALL, while CD1a-negative patients show an increased relapse
rate and a lower survival (7, 8). Noteworthy, ETP-ALL is a
novel subcategory of T-ALL, characterized by a distinct gene
expression profile and immunophenotype. ETP-ALL cells are
tipically CD7+ but CD1a– and CD8–, CD5 weak, and express
>1 myeloid or stem cell marker (i.e., CD34, CD13, or CD33).
These cells originate from a subset of immature thymocytes
directly derived from hematopoietic stem cells, thus able to
differentiate into both T- and myeloid cells. ETP-ALL accounts
for 15% of all T-cell ALL in children and about 35% in adult
T-cell disease (9, 10).

As occurs in B-cell ALL, also in T-cell ALL prognosis
is influenced by cytogenetics. In a large trial cytogenetic
analysis displayed an abnormal karyotype in 72% of patients,
with complex karyotypes (≥5 abnormalities) in about 8% of
cases, significantly impacting on prognosis (5-year OS 19 vs.
51%, p = 0.006) (11). An increasing number of molecular
abnormalities have been associated with T-cell ALL and will be
discussed in a dedicated paragraph.

First Therapy Line
Regarding therapy, in the first-line setting, the standard
of care for fit patients consists of ALL-based pediatric-
inspired regimens, incorporating induction (combination of
steroids, anthracyclines, and vincristine), consolidation, delayed
intensification, and maintenance with central nervous system
(CNS) prophylaxis (12, 13). Addition of the enzyme l-
asparaginase, and more recently its pegylated E. coli-derived

form (PEG-ASP), characterized by longer half-life and less anti-
drug antibody formation, has been demonstrated to significantly
improve response rates and OS both in pediatric (14) and
adult patients (15, 16). As occurs in B-cell ALL, indication
to allogenic hematopoietic stem cell transplant (alloHSCT) in
T-ALL in first remission is based on high risk features at
diagnosis and is more and more frequently MRD-driven (17).
CNS involvement at diagnosis is more likely in T- than in B-
cell ALL (9.6 vs. 4.4%; p = 0.001) and has been associated
with inferior 5-year OS due to an increased risk of both
systemic and CNS relapse (18). The most common prophylaxis
employed is the combination of high-dose IV methotrexate and
intrathecal chemotherapy (7, 11). A randomized trial stressed
the importance of the use of 5 g/sq.m. in T-ALL, higher
than those used in B-cell ALL (19). As regards ETP-ALL, a
Spanish multicentre study showed the worse prognosis to be
ascribed to a lower response to induction therapy than to an
increased relapse rate, suggesting that use of different schedules,
such as fludarabine, cytarabine, G-CSF, idarubicin (FLAG-IDA),
and other more myeloid-oriented chemotherapies, or FLT3-
targeted therapies, may play an advantage in this subcategory
of patients (20). Current consolidation strategies comprise a
delayed intensification including drugs used in induction phase,
followed by a 2-year maintenance with 6-mercaptopurine and
methotrexate, pulses of vincristine and steroids, and additional
IT CNS prophylaxis. Molecular-based and flow cytometry-
based techniques allow reliable assessment of minimal residual
disease (MRD), whose monitoring at precise timepoints is the
standard of care for ALL patients treated with curative intent.
The molecular method consists of identifying clone-specific
rearrangement with Sanger on next-generation sequencing into
the immunoglobulin heavy chain gene or T-cell receptor genes
by using a large panel of consensus primers, generating patient-
specific real-time quantitative polymerase chain reaction assays
for quantification in about 90% of cases, with a quantitative range
of 10−4. Despite variable definitions of “early” assessment of
MRD (from 6 to 10–16 weeks from the start of therapy), plenty
of studies in ALL have confirmed that early MRD response is the
most powerful predictor of long-term survival in adult patients
with ALL (21–23). Finally, myeloablative alloHSCT should be
considered for high-risk T-cell disease. Allocation to alloHSCT
may vary among study groups, but generally speaking, failure
to achieve CR after induction therapy, high white cell count
at presentation, high risk cytogenetics/immunophenotype, and
MRD persistence at defined timepoints can all be used to allocate
to transplant (11, 24, 25). As regards the subcategory of ETP-ALL,
two trials demonstrated improvement in survival in ETP-ALL
patients transplanted early in case of treatment resistance (20).
Considered its better prognosis, consolidation with alloHSCT
is not considered necessary in T-LBL, unless suggested by an
adverse course of the disease (26).

Relapsed Disease
About 80% of relapses occur within 2 years of diagnosis.
With <7% of survival rate at 5 years (27), relapsed T-ALL
has dismal outcome, and no standard strategies are available
so far. Response rates using standard chemotherapy regimens
such as FLAG-IDA are around 30–40%, with a median OS
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of 6 months in responders (28). Nelarabine is the only new
agent specifically licensed for relapsed/refractory T-cell ALL/LBL.
Used as single agent, this drug induced ORR of 14–55% in
pediatric patients (29) and 41–46% in adults, with 1-year OS
of 28% (30). Neurotoxicity is the major toxicity, affecting
around 15% of patients, with more severe and irreversible
cases in a minority of patients (31). Importantly, most of the
patients obtaining a CR with nelarabine were able to proceed
to alloHSCT.

Focus on the Molecular Pathways Involved
in T-ALL Pathophysiology
T-ALL results from a multistep transformation process
in which the accumulation of genetic alterations affects
key oncogenic/tumor suppressors pathways, that are
responsible for proliferation, survival and differentiation
of T-cells (32, 33). The molecular steps involved in T-
ALL pathogenesis encompass: transcriptional deregulation
of oncogenes/oncosuppressors, NOTCH1 signaling, cell
cycle deregulation, kinase signaling (including IL7R-JAK-
STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK
signaling pathway, ABL1 signaling pathway), epigenetic
deregulation, ribosomal dysfunction, and altered expression
of oncogenic miRNAs or long non coding RNA (34)
(Figure 1).

Transcriptional Deregulation of Oncogenes
and Oncosoppressors
Among the genetic abnormalities, chromosomal translocations
of transcription factor oncogenes to regulatory regions of
T-cell receptor (TCR) genes are characteristic of T-ALL
(34). Approximately 50% of patients harbor chromosomal
translocations involving 14q11 (TCR alfa and TCR delta)
and 7q34 (TCR beta) (35). Other mechanisms involved
are chromosomal rearrangements with other regulatory
sequences, duplication/amplification, and mutations or small
insertions generating novel regulatory sequences acting as
enhancers (36).

Transcriptional factors belonging to bHLH, LMO, and HOX
families are also implicated (Table 1). The largest subgroup,
representing about 30–35% of T-ALL, is characterized by
the abnormal expression of TAL1 (1p32), a bHLH member,
which results from either t(1;14) (p32;q11), and t(1;7) (p32;q35)
translocations, small insertions, mutations or 1p32 deletion (36,
37). TAL1 expression is associated with a late cortical thymocyte
immunophenotype (CD1a-) (38), and correlates with favorable
outcomes (35, 39).

LMO1 (11p15) and LMO2 (11p13) are part of a
transcriptional complex, and are aberrantly expressed at
high levels in∼15% of T-ALL, due to both translocations to TCR
loci and small chromosomal deletions (32, 45, 48, 49). Also these
cases carry a favorable prognosis (35).

FIGURE 1 | Signaling pathways involved in T-cell acute lymphoblastic leukemia pathophysiology.
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TABLE 1 | Molecular pathways involved in T-ALL pathogenesis.

Gene Locus Type of mutation Frequency Relevance References

TRANSCRIPTION REGULATOR (ONCOGENE)

TAL1 1p32 Aberrant expression due to translocations involving one of

the TCR gene [TCRalfa (14q11) or TCRbeta (7q34)];

duplications or amplifications; mutations or insertions;

30–35% Favorable

outcome

(35–39)

(40, 41)

TAL2 10q24 Rare –

TLX1/HOX11 10q24 5–10% (children), 30% (adults) Favorable

outcome

(32, 35, 38, 39, 42–47)

TLX3/HOX11L2 5q35 20–25% (children), 5% (adults) Poor outcome

LMO1 11p15 Aberrant expression due to t (11,14) or small deletion 15% Favorable

outcome

(32, 35, 45, 48, 49)

LMO2 11p13

HOXA9;HOXA10 7p15 Chromosomal translocations and inversions involving

TCRs loci

3% – (32)

NKX2-1;NKX2-2 14q13;

20p11

5% (children) –

MLL 11q23 Rearrangements with various partners 5% (children) Poor outcome (33)

MYC 8q24 Mutations or rearrangements or amplifications, rarely t

(8,14)(q24;q11)/MYC-TCRalfa

6% Subclonal; poor

outcome; more

common in T-LL

(32, 50–54)

MYB 6q23 10% – (45, 55)

TRANSCRIPTION REGULATOR (ONCOSOPPRESSOR)

BCL11B 14q3 Deletions or inactivating mutations 10% – (32, 56–60)

ETV6* 12p13 13% (25% of ETP) In etp, poor

outcome

RUNX1* 21q22 10–20% (most in ETP) In ETP, poor

outcome

GATA3* 10p14 5% (most in ETP) In ETP, poor

outcome

LEF1 4q24 10–15% IF early T cortical

WT1 11p13 10% –

NF1* 17q11 More common in children –

NOTCH1 SIGNALING

NOTCH1 9q34.3 activating mutations most of all; t

(7,9)(q34;q34)/TCRbeta-NOTCH1 in < 1% of cases

60–70% Favorable

outcome; NOTCH

inhitors

(33, 51, 61–69)

FBXW7 4q31.3 Loss of function mutations 15% Prognostic if

evaluated in

combination with

NOTCH1

CELL CYCLE REGULATION

CDKN2A

(p16INK4A;

p14ARF);

CDKN2B (p15)

9p21 Deletions 70% – (32, 70, 71)

CDKN1B

(p27KIP1)

12p13 Deletions 12% –

CCND2(cyclin D2) 12p13 Chromosomal translocations involving TCRs loci 3% –

RB1 13q14 Deletions 15% –

IL7-JAK-STAT PATHWAY

IL7R* 5p13 Activating mutation 20–30% (most in ETP): JAK3

16%; JAK1 10%; IL7R 10%;

STAT5B 5–10%

– (33, 34, 36, 72–75)

JAK1* 1p32.3-

p31.3

Gain of function mutations poor outcome;

JAK inhibitors

JAK2 12p13 Translocation t (9,12)(p24;p13) involving ETV6-JAK2 –

(Continued)
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TABLE 1 | Continued

Gene Locus Type of mutation Frequency Relevance References

JAK3* 19p13-p12 Gain of function mutations in ETP, poor

outcome

STAT5B 17q21.2 Gain of function mutations –

DNM2 19p13.2 Loss-of-function – (76)

PTPN2 18p11.3-

p11.2

Inactivating mutations 6% –

PTPRC (CD45) 1q31.3-

q32.1

Inactivating mutations –

PIM1 6p21 t (6, 7)(p21; q34)/PIM1-TCRbeta 5% –

PI3K-AKT-mTOR PATHWAY

PI3K 3q26 Gain of function mutations 5% PI3K inhibitors (77–80)

AKT 14q32 Gain of function mutations 2% –

PTEN 10q23 Loss of function mutations, deletions 10-15% –

mTOR 1p36.22 Gain of function mutations <1% mTOR inhibitors

RAS PATHWAY

RAS (N-RAS,

K-RAS, H-RAS)*

1p13;

12p12;

11p15

Activating mutations Most in ETP Poor outcome (34, 35, 66, 74, 81)

NF1*, PTPN11 17q11;

12q22

Loss of function mutations Most in ETP in ETP, poor

outcome

(82, 83)

ABL KINASE SIGNALING

ABL1 9q34 Rearrangements, episomal amplifications (NUP214-ABL1;

EML1-ABL; ETV6-ABL)

8% TK inhibitors (35, 84–86)

EPIGENETIC REGULATION

PHF6 Xq26 Inactivating mutations or deletions 16% (children), 38% (adults),

M>>>F

– (36, 87)

KDM6A Xp11 6–7% –

EZH2* (and others

of PCR2 complex)

7q36 25% in ETP, poor

outcome

DNMT3A* 2p23 15% (adults), most in ETP in ETP, poor

outcome

H3K27 1q42 –

RIBOSOMAL FUNCTION

RPL5 1p22 Inactivating mutations 2% – (32, 88)

RPL10 Xq28 Missense mutations at residue R98 6–8% (children) Hypoproliferative

phenotype

RPL11 1p36 Inactivating mutations 1% -

*Genes more commonly involved in ETP-ALL. TK, tyrosine kinase; ETP, early T-cell precursor.

Among HOX genes family, TLX1 (10q24, formerly HOX11),
and TLX3 (5q35) are over-expressed in T-ALL. TLX1+T-ALLs
represent 30% of adult T-ALLs and result from the translocation
t(10;14) (q24,q11); the latter involves the TCR locus (42, 43)
and contributes to thymocyte arrest at the early cortical stage
(CD1a+), conferring favorable outcome (32, 44, 45). On the
contrary, TLX3 overexpression (20–25% of pediatric T-ALL)

correlates with a poor outcome; it results from t(5;14) which places

this oncogene under the control of T-cell regulatory sequences in
the BCL11B locus (32, 35, 39, 46, 47).

Other Protoncogenes Involved: MLL, MYC,
and MYB
MLL (11q23), originally described in pediatric acute myeloid
leukemia, is also involved in T-ALL pathogenesis. The outcome of

MLL-rearranged leukemias is generally unfavorable, however this
relationship is less clear in T-ALL. MLL-MLLT1 rearrangement,
present in 2–3% of T-ALL, has a better outcome, whereas
PICALM-MLLT10 rearrangement (about 6–7% of cases) is linked
to worse prognosis (39, 89, 90).

MYC (8q24) and MYB (6q23) are proto-oncogenes involved
in the transcriptional deregulation observed in T-ALL. In
early T-cell development, MYC plays an important role in the
control of cell growth downstream NOTCH1 and TCR signaling
(50). Moreover, rearrangements involving PI3K/AKT pathway
often result in MYC overexpression (52). The translocation
t(8;14), involving the TCR, is present in only 1% of MYC+
T-ALL (53), and other mechanisms occur: translocations
involving others partners, duplications, amplifications, and
reduced degradation (32). In a subgroup of about 6% of T-ALL,
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MYC translocations are secondary abnormalities, present in
subclones, and are associated with induction failure, high rate
of relapse, and with an aggressive clinical course (52). The
genetic profile of theseMYC- translocated T-ALL is characterized
by concomitant abnormalities, including CDKN2A/B deletions,
PTEN inactivation, and mutations typical of myeloid neoplasms,
such as DNMT3A (54). Regarding MYB, it is activated in T-
ALL harboring the t(6;7) translocation, which is common among
children younger than 2 years of age, or as a result of duplications
or amplification of 6q23 (45, 55).

In addition to oncogenes, tumor suppressors contribute to
transcriptional deregulation in T-ALL, usually due to deletions or
inactivating mutations. BCL11B (14q32), ETV6 (12p13), RUNX1
(21q22), GATA3 (10p14), LEF1 (4q24), WT1 (11p13), and NF1
(17q11) are the main oncosoppressors involved (32).

ETV6, RUNX1, and GATA3, described also in acute myeloid
leukemia, are deleted or inactivated in ETP-ALL, and correlate
with poor outcome: ETV6 (12p13) mutations account for ∼25%
of ETP-ALL (56), whilst RUNX1 (21q22), and GATA3 (10p14)
mutations are less common. BCL11B (14q32) is mutated in 10%
of T-ALL (57); LEF1 (4q24) in 10–15% and is associated with
an early cortical thymocyte immunophenotype (58), and WT1
(11p13) in about 10% of cases (59).Monoallelic deletion of 17q12,
involving the tumor suppressor NF1, is common in children, but
it has been described also in adults (60).

NOTCH1 Pathway
NOTCH1 pathway is essential for T-cell lineage commitment
and maturation of hematopoietic progenitors (61). Rarely,
the t(7;9) (q34;q34.3) translocation leads to the expression
of a constitutively active form of NOTCH1 (9q34.3) (62).
However, in over 60% of T-ALLs, NOTCH1 aberrant expression
results from activating mutations (63). These mutations lead to
ligand-independent cleavage and activation of the intracellular
NOTCH1 domain and to the stabilization of the active protein
(33). Loss of function of negative regulators of NOTCH1
is an alternative mechanism. As a matter of fact, 10–15%
of T-ALL, harbor mutations in FBXW7 (4q31.3), a protein
that promotes NOTCH1 proteasomal degradation, and lead to
increased NOTCH1 protein stability (64). In prognostic models,
patients with NOTCH1 and FBXW7mutations are defined as low
risk cases (65, 66).

NOTCH1 pathway is also a central driver of T-cell metabolism
and promotes leukemia cell growth via direct upregulation of
anabolic pathways, including ribosome biosynthesis, protein
translation and nucleotide and aminoacid metabolism. The effect
on cell growth is enhanced by the upregulation of MYC (51,
67, 68). Furthermore, NOTCH1 activates mTOR/Akt pathway
and increases the glucose uptake in maturating thymocytes.
In summary, oncogenic Notch1 pathway is responsible for
enhanced aerobic glycolysis and upregulation of anabolic
pathway leading to increased proliferation (69).

Cell Cycle Deregulation
The loss of cell cycle control has a prominent role in the
pathogenesis of T-ALL. Deletions of the cyclin-dependent kinase
inhibitor 2A (CDKN2A encoding tumor suppressors p16INK4A

and p14ARF) and 2B (CDKN2B encoding the tumor suppressor

p15INK4B) loci on 9p21 are present in up to 70% of T-ALL, leading
to abnormal proliferation control (70). Moreover, deletions in
retinoblastoma 1 (RB1, locus on 13q14), a regulator of cell cycle
progression, are found in 15% of T-ALL, and deletions involving
the CDKN1B locus (12p13, encoding p27KIP1) are present in
about 12% loci (32). Finally, high levels of cyclin D (CCND2) are
present in 3% of T-ALLs, as a result of translocations with TCR
loci (71).

Kinase Signaling Pathways
Kinase signaling pathways aberrantly activated in T-ALL include
IL7R/JAK/STAT, PI3K/AKT/mTOR, RAS/MAPK, and ABL
kinase signaling (34, 36).

IL7R/JAK/STAT pathway is essential for normal T-cell
development and is triggered by the interaction between IL7 and
its heterodimeric receptor. Upon ligand-binding, IL7R dimerizes
and induces JAK1 and JAK3 phosphorylation, with consequent
STAT5 activation. STAT5 dimerizes and translocates to the
nucleus, where regulates many target genes, including BCL2
family members (72, 73). Activating mutations of IL7R (5p13),
JAK1 (1p32), JAK3 (19p13), and/or STAT5B (17q21) are present
in 20–30% of T-ALL cases, with a higher frequency in ETP-ALL
patients (33, 74). JAK3 mutations are present in about 16% of T-
ALL cases, and a strong association between JAK3 mutations and
HOXA9 expression has been demonstrated (75). Furthermore,
6% of T-ALLs are characterized by haplo-insufficiency of negative
regulators of this pathway, such as DNM2 (19p13), PTPN2
(18p11), and PTPRC (1q31) (76). The rare t(9,12) (p24;p13)
translocation encodes a constitutively active kinase protein, ETV-
JAK2, leading to aberrant JAK signaling (91). PIM1 is the
ultimate target of the JAK/STAT downstream, and high PIM1
expression is a biomarker of activation of this pathway; PIM1 can
be overexpressed also as a result of translocation t(6,7) (p21;q34),
involving TCR beta (76).

PI3K/AKT/mTOR pathway is aberrantly activated in T-ALL,
resulting in enhanced cell metabolism, proliferation, survival,
differentiation, and impaired apoptosis (77). Hyperactivation of
this oncogenic pathway is mainly caused by loss-of-function
mutations/deletions of PTEN (10q23), occurring in about 10–
15% of T-ALLs (78, 79). Additional mutations include gain-of-
function mutations in regulatory and catalytic subunits of PI3K
(3q26) (4,5% of cases), or in AKT (14q32) or mTOR (1p36) (2
and <1% of cases, respectively) (80).

RAS proteins, including H-RAS (11p15), N-RAS (1p13), and
K-RAS (12p12), are fundamental signal transductors from cell
surface to downstream effectors (34). RAS-MAPK signaling
pathway is frequently hyperactivated in T-ALL, and RAS
mutations are present in about 5–10% of cases, particularly in
high risk ETP-ALL and in relapsing patients (35, 66, 74, 81). RAS
pathway regulators may also be mutated: loss-of-function of NF1
(17q11) and PTPN11 (12q22) have been described in 3% of cases
(82, 83).

Finally, ABL1 gene (9q34) is rearranged in 8% of cases,
leading to constitutive kinase activity (84). The most
frequent rearrangement is NUP214-ABL1 amplification (9q34
amplification), observed in 6% of patients (85), whilst EML1-
ABL and ETV6-ABL1 are less common (35). NUP214-ABL is
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a secondary, subclonal alteration and has not been linked with
poor prognosis (86).

Epigenetic Deregulation
Mutations in epigenetic factors are frequent in T-ALL: PHF6
(Xq26), SUZ12 (17q11), EZH2 (7q36), TET2 (4q24), H3F3A
(1q42), KDM6A (Xp11), EED (11q14), SETD2 (3p21), and
DNMT3A (2p23) mutations are the most common (32, 35).
Considering the most frequent, PHF6 is a histone modifier,
involved in transcriptional regulation, DNA damage response
and cell cycle control. Loss-of-function mutations or deletions
of this gene, exclusively found in male patients, are present in
16% of pediatrics and 38% of adults, and result in G2/M cell cycle
arrest. Mutational loss of PHF6 is associated with the aberrant
expression of the transcription factor oncogenes TLX1 and TLX3
(87). H3K27 regulates methylation, and together with the PRC2
complex (polycomb repressive complex 2, that includes EZH2,
SUZ12, and EED) is mutated in up to 25% of T-ALLs (36).

Ribosomal Function
Ribosomes are cellular components required for protein
synthesis, a crucial step in rapidly dividing leukemic cells.
Ribosomal genes RPL5 (1p22), RPL10 (Xq28), and RPL11 (1p36)
have been described to be mutated in T-ALL (32). RPL10
mutations are found in 6–8% of pediatrics, with the recurrent
RPL10R98S mutant allele in most cases (32, 88). RPL10R98S

mutant leukemia cells may increase the expression of anti-
apoptotic protein BCL2. RPL10 R98S mutations are mutually
exclusive with JAK/STAT mutations and are associated with a
hypoproliferative phenotype (88).

Novel Therapeutic Strategies
Regarding therapy, T-ALL is an aggressive leukemia with
limited options, particularly in the relapsed/refractory setting.
A better understanding of T-ALL pathogenesis may allow the
development of molecular targeted therapies (Table 2) (49). For
instance, the high prevalence and prominent role of NOTCH1
mutations make it a promising therapeutic target. Clinical trials
have explored the use of γ-secretase inhibitors (86), with limited
efficacy and gastrointestinal toxicity (92) that can be reduced by
the addition of steroids (93, 104). An example is PF-03084014
that has been tested in a clinical study of relapsed/refractory T-
ALL/T-LL (A8641014), with one out of 8 patients experiencing
complete response lasting about 3months (94). Other options are
NOTCH transcriptional complex inhibitors or antibodies against
NOCTH1 (105). Cell cycle dysregulation by CDK4/CDK6 altered
pathway is another potential target, and CDK4/CDK6 inhibitors
(86) such as palbociclib recently entered clinical trials. The
constitutive activation of PI3K/AKT/mTOR signaling pathway
may also be targeted: several PI3K inhibitors showed anti-
leukemic effects in T-ALL cell lines, whereas mTOR inhibitors
seem to prolong survival in T-ALL cells (34). The most studied
molecules were everolimus and temsirolimus (106), that induced
variable responses (0–50%) in association to chemotherapy
and in a small number of cases (94–96). The limited efficacy
of mTOR inhibitors seems to be linked to the activation
of compensatory signaling pathways (106). Furthermore, dual

TABLE 2 | Clinical and preclinical trials with target therapies in T-cell acute

lymphoblastic leukemia.

Type of study Molecule Reference

NOTCH1 INHIBITORS

Clinical, phase 1 MK-0752 (92)

Preclinical PF-03084014 + DEX (93)

Clinical PF-03084014 (94)

Clinical, phase

1b/2

Crenigacestat (LY3039478) + Dex NCT02518113

Clinical, phase 1 BMS-906024 alone or + DEX NCT01363817

Clinical, phase 1 BMS-906024 (95)

Clinical, phase 1 MK0752-013 NCT00100152

Clinical, phase

1/2

RO4929097 NCT01088763

CDK4/6 INHIBITORS

Preclinical LEE011 + a panel of drugs (96)

Clinical, phase 1 Palbociclib + CT NCT03792256/

AINV18P1

PI3K/mTOR DUAL INHIBITORS

Preclinical NVP-BEZ325/ Dactolisib (97)

Clinical, phase 1 NVP-BEZ325/ Dactolisib NCT01756118

Clinical, phase 1 NVP-BKM120 (98)

mTOR INHIBITORS

Clinical, phase 1 Everolimus (RAD001) + CT NCT01523977

Clinical, phase I/II Everolimus + HyperCVAD (99)

Clinical, phase I Temsirolimus (CCI799) + UK ALL R3

(Dex+Mitox+VCR+pegAsp)

(100)

Clinical, phase I Everolimus + CT (VCR, PDN, peg Asp,

Doxo)

(101)

Clinical, phase II Sapanisertib NCT02484430

Clinical, phase 1 Sirolimus + HyperCVAD NCT01184885

Clinical, phase 1 Temsirolimus + VP16 + CTX+ DEX NCT01614197

Clinical, phase 1 Everolimus + Nelarabina+ CTX+ VP16 NCT03328104

TK INHIBITORS

Clinical, phase

1/2

Ruxolitinib (doses ranging from

10–80mg) + L-ASP, VCR, and PDN

NCT03613428

Preclinical Imatinib or Dasatinib or Nilotinib (102)

Clinical Imatinib + CT NCT00049569

HDAC INHIBITORS (EPIGENETIC REGULATORS)

Clinical Chidamide + CT NCT03564704

BCL2 inhibitors

Clinical Venetoclax + CT (103)

Clinical, phase

1/2

Venetoclax + low intensity CT NCT03808610

Clinical, phase

1b/2

Venetoclax + Vincristine NCT03504644

CT, chemotherapy; Dex, dexamethasone; VCR, vincristine, Mitox, mitoxantrone; Asp,

asparaginase; Doxo, doxorubicine; VP16, etoposide; CTX, cyclophosphamide; PDN,

prednisone; TK, tyrosine kinase; HDAC, histone deacetylase.

PI3K/mTOR inhibitors, NVP-BEZ235 and NVP-BKM120, have
been studied. BEZ235 had antiproliferative and proapoptotic
effect in T-ALL cell lines (97), and a clinical trial has been
started (NCT01756118). BKM120/Buparlisib showed modest
efficacy and was tolerable in advanced acute leukemia (only 1
patient with T-ALL) in a recent clinical trial (98). As regards
cytokine signaling, JAK-STAT pathway is activated in T-ALL
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and about 5% of cases are driven by tyrosine kinase oncogene
fusions, particularly the NUP214-ABL1 rearrangement (86). JAK
inhibitors, such as Ruxolitinib and Tofacitinib, have been studied
in preclinical models with activation of IL7R/JAK/STAT pathway
(34, 86). In addition, imatinib, dasatinib, and nilotinib are
all active against NUP214-ABL1-positive T-cells, with different
ability to inhibit this kinase and induce apoptosis in preclinical
studies (102). Finally, RPL10R98S mutant leukemia cells are
potentially sensitive to Bcl2 inhibitor venetoclax (88). Venetoclax
combined to chemotherapy induced a morphological remission
in 60% of patients (including ETP-ALL) in a recent retrospective
study (103).

DISCUSSION AND FUTURE
PERSPECTIVES

T-ALL is a genetically heterogeneous disease caused by a
multistep process, involving cell growth, proliferation and
differentiation of T-cells (36, 66). A better understanding
of the molecular physiopathology may refine classification
and prognostication. Regarding the former, molecular findings
allowed the definition of the ETP-ALL subgroup, characterized
by a distinct gene expression profile and immunophenotype (9).
Moreover, high frequencies of FLT3, NRAS/KRAS, DNMT3A,
IDH1, and IDH2 mutations have been found in ETP-ALL (107),
similarly to what observed in myeloid leukemic stem cells. This
new entity is associated with high levels of minimal residual
disease after induction chemotherapy (10) and inferior long-term
outcomes (25, 108). Beyond ETP-ALL, other recurrent mutations
carry prognostic significance. Among them, the most common
occur in the NOTCH1/FBXW7 pathway (60% of adult patients)
(63), and confer a positive prognosis in most studies (65, 109,
110). A risk classification based on the presence or absence
of NOTCH1/FBXW7, PTEN, or N/K-RAS mutations has been
proposed (111). The good-risk group (significantly superior OS
and inferior cumulative incidence of relapse) harboredmutations
in the NOTCH1/FBXW7 pathway with no associated mutations
in PTEN or N/K-RAS; mutated NOTCH1/FBXW7 genes plus
mutations in PTEN or N/K-RAS were classified as poor risk with
OS 44% and cumulative incidence of relapse 54%.

The study of genetic lesions involved in T-ALL pathogenesis
may lead to the development of new targeting drugs. In
particular, different inhibitors of NOTCH1 pathway are under
active study, including γ-secretase inhibitors, blocking of
NOTCH transcriptional complex, and antibodies against
NOCTH1. Cell cycle blockers like palbociclib and PI3K-, mTOR-
and dual inhibitors (everolimus and temsirolimus, NVP-BEZ235
and NVP-BKM120), showed promising anti-leukemic effect
both in vitro and in vivo. Tyrosine kinase inhibitors targeting
IL7R/JAK/STAT pathway (ruxolitinib and tofacitinib) and
NUP214-ABL1-mutated ALL (imatinib, dasatinib and nilotinib)
are all active against T-cell blasts. Finally, Bcl2 inhibitor
venetoclax may have a role in RPL10R98S mutant ALL.

In conclusion, in the last years the better understanding
of genetic lesions in T-ALL paved the way to novel target
therapies, and many preclinical and clinical trials are ongoing.

However, the rarity of the disease makes it hard to design
specific trials, and the complexity of the molecular landscape
may account for the limited efficacy of selective inhibitors
in clinical studies. In this setting, differently from other
leukemic contexts where chemo-free regimens are emerging
(as observed for Ph+ B-ALL targeted with TK-inhibitors
and bispecific antibodies), combination chemotherapy is still
needed to establish a response. Nevertheless, the inhibition
of more ancillary targets like Bcl2 seems to evoke better
anti-leukemic effect and may lead the way for future studies
and combinations.
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