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Cancer is the quintessential complex disease. As technologies evolve faster each day,

we are able to quantify the different layers of biological elements that contribute to the

emergence and development of malignancies. In this multi-omics context, the use of

integrative approaches is mandatory in order to gain further insights on oncological

phenomena, and tomove forward toward the precisionmedicine paradigm. In this review,

we will focus on computational oncology as an integrative discipline that incorporates

knowledge from the mathematical, physical, and computational fields to further the

biomedical understanding of cancer. We will discuss the current roles of computation

in oncology in the context of multi-omic technologies, which include: data acquisition

and processing; data management in the clinical and research settings; classification,

diagnosis, and prognosis; and the development of models in the research setting,

including their use for therapeutic target identification. We will discuss the machine

learning and network approaches as two of the most promising emerging paradigms,

in computational oncology. These approaches provide a foundation on how to integrate

different layers of biological description into coherent frameworks that allow advances

both in the basic and clinical settings.

Keywords: multi-omics analysis, computational oncology, data integration, cancer complexity, machine learning,

network science

1. CANCER: THE COMPLEX DISEASE

Cancer is by now widely accepted to be the quintessential complex disease: a proper description
of the pathological phenotype can only be achieved by properly integrating the myriad of
interconnected biological elements and their relationships with their environment (1). As a
complex system, cancer exhibits features, such as: emergent patterns, adaptive and collective
behaviors, self-organization, non-linear dynamics, and interactions forming complex networks (2).
Examples of these can be found in the Hallmarks of Cancer (3, 4), as seen in Figure 1.

On a system-wide fashion, every tumor is involved in interactions with non-cancer elements:
such as gene-environment interactions (GxE) (5), micro-environmental interactions (6), and
those with the immune system (7); intercellular interactions within the tumor environment (8);
and intracellular interactions, such as transcriptional regulation and gene co-expression (9, 10),
signaling (11, 12) and metabolic pathways (13, 14), as well as protein interactions (15). These are
exemplified in Figure 2. It soon becomes evident that a major source of cancer complexity lies on
the many layers of interacting elements involved in the phenomenon.
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2. THE MULTI-OMICS PARADIGM

2.1. Multi-Omics in a Nutshell
Multiomics is the name given to the modelization approach
in biology hat makes use of more than one of the current
high-throughput biomlecular experimental techniques (a.k.a.

FIGURE 1 | Hallmarks of cancer complexity. The defining features of cancer

(3, 4) are intrinsically connected to the defining features of complex

systems (2).

FIGURE 2 | The many levels of interactions found in a cancer system. (A) Depicts intracellular interactions that can be measured via the different omic technologies,

such as genomics, transcriptomics, metabolomics, lipidomics, and so on. (B) Shows intercellular interactions, such as the ones orchestrated through immune

responses, microbial interactions (metagenomics) and other instances of cell-cell interactions.

omics) in order to characterize biological systems at the
phenomenological level. It is understood that every omic
contributes on a specific fashion to shape the actual biological
phenotype under study. For this reason, it has become evident
that there is a need for integrating frameworks to gather
and organize the knowledge gained with each experimental
approach into mechanistic or semi-mechanistic descriptions
of the biological phenomenon. This issue has been deemed
particularly relevant for the study of complex phenotypes, such
as cancer tumors (16).

The rapid development of sequencing strategies as well as
genotyping and expression microarrays led to the development
of gene models to account for the molecular aspects of biology
at the whole cellular level (and even at the organ and organism
scales). The coming of age and popularization (driven by
an almost exponential lowering of the costs) of next gen
sequencing techniques leads to an explosion of new approaches
to understand complex phenotypes that in turn have sped up the
rise of high throughput proteomics, metabolomics catching up.
Single cell technologies and a number of arising sequence based
approaches (ChIP-seq, ATAC-seq) are becoming usual tools of
biomedical and in particular cancer research (see Figure 3, for an
account of the fastly increasing number of PubMed publications
based on these omic tools).

In spite of this, the integrative approach to multi-omic
modeling is far from trivial due to the broad diversity of data
types, dynamic ranges and sources of experimental and analytical
errors characteristic of each omic. In spite of these facts, a number
of approaches tomulti-omic integration have been proposed [see,
for instance, discussions in Hernández-Lemus (17, 18)]. Said
approachesmake use of tools from statistics, probability, machine
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FIGURE 3 | Growth of interest in omics technologies in the twenty-first century: the number of Pubmed publications mentioning each omic technology in its title or

abstract measured yearly since the year 2000.

learning and network science to classify, explore and provide
guidelines for feature selection and their application is very much
rooted in the tenets of systems biology.

The systematic study of cancer given by multi-omics is
founded on the acknowledgment of a contribution of many
different factors in the development and maintenance of

the malignant state, including genetic aberrations, epigenetic
alterations, changes in the response to cellular signaling,
metabolic alterations, and beyond (19). Hence, by analyzing
cancer as a complex pathology, the systems biology paradigm
tries to gain insight into the molecular origins of the disease by
looking at the diverse contributions, from DNA mutations (both
germline and somatic), to deregulation of the gene expression
programmes, the phenomenon of hormone disruption, that may
or not be supplemented bymetabolic abnormalities, and aberrant
pathway signaling.

Cancer is also a multiscale pathology, aside from the
biomolecular events just mentioned there is the influence of
the environment and lifestyle that is known to be able to
modify the onset, development, and outcome of tumors and
their metastases. Multiomic analysis under a systems biology
framework makes possible to use the unprecedented power
of current high-throughput molecular and computational tools
to draw a more complete figure of the different players in
tumorigenesis and tumor establishment. At the same time, it
may provide us with new instruments and strategies useful in
basic and clinical research laboratories, but also in translational
medicine and therapeutic endeavors.

These different levels of description have been independently
studied for years. However, even if the advent of high-throughput
technologies has permitted the development of systems biology,
system-level models (conforming the theoretical foundations of
these multiomic studies) are still under development.

2.2. The Systems Biology Framework
In essence, the foundational basis of systems biology is
that of considering biological phenomena as systems, i.e.,
constructs formed by a large number of complex molecular
and environmental components interacting at different levels to
shape the functional features of said system. Tumor behavior,
for instance, is determined by a combination of changes in
genomic information that may (or may not) be associated with
abnormal gene expression profiles; affecting protein abundance,
but also modifying protein structure and folding, as well as
supramolecular assembly. Changes in the regulatory patterns
may also affect cell signaling mechanisms; and their responses.
Hence, the complex interaction of nucleic acids and proteins
in replication, transcription, metabolic, and signaling networks
are considered the ultimate causes for the functioning (or
misfunctioning, if preferred) of the tumor cell. We can notice
that these are interdependent phenomena that cannot be treated
separately, hence the need for integrative methodologies.

Another pivotal challenge in contemporary studies
undertaken following a systems biology view is hence data
integration. Data integration allows for the understanding of
the enormous datasets generated by experimental multi-omics.
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This is indeed a highly non-trivial task, since just the data
management of such large amounts of information represents a
challenge that has been called the big data paradigm.

3. THE ROLES OF COMPUTATION IN THE
AGE OF CANCER MULTI-OMICS

We have identified four main roles that computation plays in
the analysis of high-throughput data. These are the raw data
acquisition from high-throughput instruments; the processing
of raw data to quantitative data; the storage and management
of massive omics data, for instance in remote repositories; and
finally the deployment of data analysis models. These roles are
illustrated in Figure 4. In this section, we will discuss select
aspects of each of these roles.

3.1. Data Acquisition and Processing
The acquisition, processing, and manipulation of omic data
generated in high throughput experiments requires, due
to the very nature of these experiments (see Figure 5),
the use of specialized bioinformatics pipelines. As the
complexity of these datasets increases due to the natural

evolution of these technologies, so do the associated
challenges evolve (20). Bioinformatics workflow management
systems can be used to develop, maintain, and foster
reproducibility of a give pipeline or workflow. Examples
of these systems include Galaxy (21), Snakemake (22),
Nextflow (23), and the general purpose Common Workflow
Language (24).

It should be noted that a large number of tools for omic data
analysis are available as packages for the R language contained
in the Bioconductor project (25), a repository of bioinformatics
open source software. It is important, however, to acknowledge
the existence of other software ecosystems, such as the Biopython
project (26). Although the number of packages in Bioconductor
is greater than that found in Biopython [see for instance (27)],
the main takeaway should be that there is a large number of
tools available to researchers that can be used in any combination
suitable for their research question.

3.1.1. Genomics
The oldest of the omic technologies, genomic analyses focus on
the genomic sequence and its variations: insertions, deletions
(INDELs), single nucleotide variations (SNVs), copy number

FIGURE 4 | Computational tools are needed for high-throughput data acquisition, data management in repositories, data processing, and high-end analysis.
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FIGURE 5 | Samples for omics analyses can be obtained from “bulk” tissue, single cell data, or heterogeneous populations, such as metagenomes. Most current

omics data are generated using technologies either array-based, sequence-based, or mass spectrometry-based; although high-throughput imaging data is becoming

important in the clinical setting. Complementary techniques exist for the analysis of epigenetic states. Each combination of sample type, omic measurement and

analytical technology requires a specific bioinformatic pipeline for data acquisition and processing.

variations (CNVs), and so forth. The relationship between
genomic alterations and cancer is well-known (28).

Microarrays have long been used for genotyping.
Although specifics of microarray technology may vary across
manufacturers, most modern DNA microarrays can be analyzed
using well-established tools available in the Arrays (29). Such
tools can handle arrays for different genotyping tasks, including
SNP and copy number assays [for instance, copy number
detection from exome sequencing using CODEX (30)].

Although DNA microarrays remain in use, next generation
sequencing (NGS) technologies are quickly becoming
commonplace. The analysis of NGS data entails a workflow
that involves sequence acquisition and alignment to a reference
genome, A number of downstream analysis pipelines can follow;

for instance, a variant discovery workflow would involve variant

calling, filtering, annotation, and prioritization (31). The first
step to analyze NGS data is to use a sequence aligner tool on
the sequence data (stored in FASTQ format). Some popular
aligners are the stand-alone BWA (32), Bowtie (33), Bowtie2
(34), and SNAP (35), with aligned sequences being stored in
SAM (Sequence Alignment Map, text-based) or BAM (Binary
Alignment Map) files. These aligned sequences are the input for
downstream genotyping analyses (36, 37).

Such standards are indeed a matter of state-of-the-trade in
the academic research community indeed. Regarding pipelines
approved by regulatory instances, there is in fact an official FDA
guideline document to this end: “Considerations for Design,
Development, and Analytical Validation of Next Generation
Sequencing (NGS)—Based in vitro Diagnostics (IVDs) Intended
to Aid in the Diagnosis of Suspected Germline Diseases”

available for download at https://www.fda.gov/media/99208/
download. The Guideline document (99208) actually refers to
a Software Documentation Guideline: “General Principles of
Software Validation; Final Guidance for Industry and FDA
Staff” which is however quite outdated (last revised January, 11,
2002) (https://www.fda.gov/media/73141/download). SomeNGS
tools however are actually available as a web service at https://
precision.fda.gov/. For a review on these guidelines and tools
see (38).

3.1.2. Epigenomics
With the recent advent of high-throughput omic technologies
to probe chemical modifications in the tumor genomes it
has become more and more evident that such epigenomic
modifications are present and likely play relevant roles in many
cancers. These variations include DNA methylation and histone
modifications, both in oncogenes and in other cancer-associated
genes. Mutations in genes involved in epigenetic regulation have
also been found in several tumor types. The computational
analysis of epigenomic data may provide us new insights about
cancer initiation and progression. More relevant perhaps, such
studies will pave the way for a more efficient identification
of genetic and epigenetic biomarkers for diagnosis, prognosis
or response to therapy. These in turn, may accelerate the
development of novel therapeutic approaches.

Epigenomics often presents another view of functional
processes complementary to that of genomics. Sometimes
epigenomic techniques even allow for a better understanding
of genome-associated phenomena. Such is the case of high-
throughput immunoprecipitation assays, such as ChIP-Seq.
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ChIP-Seq and other experiments based on the analysis of short
reads show the effects of multi-reads, i.e., reads that map to more
than one genomic region. Determination of the origin of such
multi-reads indeed results critical for the accurate mapping of
reads to repetitive regions, such as copy number variants (39, 40).
Current computational approaches have been refined to cover up
for this phenomenon even at the single-cell level (41).

The epigenome contains the set of potentially inheritable
chemical modifications of DNA and histone proteins that
can control gene expression activity (42). There are several
mechanisms which are contained within the epigenomics
concept, each requiring a different high throughput molecular
technique for its measurement. Each of these techniques, in
turn, requires the use of a dedicated set of computational tools.
These include:

• DNAmethylation: The methylation state of a DNA region can
alter its transcriptional activity. This state can be measured
using either array-based methods or sequencing methods,
such as the popular whole-genome bisulfite sequencing
(WGBS) (43). Data from array based methods can be
processed using the aforementioned array packages, along
with dedicated packages, such as methylationArrayAnalysis
(44). Similarly, those obtained using sequence-based methods
can make use of dedicated tools, such as the bsseq (45) or
methyAnalysis (46) packages.

• Chromatin remodeling: Regions where nucleosomes are
sparse and physical access to the DNA sequence is enabled
are identified as open chromatin. Chromatin accessibility is
a dynamical and complex framework modulated by diverse
elements, including nucleosome occupancy and turnover rate,
histone modifications, ATP-dependent chromatin remodeling
complexes and even TF binding (47, 48). Open chromatin has
emerged as indicative of transcriptional regulatory potential or
activity across the human genome because most of the TFs
analyzed to date bind within open regions (49). Chromatin
architecture is modified by changing its accessibility affecting
gene expression rates. This remodeling can be controlled by
histone modifications, which include acetylation, methylation,
ubiquitination, and SUMOylation, among others. Overall
chromatin accessibility can be also measured by techniques,
such as ATAC-seq (50), a high throughput NGS technique
to assess genome-wide chromatin accessibility. Due to the
characteristic biochemical design of the assay ATAC-seq
is a faster and more sensitive analysis of the chromatin
accessibility than other alternatives, such as DNase-seq.

ChIP-seq (51) data is used to identify genomic locations
with an overabundance of proteins of interest; such
identification uses the so-called peak callers (52, 53). These
include SICER2 (54), PeakRanger (55),GEM (56)MUSIC (57),
PePr (58), DFilter (59), andMACS (60); benchmarks for these
algorithms can be found at https://github.com/skchronicles/
PeakCalling.

MACS is a popular peak caller that uses dynamic
Poisson distribution; its successor, MACS2 (61), improves
the algorithm to, amongst other things, make it more
suitable for calling differential regions. Differential binding

analysis (that is, identifying sites in which exhibit a different
binding behavior between biological conditions) can be useful
to identify relevant regions that may be driving cancer
phenotypes, using ChIP-seq data. Tools for this task include
DiffBind (62), a package that provides functions to handle
the results of peak set callers, such as MACS. Another tool
for this task is csaw (63), useful for de novo detection of
differentially bound regions using a sliding window approach.
In-depth comparison of differential ChIP-seq analysis tools
can be found in (64).

• Chromosome conformation: The three-dimensional
organization of the genome allows for interactions between
regions that are distant in terms of sequence, even belonging
to other chromosomes. These higher-order chromosome
structures are a current area of research in oncology (65).
Chromosome configuration capture techniques are able to
quantify interactions between genomic loci. These C-techs are
based on the original 3C, Chromosome configuration capture
(66); able to quantify interactions between a single pair of loci.
It was followed by: 4C (Chromosome configuration capture-
on-chip) (67), which captures interactions between one locus
and all others; 5C (chromosome conformation capture carbon
copy) (68), which captures all interactions between two sets of
loci; and Hi-C (high-resolution chromosome conformation
capture) (69, 70) to detect interactions between all possible
loci pairs. Development of computational analysis tools for
chromosome conformation capture data is ongoing, although
there are available packages for the detection of significant
interactions for all these technologies (71–73).

It has been known for some time that higher order chromatin
arrangements are associated with chromosomal alterations in
cancer. For instance, it has been argued that spatial chromosome
conformation and negative selection may be powerful driving
forces behind somatic copy number alterations (74). More
recently, chromatin conformation capture has allowed the
identification of putative pharmacological targets in breast cancer
(75). Genomic loci interactions may even affect the expression of
biomarkers related to hallmarks of cancer, such as hypoxia (76).

Packages, such as methylPipe and compEpiTools provide
an integral platform for the comprehensive and integrative
analysis of the first two classes of epigenomic data (77),
whereas ATACseqQC (78) is a package offering quality control
tools for ATAC-seq data, while esATAC (79) offers a whole
analysis pipeline and the GenomicInteractions package (80)
offers a complete framework for the analysis of chromosome
conformation data.

3.1.3. Transcriptomics
Transcriptomic analyses are used to measure the presence and
abundance of RNA in a given physiological context (81). Perhaps
the most common application of transcriptomic technologies
is to measure gene expression. The gene expression profile of
a phenotype can be used as a barcode of its biological state.
Such barcodes can be compared, through differential expression
analyses, to pinpoint cellular changes in cancers (82). The
expression profile is the product of the gene regulatory program
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encoded in the genome and the epigenome. By measuring gene
expression, we are indirectly capturing the regulatory changes
that are at the core of the disease.

The development of gene expression microarray technology
(83) has made gene expression measurement more technically
and economically viable than the measurement of protein
abundance. Therefore, methods for the measurement of
biological activity (i.e., pathways) have been developed with
transcriptomic data in mind (84). Studying the molecular
phenotype of cells via transcriptomics has become an invaluable
tool providing a proxy to the functional state of cells and its
regulatory interactions, both in cancer (85, 86), and in healthy
phenotypes (87). Nevertheless, it should be noted that the
correspondence between gene and protein abundance is far from
perfect (88), which highlights the need for multi-omics.

Beyond gene expression, whole transcriptomic analyses
involve the measurement of non-coding (nc) RNA, such as
micro-RNA (miR), long non-coding RNAs (lnc-RNA), small
nucleolar, Piwi-interacting, enhancer RNAs, among others (89,
90). The role of these transcripts, particularly in terms of their
contribution to the regulatory program, remains an active area
of study.

As previously mentioned, transcriptomic technologies are
one of the most developed omics, second only to genomics
itself. Measurement of transcript abundance can be done using
either expression microarrays or RNA-sequencing (91, 92).
Each methodology has technical considerations, but the general
steps for their analyses are similar: acquire and preprocess
data, removing technical artifacts; quality control; and data
normalization. The resulting data can be represented as an
expression matrix: an NxM matrix where rows represent
transcripts, and columns represent samples (or observations).
It should be noted that most expression pipelines are oriented
toward differential expression analyses [see for instance (93)];
this should be taken into account in case that is not the
intended use-case.

Starting points for RNA-seq data analysis include either
alignment based methods, such as Bowtie (33), and STAR (94),
or alignment-free methods, such as kallisto (95) and Salmon (96).

Cancer-related omic experiments often rely on specific, tailor-
made analytics. One instance of this is provided by alignment-
free RNA-Seq analysis methods, such as the ones performed
by kallisto, Salmon, etc. Alignment-free methods (AFMs) are
particularly well-suited to study cancer transcriptomics to look
up at the role and abundance of fusion transcripts that may give
rise to chimeric proteins (97, 98). Another reason behind the
use of AFMs is that it is known that different RNASeq pipelines
present differences that may be important when analyzing cancer
genomes and transcriptomes (99, 100).

Further require different tools for quantification, quality
control, and normalization of expression data. For instance,
a popular pipeline is composed of the aforementioned Bowtie
as a short read aligner, TopHat (101) for the identification of
slice junctions, Cufflinks (102) for transcriptome assembly and
differential expression analysis, and CummeRbund (103) for
result exploration; it should be noted that, while this pipeline is
still widely used and maintained (e.g., Bowtie2 latest release was

02/28/20), other approaches are been gradually embraced by the
community (104); for instance, the HiSat2 (105), StringTie (106),
and Ballgown (107).

In the case of tools like STAR, we need to be aware that
fusion detection using STAR-fusion is mainly limited by the
length of single-end reads. The STAR-fusion wiki (https://
github.com/STAR-Fusion/STAR-Fusion/wiki) indicates the need
for at least 100 base length. In the case of other approaches,
such as FusionHunter (108) the authors recommend to align
to a pseudo-reference and discard junction spanning reads
with <6 bp matches on either gene. Arriba is a relevant tool
to call for gene fusions, based also in the STAR-alignment
(https://github.com/suhrig/arriba/). Arriba was the winner of
the DREAM SMC-RNA Challenge (https://www.synapse.org/#!
Synapse:syn2813589/wiki/401435) (109).

An advantage of the modular design of these pipelines is
that it is possible to combine tools from different workframes,
depending on experimental and analytical needs: For instance,
Salmon provides tools to connect with differential expression
tools, such as DESeq2 (110), edgeR (111), limma (112), or sleuth
(113). A detailed discussion of these methods is beyond the
scope of this article; please see Conesa et al. (114) for an
in-depth review.

3.1.4. Proteomics
Proteomic analyses are used to identify and quantify the set of
proteins present within a biological system of interest (115). The
study of cancer proteomes is promising as a way of identifying
biomarkers and therapeutic targets (116). This is not surprising:
proteins are the molecular unit from which cellular structure and
function arises.

Historically, high throughput proteomics technologies have
developed at a slower pace than genomics and transcriptomics
technologies. Microarray approaches to proteomics have been
developed, with varied levels of success and applications (117,
118). However, the bigger breakthroughs have come through the
use of mass spectrometry (119).

Various steps of proteomics analysis involve data analysis
(120). During data acquisition, the detected molecular fragments
must be identified. This is often done by comparing fragments
to databases in real-time (121, 122). Later, the assembly of
proteins from identified peptide fragments requires another
set of computational methods (123). The development of such
methods remains an active area of research (124, 125). The
Bioconductor offers a streamlined set of tools for the management
of proteomics data, from data processing to functional analysis
(126). Another alternative for protein quantification is the
maxquant toolset (127).

3.1.5. Metabolomics and Lipidomics
Metabolic alterations are important contributors to cancer
development (128). Cancer metabolomics has become an
important research topic in oncology (129), with the promise
of providing novel insights on cancer development and
potential therapeutic options. Lipidomics is actually a subset of
metabolomics (130). The study of cancer lipidomics may lead to
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the identification of biomedical important findings, such as novel
biomarkers (131).

Like proteomics before, metabolomics and lipidomics studies
have been possible thanks to the use of mass spectrometry. The
analytical considerations for the extraction and quantification of
these types of compounds have some differences to those
used for proteomics. This is expected, as the chemical
nature of metabolites and lipids are fundamentally different
(132, 133). In turn, bioinformatic and chemoinformatic
approaches to high-throughput metabolite profiling exhibit
some modifications (134).

Analysis frameworks for metabolomic and lipidomic data are
currently available. Themetab package (135) provides an analysis
pipeline for metabolomics derived from gas chromatography—
mass spectrometry data. The metaRbolomics package (136) is
a general toolbox that goes from data processing to functional
analysis. Finally, the lipidr package (137) is a similar framework
focused on lipidomics data.

3.1.6. Unraveling the Complexity Within Samples:

Single Cell, Imaging, Microbiome
The aforementioned technologies were all developed for the
detection and quantification of analytes extracted from a complex
biological matrix, obtained from tissue, plasma, or a similar fluid.
As such, the data from these omics is an aggregate of the different
cellular contexts present in the sample. The environment within
and surrounding cancer tumors is notably heterogeneous (138,
139). There is knowledge to be gained by recovering the omics
diversity within samples.

Cancer is an extremely heterogeneous disease at the cellular
and molecular level. Tumor heterogeneity caused by the
concurrence of multiple cell lineages and differentiation stages,
determined to an extent by the processes of clonal evolution. This
has led to an early adoption of single cell analysis techniques.
The case of single cell sequencing to study the genomic and
epigenomic features of the different cell populations within a
tumor by considering the characteristics of individual cells has
revealed as an appealing approach to deal with said cell-to-cell
variability (140–142).

Cancer cell heterogeneity also exists beyond the genome.
Tumor evolution under complex environmental scenarios
often leads to variability in epigenetic modifications. Single
cell sequencing and imaging techniques have proven to be
quite effective to characterize cellular plasticity induced by
epigenomic phenomena (143). Aside from scMethSeq, and
scDNAse Seq, other techniques, such as single-cell chromatin
accessibility assays are starting to shed light to how epigenomic
subpopulations in cancer may have the potential to impact tumor
features, such as drug sensitivity and clonal dynamics (144).

Single-cell omics analyses rely on experimental techniques for
the isolation of single cells from a sample, using microfluidics
or fluorescence-activated cell sorting methods (145). Single-cell
RNA-seq (scRNA-seq) is currently the most developed high-
throughput omics technology for individual cell analysis (146).

Data from scRNA-seq experiments can be thought to be very
similar to so-called “bulk” data. Data from scRNA-seq is, in fact,
sparser, more variable, and with more complex expression values

distributions. As such, data analyses techniques may need to
account for different assumptions than their “bulk” counterparts
(147). Again, the development of these novel bioinformatics
tools is an active area of research (148). The Bioconductor
ecosystem has a complete framework for the analysis of scRNA-
seq from low-level (149) to functional analyses (150). Scanpy
(151) provides a toolkit for single-cell gene expression analysis
in a Python environment. Another single-cell genomics toolkit is
Seurat (152) for R.

Integration of single-cell RNA-seq with other profiling tools
is an important research area (153); as along with single-cell,
there are other technologies that can provide a more complete
picture of the cancer heterogeneity. High throughput imaging
techniques (154) can be generated and computationally analyzed
(155, 156). Imaging techniques can be used along with omics
to recover the spatial distribution of molecules within cells and
throughout tissues. Tools, such as CellProfiler (157) allow for
a high-throughput analysis of data. Imaging techniques can be
combined with single-cell methods: for instance, MERFISH can
simultaneously measure copy number and distribution of RNA
in single cells (158); Slide-seq (159) can measure transcriptomes
at a high spatial resolution.

Space-resolved transcriptomics or spatial transcriptomics
(ST) is a set of in situ transcript capturing methodologies aiming
at quantification and visualization of gene expression patterns
in individual tissue sections or regions. ST methods have indeed
revealed relevant tissular phenomena linked to tumor evolution
and in some cases have been able to allow the prediction of
clinical outcomes in, for instance, breast cancer subtypes (160).

ST mapping of prostate tumors, on the other hand, have
resulted key in the identification of gene expression gradients
in stroma adjacent to tumor regions. This in turn has resulted
in patient re-stratification based of tumor microenvironment
features (161). A similar approach has been taken to trace tumor
advance inmalignantmelanoma (162). A combination of ST with
scRNASeq has led some researchers to propose the concept of a
“tumor atlas,” a roadmap to navigate tumor spatial and cellular
heterogeneity (163).

Multi-omic analysis is not devoid of technical and logistic
conundrums. Perhaps the most obvious is the availability of
the different sample types from a single source in the same
experiments. Cell cultures may provide a way out to this problem,
however in vitro conditions are often not resembling some
aspects of interest in complex phenotypes, such as cancer.
In recent times, three dimensional cell culture techniques
have allowed the design and development of more realistic
models, such as the case of organoids and tumoroids. These
models may represent a good compromise between cell line
studies and biopsy-captured tissue experiments (164). Multi-
omic approaches are starting to be applied on lab-grown
organoids with relative success (165, 166). In order to analyze
such data some novel computational tools are being developed
and adapted (167).

The role of the immune system in cancer response is another
area of active research. CITE-Seq is an RNASeq method that
incorporates epitope analysis thus leading to semiquantitative
information regarding surface protein abundance via antibody
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assays, even at the single cell level (168). This novel technique
is starting to be applied to provide the answer to fundamental
questions in oncology, such is the case of tumorigenesis (169)

Finally, the role of the microbiome in cancer is being
recognized (170); the integration of metagenomic, and perhaps
meta-omics data (171), could provide key insights into cancer
pathogenesis and therapeutics.

3.2. Data Management
The push for open data in the field of biomedical genomics
since the gestation of the Human Genome Project has led to
the emergence of a rich Genomic Commons (172). Making
data available in public repositories makes for faster scientific
discovery, although there are challenges to be overcome, both
ethical/legal (173), and technological.

Challenges of data management include defining the type of
data to be stored and how to store it; the policies for data access,
sharing, and re-use; and long term archiving policies (174).
Arguably, the most successful repository of cancer multiomics is
NIHs Genome Data Commons (GDC) (175). The Genome Data
Commons contains all data generated by the Cancer Genome
Atlas (TCGA) project (176); although it should be noted that
not all data is publicly accessible. The data is organized as a
directed graph comprised of interconnected entities (Figure 6),
with each entity having an associated set of properties and
links. Data is publicly accessible either through the gdc-client
command line tool, the REST API for programmatic access to
the database, or through dedicated packages, such as rtcga (177).
A recent account by The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium (PCAWG) of these resources and
analyses is presented in (178). Furthermore, a larger collection
of datasets can be accessed through the Broad Institute’s Firehose
(http://gdac.broadinstitute.org/); cloud computing enabled data

access is provided through the Cancer Genome Collaboratory
(https://cancercollaboratory.org/).

The impact of TCGA at the forefront of multiomics research
is inarguable. As a publicly available resource, it provides data
for method development and validation. This is used by a lot
of current projects. However, there are other datasets with either
single layer ormultiomic datasets that can also be integrated. And
wetlab researchers still carry out their projects, contributing to
the cancer multiomics community. Integrating data from both,
local experimental projects and large collaborative endeavors,
such as TCGA is indeed a common practice in many places, such
as our institution, the National Institute of Genomic Medicine in
Mexico. Doing so allows to contrast specific hypothesis for the
different research groups with the statistical power obtained via
the much larger datasets generated by international multicentric
collaborative projects.

As mentioned, it is possible to extract a lot of knowledge
from the systematic re-analysis of data available in large public
datasets. Perhaps, the more comprehensive of these databases
is the one by the TCGA/Genome Data Commons/International
Cancer Genome Consortium, TCGA. Retrieving the data via
their Application Programming Interface (API) (https://gdc.
cancer.gov/developers/gdc-application-programming-interface-
api) demands some familiarity with command line tools and
coding that may be beyond of most non-bioinformaticians. The
project’s data portal (https://portal.gdc.cancer.gov/) provides
easy to use interfaces, but may be limited on its application to
broader analyses. To date there is a number of commercially
available platforms that provide a gentler access to the TCGA
data. Such is the case of Qiagen’s OncoLand database (https://
digitalinsights.qiagen.com/products-overview/discovery-
insights-portfolio/content-exploration-and-databases/qiagen-
oncoland/) and the cloud-based analytics solution Seven Bridges

FIGURE 6 | A representation of the data structure used in to store the Cancer Genome Atlas within the Genome Data Commons. This is represented as a directed

graph. This is a simplified illustration of the one found at https://gdc.cancer.gov/developers/gdc-data-model/gdc-data-model-components.
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(https://docs.sevenbridges.com/docs/tcga-data). A limitation,
aside from being subscription based alternatives that require a
payment is that they are not customizable, which means that not
all possible (nor desired) analysis may be performed.

There are, however a number of resources not only to
access the data but to actually perform different levels of
downstream analysis. Such is the case of imputation approaches
to missing data in the TCGA database (179) (https://github.com/
mrendleman/MachineLearningTCGAHNSC-BINF/).

Perhaps, the best combination of usability and versatility
is present in the TCGA Workflow suite available as an
R/Bioconductor package (180) (https://www.bioconductor.org/
packages/release/workflows/vignettes/TCGAWorkflow/inst/
doc/TCGAWorkflow.html).

4. COMPUTATIONAL TOOLS FOR
MULTI-OMICS DATA INTEGRATION

An often-asked question is why try to integrate multiple
omics technologies using complex models. Perhaps the simplest
argument is that the biological phenomena is not comprised of
independent layers of biological features: integrative models will
be, due to this simple fact, closer to the system of study. As
omics technologies become available, researchers have used them
together to try and capture a better description of the phenomena
(see Figure 7).

Improving our current cancer diagnostic capabilities is a
major goal of biomedical research: the role of molecular
technologies in the development of these tools has long been
recognized (181). It is expected that multi-omic integration is
able to provide better predictive tools than single molecular
technologies, due to the fact that each technology is capturing
just a slice of the whole complex pathological system; multi-
omics data are expected to be of value for both basic and
clinical research, as long as they are able to recover biological
insights beyond those obtainable from the simple addition of
each analysis layer (182, 183).

It may soon become evident that the formalisms that can lead
to such level of description are, by necessity, complex (184). A
remaining question is what multiomic combinations are able to
achieve better diagnostic results. Selecting this optimal omics
combination is not trivial, since there are practical constraints
(such as economic and technical limitations) in the clinical
setting in which such diagnostic tools are to be deployed (185).
Computational tools and bioinformatic approaches play an
important role in the design of such studies. A list of such tools is
presented in Supplementary Materials as Table 1.

4.1. Multi-Omics Data Representation and
Preparation
The success of a computational method could arguably
be influenced by the design principles implemented in its
data representation. The MultiAssayExperiment package
(186) provides an eponymous data class to contain multi-
omics experiments. Like other Bioconductor classes,
MultiAssayExperiment is object-oriented. It can contain the

FIGURE 7 | Combinations between omics technologies. Width indicates

number of co-occurrence in literature. Genomics, transcriptomics, and

proteomics are the most common pairs.

information of different (multi-omics) experiments, linking
features, patients, and experiments. Furthermore, by sharing
design principles with the rest of the S4-Bioconductor classes, it
is highly interoperable.

An important issue with large scale multi-omics studies is
the problem of missing and mislabeled samples. Whether by
technical limitations or human error, the samples associated with
a given patient may not have all measurements; or samples from
two different patients may get mixed-up. There are packages
available to handle these problems. The missRow package
(187) can be used to handle missing data, combining multiple
imputation with multiple factor analysis. The omicsPrint package
(188), in turn, can be used to evaluate data linkage through the
use of linear discriminant analysis.

The STATegRa (189) project provides a framework for multi-
omics data analysis and integration: these are MixOmics (190),
descended from the integrOmics project (191); and just like
the Bioconductor project, the major advantage of such projects
is the increased interoperability due to the sharing of design
principles. For instance, within the STATegRa project, there is
an Experiment Manager System (192); MOSim (193) a tool that
provides methods for the generation of synthetic multi-omics
datasets. These datasets can be used for the benchmarking and
validating of other integration tools; and an experimental multi-
omics dataset (194).

4.2. Multi-Omics Data Integration as a Data
Science Problem
For this review, we approached these methods from a data science
perspective, considering that each method is in essence solving
a machine learning task (or set of tasks). In Figure 8 we show
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FIGURE 8 | Machine learning has many applications in cancer and multiomics.

some of these mappings, although it should be noted that these
categories may be fluid: an unsupervised clustering analysis can
become the basis for a supervised classifier, with diagnostic and
prognostic applications. This is the story of the PAM50 algorithm
for breast cancer (195).

4.3. Exploratory Data Analysis
Exploratory data analysis (EDA) is a vital first step in omics
analyses (196). Through EDA the nature of the data can
be understood, allowing for better decisions at a further
modeling step.

Unsupervised learning approaches can provide a hypothesis-
free understanding of the data behavior. This will reflect the
nature of the underlying biological phenomenon. Unsupervised
clustering analyses attempt to group samples based on the
similarity of their measured features. The assumption is that
this unsupervised classification will recover relevant biological
differences. Multi-omics can increase the efficiency of such
approaches (197).

Multi Omic data analysis is often performed with the aim
of unveiling non-trivial molecular and systemic interactions
that are difficult or impossible to see if one relies on a single
omic approach. However, since we are tacitly assuming that
the different omic levels of description may have synergistic
effects that are key to develop more accurate models of tumor
biology. Since multi omic approaches may generate a plethora of
interdependent data it is useful to design analytical strategies for
dimensionality reduction, feature selection and integration of all
this information.

Aside from intelligibility, there are additional reasons to
make dimensionality reduction schemes, one of these is that a
multi omic study combines different information sources, hence
dramatically increasing the number of features, often keeping

the number of samples constant, in order to preserve statistical
power we need to rely only on the most informative variables
(198–200).

Computational tools to this end have been developed, such as
the following: https://www.bioconductor.org/packages/release/
bioc/html/mixOmics.html https://bioconductor.org/packages/
release/bioc/html/STATegRa.html For an extensive list of
computational tools in the context of cancer biology, see (186).

One can make use of dimensionality reduction techniques
in order to embed multi-omic data observations into a lower-
dimensional space that can be used for either manual (i.e., visual)
inspections or as the input for unsupervised clustering (or other
analysis tools). Popular dimensionality reduction methods:

• Principal Component Analysis (PCA) is a classical (201)
method based on an orthogonal transformation of the set
of observations.

• T-distributed stochastic neighbor embedding (t-SNE) (202) is
a method based on the minimization of the Kullback-Leibler
divergence between the probability distribution of pairs of
high-dimensional objects.

• The Uniform Manifold Approximation and Projection
(UMAP) (203) is a non-linear technique in which data are
projected into a Riemannian manifold.

Data visualization is an important part of EDA: the graphical
representation of data can be sufficient for the identification of
complex patterns (204). Visualizing high-dimensional biological
data can be helpful from a purely data-driven point of view: for
instance, to understand the variability within a phenomenon.
Combinations of dimensionality reduction, data clustering, and
visual inspection can be effective to identify subpopulations
within a dataset. The most common visualization for these tasks
is perhaps the scatterplot, but it is far from the only: for instance,
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hexbins (205) can be used to explore sc-RNAseq data, which can
be useful to overcome overplotting problems related to the order
in which points are drawn in the canvas.

Visualization can also be coupled with other biological
information, for instance locating the genomic regions in which
epigenomic features are found. Visualizations, such as the
Circos plot (206) can be used for the detailed representation
of multi-omics data and their location in specific genomic
regions; The omicCircos (207) implementation is compatible
with the standard data classes used inBioconductor. The
multiOmicsViz multiOmicsViz package is useful to visualize
the effects of one omics layer to another, visualized in within
the spatial chromosome context. The Gviz package (208)
provides a full R graphics system solution for genome browser-
style visualizations. Such representation is useful to represent
the behavior of different experimental layers (as tracks) in
a sequence context. For ChIP-seq data visualization, tools
like PAVIS (209) may be used. Single Cell RNA-seq data
visualization suites, such as SingleCell Signature Explorer (210)
can be useful for exploratory analysis of such datasets. In
the case of chromatin capture data, visualization toolboxes,
such as HiBrowse (211), the Epigenome Browser (212), and
Juicebox (213). For a thorough review of Hi-C visualization
consult (214).

Common exploratory data analysis tools are implemented
either in base R or as packages from CRAN (since their
use is not necessarily limited to biological data). However,
there are packages providing integrated EDA tools for multi-
omics and oncology. The OMICsPCA package (215) provides
omics-oriented tools for PCA analysis. The CancerSubtypes
package (216) contains several data preprocessing, quality
control, and clustering methods, focused on the identification of
cancer subpopulations from multi-omics data. Biocancer (217)
provides an interactive multi-omics data exploratory toolkit.
The omicade4 package (218) provides an implementation of
multiple co-inertia analysis (MCIA), another dimensionality
reduction technique; these tools were used for the integration
of transcriptome and proteome data from the NCI-60 cancer
cell line panel. The Multi-omics Autoencoder Integration
(maui) is a tool for multi-omics data analysis for Python. It
allows for latent factor model coupled with artificial neural
networks for multiomics data integration. iClusterPlus is a
Bioconductor package based on the original iCluster (219)
algorithm for integrative cluster analysis combining different
types of genomic data.

4.4. Statistical Models: Classificators,
Predictors, and Feature Selection
Exploratory methods provide a useful description of biological
phenomena. Nevertheless, in the oncology context, the
identification of actionable elements is most desired, to
generate translational value. The generation of models and
feature selection strategies can lead to such results.

In this context, statistical models are computational (and
thus mathematical) representations of the relationships between
observed variables. These models can be useful to solve a given

task based on some input data (220). Examples of these tasks
include the classification of samples and the prediction of the state
of a feature of interest.

Classification models have important biomedical applications
(185). If a classification is able to discriminate between
physiological states it can have translational use: A model that
discriminates between health and disease has diagnostic utility; A
model that discriminates between different disease outcomes has
prognostic utility, which can be used for stratification purposes.
Molecular classifiers have been quite successful in oncology:
perhaps the best example being breast cancer (221). Classification
models can be developed using supervised methods (that is,
the model is trained with class information); but unsupervised
methods, such as the previously discussed clustering, may
be able to recover groupings that capture biological and
clinical differences.

Predictive models can provide insights into the molecular
mechanisms driving physiological states. These can reveal
the interactions between different omics, as well as between
individual biomolecules. Furthermore, predictive models can
have translational applications, including their use in prognostic
tools (222).

Feature selection consists in the selection of a subset of
measured variables that are most informative: that is, they
contribute the most for the model to accomplish its task. Proper
feature selection is important for biomedical models (223), as (1)
removing uninformative (“irrelevant” or “redundant”) features
simplifies the model and increases its performance; and (2) a
smaller set of features is less expensive to measure, increasing the
translational potential of a given model.

Common applications of statistical models in the clinical
context of cancer are the prediction of susceptibility, recurrence,
and survival (223). Additionally, classification and association
models are regularly used for the interpretation of molecular
studies of cancer. For instance, biomarker discovery (224) is
an often sought target for modeling based on biochemical and
multi-omics analyses. This is an important area of study, since
actionable biomarkers are not particularly common (225).

4.4.1. Implementations and Use-Cases
Novel tools for the implementation of oncology models using
model data are being released constantly. Many of these
packages combine exploratory, supervised, and unsupervised
tools, providing a wide range of analysis tools. mixOmics (190)
is a self-described omics data integration project; it includes
an eponymous package that provides different exploratory and
integrative multivariate methods, including (independent) PCA,
Canonical Correlation Analysis, Partial Least Squares regression
(PLS), and PLS-Discriminant Analysis (DA). Part of the larger
project is the Data Integration Analysis for Biomarker discovery
using Latent Variable approaches for ‘Omics studies (DIABLO)
framework, which has been used for the identification of a multi-
omics signature of breast cancer molecular subtypes (226).

Other tools also follow this combined design principle. The
ropls package (227), for instance, incorporates the tools for
PCA, as well as (Orthogonal) PLS. Multi-Omics Factor Analysis
(MOFA) is implemented in the eponymous package (228).
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This factor analysis model has been used for the unsupervised
detection of groups in a leukemia dataset, and the selection of
informative multi-omic features associated with oxidative stress.
OmicsMarkeR (229) also provides a variety of classification and
feature selection tools; originally developed for metabolomics,
this tool has been used for the study skin cancer progression
(230). Some packages include different classifier methods to
generate an ensemble model; such is the case of Biosigner (231)
which combines PLS-DA, Random Forests, and Support Vector
Machines to select discriminant features across omics.

We agree with the assumption that multi-omics specific
tools can improve workflows by adhering to a single design
philosophy. However, we also agree that this is convenient,
but not necessary. For instance, a diagnostic panel for
pancreatic cancer was recently identified with a Random
Forest implementation (232) using genomics, transcriptomics,
and immunohistochemistry data. In another study, biomarker
candidates for pancreatic cancer are identified using a Support
Vector Machine on miRNA and gene transcriptomics (233).

Predictive models can be used to identify the contribution
of one omics layer to the activity of another. For instance,
epigenomix (234) uses Bayesian mixture models to integrate
ChIP-seq and gene transcription data. The Integrative analysis of
Multi-omics data for Alternative Splicing (235) package integrates
expression, sQTLs, and methylation to provide mechanistic
insights behind the manifestation of alternative splicing.

Predictive methods have been used to integrate multi-
omics with other sources of big data, with publicly available
implementations. The packages rexposome and omicRexposome
(236) have been used to study the exposome, defined as
the set of environmental exposures. Using multi-canonical
correlation analyses and multiple co-inertia analysis, exposome-
wide associations have been made to multi-omic data. The
OmicsLonDA package (237) offers a method that uses linear
mixed-effect models and smoothing spline regression models to
identify time periods with differential omics levels. A highlight
of this package is the consideration for the use of physiological
measurements from wearable sensors, which may provide
applications for nowcasting, the prediction of near-future states.

4.4.2. Functional Aggregation
One could argue that analysis methods can be more informative
if there is a way of associating the findings to the wider body
of biomedical knowledge. Mapping omics data to functional
features, such as pathways and functional genesets, is a strategy
that can provide such readily interpretable results. Functional
enrichment approaches, such as over-representation analysis
(ORA) and gene-set enrichment analysis (GSEA), are effectively
feature extraction methods that can be used as biologically
relevant dimensionality reduction methods. The results of such
methods can serve as starting points for more complex models,
such as interactions among functions (238). For a detailed
discussion of functional analysis, see (84).

The development of methods for effective functional
enrichment based on multi-omics data is ongoing. Multi-omics
gene-set analysis (MOGSA) (239) approaches the problem by
using multivariate analysis, and using projections of data and

genesets to lower dimensional spaces, to generate an enrichment
score.Massive integrative gene set analysis (MIGSA) (240) takes a
different approach, making independent functional associations
for each omics layer (using ORA and Functional Class Scoring).
Instead of providing an aggregated measurement, the functional
associations of each layer are stored in a special data structure,
allowing flexible analyses. This method has been used to
functionally characterize breast cancer molecular subtypes from
a multi-omics perspective.

Functional aggregation can be used as the basis for other data
analysis tasks. In pathwayPCA (241), exploratory data analysis is
done by analyzing the functional enrichment of each omics set
separately, and aggregating them via consensus. This method was
used to study heterogeneity in an ovarian cancer dataset. In the
original work for the Divergence analysis (242) method for high-
dimensional omics data analysis, the authors evaluate the effect
of using functional aggregation for their data classification task.
Functional aggregation methods are an important part of high-
throughput drug initiatives, as can be seen by their prominence
in the iLINCS platform (243).

4.5. The Network Paradigm
As we have stated throughout this work, biological phenomena
are complex, interconnected systems. The data that we recover
from high-throughput multi-omics is not isolated. Any biological
system is not just the sum of its parts, but the sum of its
biological elements and their relationships. With this in mind, the
integration of high-throughput data within a network paradigm
becomes appealing. Some advantages of a network approach to
multi-omics integration are:

• A network representation of multi-omics data can be studied
using all the foundations and tools of network science
(244). Network topological parameters can be associated
with important biological features; furthermore, dynamical
processes can be modeled over networks.

• As previously noted, the functional level of biological
description is fundamentally composed of molecular
interactions. In other words, measurable functions can be
thought to emerge from biological networks. Functional
analyses can benefit from considering the way in which the
participating molecules interact.

• The integration of interaction information can lead to more
informative models (245).

A network perspective can enhance every aspect of the
multi-omics analysis. For instance, mapping omics data to
pathway networks can provide an opportunity to biologically
contextualize the data. A classic tool for this is the pathview
(246) package. The Graphite (247) package is a more flexible
alternative, as it allows the visualization of pathways from
different data sources, and provides proper graph objects that can
be manipulated using network visualization tools. Recently, the
metaGraphite package provided a major update to the original
tool, effectively incorporating multi-omics through the addition
of a metabolomics layer.

Network approaches can be used for classification and
prognosis. For instance, themicrographite (248) package provides
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a method to integrate micro-RNA and mRNA data through
their association to canonical pathways. This approach has been
useful in identifying key micro-RNAs in myeloma (249), primary
myelofibrosis (250), and ovarian cancer (251). Mergeomics (252)
integrates data from genomic, epigenetic, and transcriptional
association studies through a functional enrichment method, the
results of which are used as the basis for a network construction;
however, this tool has not been used in a cancer context. pwOmics
(253) is another tool that leverages biological network knowledge
to integratemulti-omics data. In particular, this tool is well-suited
for the study of time series analyses.

While mapping data to predefined networks can be useful
to gain a much-needed biological context, high-throughput
technologies offer the opportunity to actually infer networks from
the data itself. With such approach, data analysis problems can
be transformed into network analysis problems. For instance,
feature clustering becomes network module detection, which
can be then used as the basis for a functional enrichment
analysis (254).

While network reconstruction from omics data can be
a powerful tool, it should be stated that every network
reconstructed from data has an underlying hypothesis, which
defines what the links between elements represent. This
hypothesis should be at the center of any interpretation of the
topological or functional associations recovered from a network.
Furthermore, one must remember that comparison between
reconstructed networks of different biological conditions will
yield information about biological differences only if the
method for network reconstruction does not deviate for each
condition. For a discussion on this subject, see (255). This
point is particularly relevant when discussing multi-omics data
integration, as many of the network reconstruction methods
available were developed for gene expression data. Proper
validation of a method should be conducted before using it with
other types of data.

There are some recent implementations of network
reconstruction methods that have been developed with
multi-omics data in mind. MAGIA2 (256) is a tool for the
reconstruction of micro-RNA and transcription factor regulatory
circuits; it has been used for the analysis of expression regulation
in the NCI60 cell panel. The Discordant method (257) uses
a mixture model to identify differential correlation: that is,
statistical dependencies between feature pairs that are lost or
gained from one biological state or another. This method has
been evaluated for its use with different types of omics data.
The Netboost (258) is a network reconstruction method infers
statistical dependency based on multi-omics data, and uses a
modularity approach to reduce dimensionality; the method has
been used for the classification and survival analysis of acute
myeloid leukemia data. AMARETTO (259) identifies pairwise
relationships between different omic layers to select cancer
driver genes. A module detection approach is used to construct
a dimensionally reduced module network, which is further
analyzed to identify molecular signatures.

Probabilistic network reconstruction is a powerful data
analysis technique. In such a model, features are connected
based on an information-theoretical similarity measure, such
as mutual information, between their expression profiles.

Unlike correlation metrics (260), mutual information can
capture non-linear relationships between features, which makes
it suitable for the analysis of transcriptomics (261). We
have applied these methods for the reconstruction of micro-
RNA and gene co-expression bipartite networks with minor
adjustments; the analysis of such networks has yielded interesting
insights on the nature of functional control by micro-RNAs
(262). A current research interest the authors of this work
is the extension of probabilistic network reconstruction for
multi-omics reconstruction, in order to construct probabilistic
multilayer networks (263) that can be studied using the recent
tensorial formalism of multilayer networks (264).

4.6. Data Science in Biology—A Word of
Warning
An important aspect of any data science project is the crucial role
of both technical and domain specific expertise. The analysis of
biological networks in particular can pose some complication for
biological scientists not familiar with the field of network science;
a network visualization may be presented as result, without an
adequate evaluation of network topology or other structural and
dynamic parameters. Similar behaviors can be found with other
applications of data science tools.

A data-driven analysis without the participation of a domain
expert risks the pursuit of non-relevant questions. On the other
hand, even though a bioinformatics tool may be developed
with an increased usability in mind, the level of complexity
of both the computational method may require a deeper
understanding of the algorithm’s assumptions and limitations
in order to reach valid results. With this in mind, it is evident
that proper computational approaches to biological questions
require a fundamental understanding of both in order to reach
scientifically solid conclusions. In many cases, the key to achieve
this is to strive for multidisciplinary approaches.

5. CONCLUSION

Cancer is the paradigmatic complex phenotype. We have been
able to capture some of this complexity via experimental
measurements with the different high throughput biomolecular
technologies generically termed omics. Each single-technology
derived data type has its own set of caveats and complexities.
An additional challenge lies in the fact that each data type is
able to account for a fraction of the large set of cancer aspects
or features. Recent times have witnessed the development of
new ways to gather and analyze these partial information layers
together, under the name of multi-omics.

There are, however, multiple approaches to multi-omic
computational modeling and integration, some of the most
relevant have been described and discussed here. Our aim
has been that of presenting the current state of the art of
computational oncology tools for multiomic studies of complex
cancer phenotypes. Novel developments in the multiomic
computational analysis come from different fields, ranging
from purely mathematical developments (263, 264), to machine
learning and computational intelligence applications (179, 223),
to single-cell sequencing and imaging studies (139, 145) and
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more. However, in our view, the development of methods to
integrate all these different analytical approaches into intelligible
and statistically robust frameworks will provide the field with
unprecedented advances both in our understanding of cancer
biology and in our impact in the clinical settings. The field
is fast-growing and currently under development, with novel
algorithmic approaches being constantly released, but we believe
that the present account is a good starting point.
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