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Head and neck squamous cell carcinoma (HNSCC) is the sixth most common

malignancy worldwide. Somatic copy number alterations (CNAs) play a significant role in

the development of this lethal cancer. In this study, we present a meta-analysis of CNAs

for a total of 1,395 HNSCC samples. Publicly available R packages and in-house scripts

were used for genomic array data processing, including normalization, segmentation

and CNA calling. We detected 125 regions of significant gains or losses using GISTIC

algorithm and found several potential driver genes in these regions. The incidence of

chromothripsis in HNSCC was estimated to be 6%, and the chromosome pulverization

hotspot regions were detected. We determined 323 genomic locations significantly

enriched for breakpoints, which indicate HNSCC-specific genomic instability regions.

Unsupervised clustering of genome-wide CNA data revealed a sub-cluster predominantly

composed of nasopharynx tumors and presented a large proportion of HPV-positive

samples. These results will facilitate the discovery of therapeutic candidates and extend

our molecular understanding of HNSCC.

Keywords: head and neck squamous cell carcinoma, meta-analysis, copy number alteration, chromothripsis,

genomic array

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) has an incidence of over 600,000 new diagnoses
per year worldwide, with a mortality rate of nearly 50% (1, 2). It consists of a heterogeneous
group of epithelial tumors arising from oral cavity, nasal cavity, pharynx, larynx, paranasal sinuses
and salivary glands. Tobacco use and excessive alcohol consumption are well-established major
risk factors for the development of HNSCC. Recently, human papillomavirus (HPV) infection
has also been recognized as an increasingly important risk factor for HNSCC (3, 4). Previous
studies have concluded that many genes are recurrently mutated in HNSCC but at low frequencies,
and functional consequences of these mutations are often unclear. Therefore, a more detailed
understanding of the genetic mechanisms of HNSCC is needed to improve prevention and
treatment of this cancer.

Genomic instability in the form of copy number alteration (CNA) is a hallmark of cancer cells
and a promotor for carcinogenesis (5–8). CNAs have critical roles in activating oncogenes and in
inactivating tumor suppressors, and often affect many genes simultaneously (9–13). Like many
other cancer types, HNSCCs are characterized by complex patterns of copy number gains and
losses throughout the genome (14–17). In 2015, The Cancer Genome Atlas (TCGA) consortium
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published a robust integrative multiplatform characterization of
279 HNSCCs, including genome-wide profiling of copy number
alterations (18). Although many studies have identified multiple
regions of CNAs in HNSCC, a comprehensive landscape of copy
number changes still remains largely unexplored. The role and
implications of these aberrations in HNSCC need to be further
evaluated and elucidated.

Recently, a new phenomenon, called chromothripsis, has
been described as a new mechanism for cancer initiation
and progression (19). It is characterized by the shattering
of one or multiple chromosomes followed by a random
reassembly of the DNA fragments. All the events are believed
to occur in a single catastrophic event rather than a series
of subsequent alterations (20–23). This is in contrast to the
multistep model of cancer development. It can lead to the
simultaneous acquisition of multiple tumor-promoting lesions.
Chromothripsis has attracted a great attention in cancer research
and has been observed in many tumor types (24–27). However, a
comprehensive evaluation of chromothripsis in HNSCC has not
been carried out yet. Given the low incidence of chromothripsis,
a large number of tumor samples are required to perform
such analysis.

Here we present a meta-analysis of genomic copy number
alterations for 1,395 HNSCC samples from 19 datasets.
In brief, we identified 72 and 53 regions of amplification
and deletion, respectively, and detected potential driver
genes in these regions. We identified 92 samples with
the signs of chromothripsis, giving the incidence of 6%.
Furthermore, we found some chromosome pulverization
hotspots in HNSCC. The hierarchical clustering analysis
identified two major clusters and cluster specific CNA
patterns were provided. Our analysis may facilitate
further studies on the distinct molecular mechanisms
underlying HNSCC.

MATERIALS AND METHODS

Data Collection and Patient Characteristics
We collected genomic array data from NCBI Gene Expression
Omnibus (GEO) (28) and TCGA (29) databases. Our data
selection criteria are that (1) the patient was diagnosed with
head and neck squamous cell carcinoma, excluding precancerous
lesions, metastasis, and recurrence cases, (2) the array platform
must be genome-wide, including array comparative genomic
hybridization (aCGH) and single nucleotide polymorphisms
(SNP) array, and (3) the number of probes of the array platform
should be >100K.

Our cohort consists of 873 patients from GEO and 522
patients from TCGA datasets. The primary tumors originated
from several sites of the head and neck region, including oral
cavity (n = 768, 61%), nasopharynx (n = 73, 5.8%), oropharynx
(n = 123, 9.7%), hypopharynx (n = 78, 6.2%), larynx (n =

186, 14.8%), and sinonasal cavity (n = 31, 2.5%). The majority
of patients were tobacco users (69.4%), while 55.6% were users
of alcohol. Approximately 14% (150 out of 1,065 patients with
available HPV test results) of patients were HPV-positive which

is consistent with the reported frequency at about 14.17% (85,000
in 600,000) (30). A summary of patients’ clinical data is provided
in Table 1.

For GEO datasets, the raw signal intensity files were
downloaded for re-analysis (31, 32). The tumor-paired normal
samples were used as reference in data analysis, if available. If
one sample was hybridized on two or more array platforms,
the sample analyzed by higher resolution array was included
in the following analysis. A total of 18 GEO series consist
of 873 samples were collected. Supplementary Table 1 shows
details of the 18 GEO series. For each patient, clinical data
was extracted from GEO website, publication’s main text and
supplementary file, and was converted to a standardized format.
For TCGA dataset, segmented genomic array data (level 3) and
clinical information were downloaded from TCGA data portal.
There were 522 HNSCC samples, all analyzed by Affymetrix
SNP6 arrays. In total, we collected 1,395 HNSCC samples
(Supplementary Table 2).

TABLE 1 | Summary of clinical data.

Characteristic Number of patients

(N = 1,395)

Proportion of none

missing values (%)

Age (years)

Range 19–93

Mean 60.33

Gender (n)

Male 888 73.4

Female 322 26.6

Unknown 185

Site of primary tumor (n)

Oral cavity 768 61

Nasopharynx 73 5.8

Oropharynx 123 9.7

Hypopharynx 78 6.2

Larynx 186 14.8

Sinonasal 31 2.5

Unknown 136

Tumor grade (n)

Well differentiated 186 19

Moderately differentiated 555 56.8

Poorly differentiated 236 24.2

Unknown 418

HPV (n)

Yes 150 14.1

No 915 85.9

Unknown 330

Alcohol (n)

Yes 370 55.6

No 296 44.4

Unknown 729

Tobacco (n)

Yes 763 69.4

No 336 30.6

Unknown 296

Frontiers in Oncology | www.frontiersin.org 2 March 2020 | Volume 10 | Article 321

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Genomic Landscape of CNAs in HNSCC

Data Processing and Normalization
Affymetrix raw data files (.CEL) were re-analyzed by the R
package aroma.affymetrix with the CRMAv.2 method (33).
For non-Affymetrix arrays, probe-level signal intensity and
annotation files were processed by in-house Perl scripts.
When necessary, genomic coordinates were remapped to
hg19/GRCh37 using UCSC’s liftOver utility (34). The circular
binary segmentation (CBS) (35) algorithm was employed to
segment DNA copy number data. The CNA calling cut-off
values for genomic gains and losses were set to 0.2 and −0.2,
respectively. The X and Y chromosomes were excluded to avoid
gender bias.

GISTIC Analysis
GISTIC is a tool used for the detection of peak regions
significantly amplified or deleted in a number of samples (36).
Default settings were used to run GISTIC 2.0, except that (1)
the false discovery rate q-value was set to <0.05 for peak
detection, (2) the arm peel method was used to reduce noise,
(3) the confidence level used to calculate the region containing
a driver was set to 0.95, (4) “Extreme” method was applied for
reducing marker-level to the gene-level copy number data, (5)
log2 ratios >0.2 and <-0.2 were taken as thresholds for gain
and loss detection. Furthermore, for known cancer-related genes,
we downloaded 719 cancer consensus genes from the Catalog of
Somatic Mutations in Cancer (COSMIC) database (37).

Chromothripsis Detection
We detected chromothripsis-like phenomenon by CTLPScanner
web server (http://cgma.scu.edu.cn/CTLPScanner/) (38). The
segmented array data were used as input to identify clustering of
copy number changes in the genome. The following parameters
and thresholds were applied: copy number status switch times
≥20, log10 of Likelihood ratio≥10, minimum segment size set to
10Kb and signal value difference between two adjacent segments
≥0.4. For data visualization, signal value for genomic gains and
losses were set to 0.2 and−0.2, respectively.

Definition of Copy Number Alteration
Breakpoint
The genomic starts and ends of copy number alterations were
considered as breakpoints. We used a stringent definition of
CNA breakpoints to reduce the bias caused by technical or
biological noise. A genomic position was defined as breakpoint
if the Log2 signal value alteration between two adjacent genomic
segments was >0.4 (39, 40). Copy number segments smaller
than 10Kb were excluded from analysis. Breakpoints located
in chromosomal telomeres and centromeres were ignored. To
investigate the distribution of breakpoints, the subdivision of
the genome and random shuffling of breakpoint positions were
performed by in-house Perl scripts. The common fragile sites
(CFSs) and non-fragile regions (NFR) of the human genome
were obtained from previous publications (41–43). We used the
liftOver tool to convert the genome coordinates from assembly
hg18/NCBI36 to hg19/ GRCh37 (34).

RESULTS

Genome-Wide CNA Profiles of HNSCC
In our collections, the genomic alterations ranged from whole
arm gains and losses to focal high-level amplifications. The mean
size of the CNAs was 6.7Mb, and the average number of CNA
events per tumor sample was 443. The CNA frequency plots for
each chromosome are shown in Figure 1. It provides a high-
resolution view of CNA distribution across the HNSCC genome.
The most commonly altered regions in HNSCC included gains
of 3q, 5p, 8q, and losses of 3p, 5q, 8p, 13q, 18q, and 21q. The
most notable focal CNA was the overrepresentation of 11q13,
which may be associated with oncogene CCND1 amplification
(44, 45). These results were consistent with previous studies
(18, 46–49). We also identified several frequently altered regions
that were rarely reported, such as the whole chromosome 4 loss
and chromosome 20 gain.

We further investigated the frequency of arm-level alterations,
which were defined as a single CNA that encompasses >50% of a
chromosomal arm. Supplementary Figure 1 represents the arm-
level alteration frequency measured across all samples. Similar
to other cancer types, we observed a negative correlation (r =
−0.545, p= 0.0003) between arm-level gain and loss frequencies
(5). It reveals that frequently altered chromosomes tend to be
either gained or lost, but rarely both.

Driver Gene Identification
GISTIC 2.0 (36) was performed to identify statistically significant
recurrent focal CNAs and potential driver genes. We observed
72 and 53 regions of recurrent copy number gain and loss,
respectively (q< 0.05) (Supplementary Table 3). The annotation
of these regions revealed 1,160 targeted genes. Some of the
most significantly altered genes and their significance levels are
shown in Figure 2. Thirty-one genes were known cancer genes
and listed in COSMIC database (37) (Supplementary Table 4).
Among them, 17 genes have been reported to be driver genes in
HNSCC, such as ASPSCR1, BIRC3, CBFA2T3, EGFR, ERBB2,
FGFR1, NFE2L2, PIK3CA, RECQL4, RNF213, and WHSC1L1
were located in copy-number gain regions, while CDKN2A,
FAT1, LRP1B, PTPRD, PTEN, and RB1 were identified in copy-
number loss regions. In addition to these known HNSCC driver
genes, we also identified novel or recently described genes. There
were 39 regions of interest that contained only one candidate
driver gene. IRAK1BP1 (6q14.1) is an inhibitory component
of TNFR-related pathways (50, 51). Although it can activate
NF-kappa-B pathway, which is known as a major regulator of
innate and adaptive immune responses, it has not been found
associated with cancer. PTPN1 (20q13.13) is a tyrosine-protein
phosphatase and acts as a regulator of endoplasmic reticulum
unfolded protein response (52, 53). It directly dephosphorylates
insulin receptor and insulin receptor substrates, which results
in down regulation of insulin signaling. In recent studies, the
overexpression of PTPN1 was detected in several cancer types
such as colon cancer and breast cancer (54, 55). It has also been
reported as an indicator of poor prognosis in gastric cancer (56).
These results suggest an essential role for PTPN1 in HNSCC
carcinogenesis. The new candidates in these recurrent alterations
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FIGURE 1 | Genome-wide frequency plot of copy number alterations. Copy number gains and losses are represented in red and blue, respectively.

FIGURE 2 | Significantly altered regions and genes identified by GISTIC algorithm. The significance of recurrent amplification and deletion is plotted across the

genome. Some of the identified potential cancer driver genes are shown at the corresponding peaks.

may direct experimental studies and contribute to molecular
mechanism researches of HNSCC.

Chromothripsis in HNSCC
Using CTLPScanner algorithm (38), we identified 92
chromothripsis cases from 1,395 HNSCC samples, giving
an incidence of about 6% (Supplementary Table 5). Compared
to other tumor types, the incidence rate of HNSCC is a little
bit above the average level (approximately 5% of all cancers)
(12, 57, 58). The sizes of affected regions ranged from 30Mb
to the whole chromosome. Supplementary Figure 2 illustrates

examples of localized and chromosome-level pulverization.
In our dataset, the most frequently shattered chromosome
was chromosome 8 (18%, 17 out of 92). Chromosomes 6 and
11 also exhibited a relatively high pulverization rate. We also
investigated the number of affected chromosomes per tumor
sample, and found that approximately 11% (10 out of 92)
of chromothripsis cases carried two or more chromosome
shattering events. Figure 3 shows the hotspots of chromothripsis
across the genome. These results suggest that HNSCC has a
specific pattern of chromothripsis. In our dataset, the follow-up
data was available for 772 patients, and the mean follow-up

Frontiers in Oncology | www.frontiersin.org 4 March 2020 | Volume 10 | Article 321

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Genomic Landscape of CNAs in HNSCC

FIGURE 3 | The genomic landscape of chromothripsis and copy number alteration breakpoints. The outermost circle represents potential cancer driver genes located

in chromosome pulverization regions or the breakpoint hotspots. The next circle represents hotspots of chromothripsis region. The third circle shows the

breakpoint-prone genomic regions. The innermost circle represents common fragile sites and non-fragile regions in red and green, respectively.

time was 31.4 months. Chromothripsis was detected in 8.2% of
this cohort. The Kaplan-Meier analysis indicated that there was
no survival difference in patients with chromothripsis patterns
compared with those without chromothripsis (log-rank test, p =
0.61) (Supplementary Figure 3).

Copy Number Alteration Breakpoint
Analysis
Chromosome breakage is a hallmark of cancer cells and
may contribute to cancer initiation and progression. We
identified a total of 193,028 CNA breakpoints in 1,395 HNSCC
samples, with the mean breakpoints per sample being 138.
We further examined the CNA breakpoint hotspots across

the genome. Each chromosome was divided into continuous
bins with length of 1Mb, and the density of breakpoints per
bin was calculated. Then, we shuffled the position of copy
number alterations 10,000 times to obtain the background
distribution of breakpoints. The breakpoint-prone genomic
regions were identified through comparing the actual and
background distributions. In total, we obtained 323 genomic
regions that were significantly enriched for breakpoints of
chromosomal rearrangements (Bonferroni corrected p <

0.01) (Supplementary Table 6). Moreover, we compared
these regions with known common fragile sites and non-
fragile regions described in the literature (41). Among these
hotspots, only 58 (18%) were located within CFS, while 103
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(32%) overlapped with NFS (Figure 3). These results provide
important information about the HNSCC-specific genomic
instability regions.

Comprehensive Clustering Analysis
We performed unsupervised hierarchical clustering on the copy
number profiles of all HNSCC samples. CNA data were clustered
in R based on Euclidean distance using Ward’s method, resulting
in two major clusters (Figure 4, Supplementary Figure 4).
Tumors that were classified in cluster 1 showed a high
proportion of the genome affected by CNAs, especially the
arm-level events. The most frequent arm-level copy number
changes in HNSCC, such as 3q, 8q gain, and 3p, 8p loss,
can be found in this cluster. Cluster 2 was characterized
by reduced CNAs and tumors were more affected by small
focal alterations rather than arm-level events. Furthermore,
several additional sub-clusters can be distinguished within both
major clusters. For instance, a sub-cluster within cluster 2
was represented by samples harboring few CNAs (M class),
a pattern that has been described in previous studies. These
genome copy number stable tumors may be primarily driven by
mutation rather than CNA. Notably, the hierarchical clustering
analysis identified a sub-cluster predominantly composed of
nasopharynx tumors and presented a large proportion of

HPV-positive samples (Supplementary Table 7). These tumor
samples demonstrated a distinctive copy number alteration
pattern of 3q gain and lack of 3p loss. These different
CNA patterns may be used as markers to cluster HNSCC
samples into distinct tumor subtypes, and provide valuable
insights into the different molecular mechanisms that underlie
HNSCC development.

DISCUSSION

The high degree of genomic heterogeneity of HNSCC
underscores a challenge to distinguish between driver and
passenger alterations from aberrant regions. A large number
of tumor samples need to be examined in order to identify
driver genes that are not detected when each tumor is analyzed
individually. In this study, we characterized genome-wide DNA
copy number alterations in HNSCC based on published high
resolution aCGH and SNP array data. From the overall CNA
profile of 1,395 HNSCC samples, we obtained the most frequent
arm-level alterations. Previous studies have indicated that broad
and focal copy number alterations may represent different
characteristics of cancer cells with independent mechanisms
(12, 59). While broad copy number alterations may contribute to
immune suppression, focal alterations may activate oncogenes

FIGURE 4 | Unsupervised clustering of DNA copy number alteration data. The 1,395 HNSCC samples are arranged along the x-axis and ordered according to their

copy number profiles. Chromosome numbers are indicated along the y-axis. Key clinical parameters associated with the samples are displayed in the column header.

Red indicates copy number gain, and blue indicates copy number loss. The red line at the bottom of the figure represents a sub-cluster containing a large proportion

of HPV-positive samples. The blue line at the bottom of the figure shows a sub-cluster consisted of samples harboring few copy number alterations. NA, not available.
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and inactivate tumor suppressors that provide tumor cells with a
proliferative advantage (60).

We applied GISTIC algorithm (36) to perform focal CNA
analysis and identified a number of candidate genes, including
driver genes from other tumor types, as well as genes
not previously reported to be associated with any cancer.
Over-expression of PTPN1 has been linked to colon cancer
and breast cancer development and progression (54, 55).
The phosphatase activity of PTPN1 is responsible for the
regulation of cell motility and invasion, and may enhance
the expression of EGFR. High expression of PTPN1 is
strongly associated with poor prognosis in gastric cancer
(56). These results support the hypothesis that amplification
of PTPN1 is important in the pathogenesis of HNSCC.
Another promising candidate gene, IRAK1BP1, can activate
NF-kappa-B through the TNFR signaling pathway and acts
by enhancing RELA transcriptional activity. This gene is
associated with inflammation and several autoimmune diseases
(61), but not cancer. Our results indicated that IRAK1BP1
may be important in HNSCC development and involved in
immune surveillance.

The single catastrophic event chromothripsis is a novel
phenomenon of genomic instability and is distinct from
the progressive accumulation of mutations model of cancer
development (19, 23). The prevalence of chromothripsis is
heterogeneous across various cancer types. According to
previous studies, chromothripsis on average can be found
in approximately 5% of all cancers, with up to 25% in bone
tumors (19, 22, 58, 62). We detected 92 chromothripsis cases
out of 1,395 HNSCC samples, giving an incidence about 6%.
While the underlying mechanisms resulting chromothripsis are
still largely unknown, several hypotheses have been proposed,
including micronuclei formation (63, 64), abortive apoptosis
(65, 66), premature chromosome condensation (67), breakage-
fusion-bridge cycles (68–70), and telomere dysfunction (71). The
patterns of chromosomal pulverization may reveal underlying
mechanisms of chromothripsis in carcinogenesis. In our cohort,
89% chromothripsis cases affect only a single chromosome,
and about 3% cases affect 3 chromosomes simultaneously.
Chromothripsis involving multiple chromosomes can result
from several chromosomes in a micronucleus or is the
consequence of a process of aborted apoptosis. It is likely
that more than one mechanism contributes to the generation
of chromothripsis in HNSCC. Since chromothripsis was
more frequently detected in particular genomic regions, the
chromosomal pulverization hotspots may contain critical
genes for the regulation of cell cycle control, DNA damage,
proliferation and apoptosis. For instance, Rausch et al. (24) have
associated chromothripsis with TP53 mutations in subsets of
medulloblastoma. In our analysis, the most frequently affected
chromosome regions were 8p and 11q (account for 18 and
14% chromothripsis cases, respectively), suggesting that these
loci were chromothripsis hotspots. The affected genes in these
regions may be crucial for chromothripsis formation in HNSCC.

Genomic rearrangement breakpoints may disrupt tumor
suppressor genes or create novel gene fusions with oncogenic

potential. We performed genome-wide analysis and identified
323 recurrent breakpoints that were more clustered than
would be expected if location of CNAs were randomly
distributed throughout the genome. These breakpoint-
prone regions revealed HNSCC specific genomic instability
regions, by comparing with known common fragile sites
and non-fragile regions of human genome. A number of
potential driver genes detected by GISTIC were located in
these regions. These results expanded our understanding
of the impact of genomic rearrangements as a cause
of HNSCC.

We performed unsupervised hierarchical clustering analysis
based on primary tumor samples from six different sites of
head and neck region. The results did not show a clear
separation between the samples from different locations, which
demonstrated the diversity of genetic alterations in a variety of
HNSCC sites, as well as the importance to collect large-scale
datasets for analysis. In consistent with previous studies, we
observed a sub-cluster with few CNAs, which may represent
the M class cancer that predominantly driven by mutations
rather than copy number alterations (72). In 2015, the TCGA
consortium published a comprehensive systematic evaluation
of 279 HNSCCs, and provided an integrated view on the
molecular landscape of this cancer type (18). HPV+ and
HPV- tumors showed different mutational patterns. In our
analysis, most HPV+ tumors displayed specific mutational
profiles and were clustered together, suggesting that these
tumors reflect a separate genetic subgroup. The distinctive
copy number alterations of this group of samples include 3q
gain and lack of 3p loss. Human papillomavirus infection has
been identified in strong association with oropharyngeal and
tonsillar cancers (73–75). However, our cluster analysis showed
an enrichment of HPV+ samples in nasopharynx tumors,
which was not explicitly noted before. Although the clinical
implications of HPV infection in nasopharynx tumors need
further investigation, these results are important for patient
management and treatment choices.

In summary, we performed a comprehensive characterization
of somatic genomic alterations based on a large cohort
of HNSCC samples. Several newly identified driver genes
in focal alterations, such as IRAK1BP1 and PTPN1, may
facilitate molecular mechanism studies of HNSCC. Analysis
of chromothripsis regions and breakpoint hotspots directed
8p and 11q as commonly affected regions in HNSCC
that may related to disease development. Clustering of
patients may provide evidence for patient stratification
and differential treatment. These results provide valuable
new insights into the mechanisms of genomic instability in
HNSCC, and will facilitate the discovery of therapeutic and
diagnostic candidates.
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