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Glioblastoma (GBM) is uniformly fatal with a 1-year median survival, despite best

available treatment, including radiotherapy (RT). Impacts of prior RT on tumor recurrence

are poorly understood but may increase tumor aggressiveness. Metabolic changes

have been investigated in radiation-induced brain injury; however, the tumor-promoting

effect following prior radiation is lacking. Since RT is vital to GBM management, we

quantified tumor-promoting effects of prior RT on patient-derived intracranial GBM

xenografts and characterized metabolic alterations associated with the protumorigenic

microenvironment. Human xenografts (GBM143) were implanted into nude mice

24 hrs following 20Gy cranial radiation vs. sham animals. Tumors in pre-radiated

mice were more proliferative and more infiltrative, yielding faster mortality (p <

0.0001). Histologic evaluation of tumor associated macrophage/microglia (TAMs)

revealed cells with a more fully activated ameboid morphology in pre-radiated animals.

Microdialyzates from radiated brain at the margin of tumor infiltration contralateral to

the site of implantation were analyzed by unsupervised liquid chromatography-mass

spectrometry (LC-MS). In pre-radiated animals, metabolites known to be associated

with tumor progression (i.e., modified nucleotides and polyols) were identified.

Whole-tissue metabolomic analysis of pre-radiated brain microenvironment for metabolic

alterations in a separate cohort of nude mice using 1H-NMR revealed a significant

decrease in levels of antioxidants (glutathione (GSH) and ascorbate (ASC)), NAD+,

Tricarboxylic acid cycle (TCA) intermediates, and rise in energy carriers (ATP,

GTP). GSH and ASC showed highest Variable Importance on Projection prediction

(VIPpred) (1.65) in Orthogonal Partial least square Discriminant Analysis (OPLS-DA);

Ascorbate catabolism was identified by GC-MS. To assess longevity of radiation

effects, we compared survival with implantation occurring 2 months vs. 24 hrs

following radiation, finding worse survival in animals implanted at 2 months. These

radiation-induced alterations are consistent with a chronic disease-like microenvironment

characterized by reduced levels of antioxidants and NAD+, and elevated extracellular

ATP and GTP serving as chemoattractants, promoting cell motility and vesicular

secretion with decreased levels of GSH and ASC exacerbating oxidative stress.
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Taken together, these data suggest IR induces tumor-permissive changes in the

microenvironment with metabolomic alterations that may facilitate tumor aggressiveness

with important implications for recurrent glioblastoma. Harnessing these metabolomic

insights may provide opportunities to attenuate RT-associated aggressiveness of

recurrent GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM; World Health Organization
grade IV) is the most common adult primary brain malignancy
(1, 2), accounting for 50% of all gliomas across all age groups
(2). Standard treatment includes surgical resection, radiation
therapy (RT), and chemotherapy; however, the overall 5-years
survival rate is <10% with mortality approaching 100% (3, 4)
is unfavorable prognosis may be due to the high propensity of
tumor recurrence, with many recurring within 1 year, and 90% of
these tumors forming within the prior RT field (5–7).

Radiation-induced changes in the brain and tumor
microenvironment (TME) injury results in molecular, cellular,
and functional changes that can facilitate tumor aggressiveness
upon recurrence (8). Such changes include decreased vascularity,
innate immune activation, and altered pharmacokinetics,
pharmacodynamics, and therapeutic efficacy of chemotherapy
agents (9–12). Additionally, irradiation (IR) generated reactive
oxygen and nitrogen species (ROS/RNS) play havoc with cellular
proteins, DNA, and phospholipid membrane (13). Mitochondria
exposed to radiation produce increased ROS that may contribute
to RT-induced cell senescence (14–16).

Tumor cell metabolism is strikingly different from that of
normal cells with a shift from energy-producing pathways to
those generating macromolecules necessary for proliferation
and tumor growth. Through a tricarboxylic acid cycle (TCA),
healthy cells metabolize glucose and produce carbon dioxide
within an oxygen-rich environment, which efficiently produces a
large quantity of adenosine triphosphate (ATP) (17). In hypoxic
environments, these cells produce large quantities of lactic
acid by anaerobic glycolysis. Conversely, in aerobic conditions,

Abbreviations: RT, Radiation therapy; IR, Irradiation; GBM, Glioblastoma; PDX,

Patient derived xenograft; IC, Intracranial; TME, Tumor microenvironment; IH,

Ipsilateral hemisphere; CH, Contralateral hemisphere; TAM, Tumor associated

macrophages; CBCT, Cone beam computed tomography; IF, Immunofluorescence;

H&E, Hematoxylin and Eosin; 1H-NMR, Proton–Nuclear Magnetic Resonance

spectroscopy; GC-MS, Gas chromatography–mass spectrometry; LC-MS, Liquid

chromatography–mass spectrometry; PCA, Principle Component Analysis; PLS-

DA, Partial least squares–Discriminant Analysis; OPLS-DA, Orthogonal Partial

least squares–Discriminant Analysis; VIP, Variable Importance on Projection;

VIP-pred, Value of the VIP variant for the predictive components; VIP-total,

Total sum of VIP values for both predictive and orthogonal components;

ROS, Reactive oxygen species; eROS, Extracellular reactive oxygen species; RNS,

Reactive nitrogen species; TCA, Tricarboxylic Acid cycle; NAD, Nicotinamide

adenine dinucleotide; ATP, Adenosine triphosphate; GTP, Guanosine triphosphate;

eATP/eGTP, Extracellular ATP/Extracellular GTP; GSH, Glutathione (reduced);

ASC, Ascorbate; ThrO, Threonic acid; OxA, Oxalic acid; NAA, N-acetyl aspartate;

Crn, Creatinine; Cr, Creatine; PC, Phosphocholine; Ob (Aged Ob), Obese (Aged

Obese); Gy, Gray; hrs/mo, Hours/Months.

tumor cells rely on glycolysis for energy production (18),
resulting in elevated rates of glucose uptake and increase lactate
production (19). Lactate production during active tumor growth
alters the tumor microenvironment by promoting acidosis,
serving as a metabolic cancer cell fuel source, and inducing
immunosuppression. RT may also have immunosuppressive
effects leading to increased tumor aggressiveness, with associated
increases in proliferation and infiltration (20), which may be
exacerbated by prior RT.

Metabolic alterations may be pro-tumorigenic, promoting
glioma initiation and progression (21–25). RT-inducedmetabolic
changes in GBM depend on tumor volume, location, and
dose-time regime of RT-administration, all of which can vary
treatment response (8, 26–31). While differential metabolism
of glioma tumor cells can be targeted for regression of
tumor growth, understanding the impact of radiation-induced
metabolic alterations in GBM microenvironment can provide
new avenues to maximize long term benefits of RT in GBM
care. The major objective of this study is to investigate
the interactions between irradiation, tumor aggressiveness,
and the associated metabolic changes in the TME. We here
evaluate the tumor-promoting effects of prior RT on patient-
derived intracranial GBM xenograft in mice and characterize
the metabolic alterations associated with the pro-tumorigenic
stromal microenvironment.

MATERIALS AND METHODS

Ethics Statement on Mice
Six to 8 weeks old female heterozygous Hsd: Athymic
Nude-Foxn1nu/Foxn1+ mice were purchased from Envigo
(Indianapolis, IN). Six to 8-weeks-old male C57BL/6J mice were
purchased from Jackson Laboratories (Bar Harbor, ME). Mice
were housed at the Mayo Clinic animal care facility, which is
accredited by the Association for Assessment and Accreditation
of Laboratory and Animal Care International (AAALACI). Aging
was induced in two separate cohorts of C57BL/6J mice [fed
with regular diet or high-fat diet (D12492, Research diets)] by
keeping them in-housed for 24 months (24 mo) at the Mayo
Clinic animal care facility, i.e., a small cohort of 5 mice, 2 months
old was maintained for 22 months fed throughout on regular
diet to obtain an aged mice group (24 mo), and, another cohort
of 5 mice (2 months old) was fed on high-fat-diet (HFD) to
induce obesity and continued on HFD for 22 months to obtain
an aged-obese mice group (24 mo). All animal procedures were
performedwith proper animal handling, adhering to theNational
Institutes of Health (NIH) guidelines and protocols approved by
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the Institutional Animal Care and Use Committee (IACUC) at
Mayo Clinic, Rochester.

Cranial Irradiation of Mice
Cranial irradiation was administered using the X-RAD SmART
irradiator (Precision X-ray, North Branford, CT), which uses a
cone beam computed tomography (CBCT) for accurate target
localization. The stereotactic coordinates were determined from
the target-set on CBCT using the first scan for each mouse within
all groups (values ranged between x = 0.25 to 0.35, y = −3.8 to
−4.0, and z = −5.8 to −5.95, depending on mice and strain-
type). Whole brain RT was performed as described (32), using
parallel opposed lateral beams with 10mm square collimator.
Radiation treatments included 10Gy or 20Gy single dose (20Gy)
administration, or 4Gy × 10 dose-fractionation. Control group
mice were handled similarly as the treated, but with no radiation
dose administered (0 Gy).

Intracranial Injections in Mice
Intracranial (IC) injections in athymic nude mice were
performed as previously described (33). Briefly, pre-established
human GBM xenograft line, GBM143 cells were obtained from
flank tumors and cultured in vitro in Dulbecco’s Modified Eagle
Medium (DMEM, GibcoTM 41966029) media having 10% Fetal
bovine serum (FBS) and antibiotics (penicillin-streptomycin),
for 3 weeks (34, 35). Representative images for GBM143 cell
growth were acquired in transmitted light, using EVOS R© FL
Cell Imaging System, Thermo Fisher Scientific (Figure 1B,
Figure S1A). These cells were dissociated using TryplE (Cat#
12563011, Thermo Scientific) and resuspended in PBS at a
concentration of 100,000 cells per µl (with injection volume 3
µl/mouse). Mice were anesthetized using Ketamine: Xylazine
mixture (100 mg/kg Ketamine and 10 mg/kg Xylazine) injected
intraperitoneally (IP) with a 0.5cc syringe. The surgical procedure
involved the following steps: disinfecting mice head with
Betadine, lubricating the eyes with artificial tears, making a 1 cm
midline incision extending from just behind the eyes to the level
of the ears using sterile scalpel while applying pressure to have
the incision open. Using a cotton swab, the skull was cleared
to have the bregma exposed, a point 1mm anterior and 2mm
lateral from bregma was identified and drilled through the skull
using an 8bit Dremel drill. For stereotactic injection, Hamilton
syringe with a 26G needle assembly was cleaned thoroughly, fixed
on the injection jig, and 3 µl of cell suspension drawn into it.
Injection jig was sterilized by wiping with STERIS Spor-Klenz
and draping it with a sterile towel. The mouse having its skull
drilled was placed on the jig and fixed using a front teeth hook
at mouthpiece and ear pins. Using the stereotactic controls, the
needle was inserted 3mmdeep into the brain and, cell suspension
having 300,000 cells/3 µl was injected at a rate of 1 µL/min for
over 3min using the syringe pump. The needle was maintained
as inserted in place inside the skull for additional 1min, and
then drawn out gently using the stereotactic controls. The hole
drilled in mouse-skull at site of tumor cell implantation was
sealed using bone cement, and the wound sutured with 4-0 vicryl
with rb-1 needle (Ethicon J304H). Triple antibiotic was applied
to the incision and stitches to prevent infection, and the mouse

was left in the warm cage to recover from anesthesia. Water
was supplemented with children’s ibuprofen starting 24 hrs prior
to the procedure and continued for 48 hrs post-surgery. The
scheme of experiments involving IC injections is illustrated in
Figures 1A,B and Figure S1F.

Histology and Immunofluorescence
Athymic nude mice injected with the established PDX line,
GBM143, were euthanized using isoflurane overdose at day of
moribund (i.e., after 58 days of tumor cell-implantation). PBS
cardiac perfusion was performed prior to termination under
fully anesthetized conditions to remove the circulating peripheral
leukocytes from the brain. Brains were extracted, fixed in 10%
buffered formalin for 24 hrs, paraffin embedded, and 5µm
coronal sections were obtained (slicing strategy explained in
Figure S1B). All processing after fixation was performed at Mayo
Clinic Histology core, Scottsdale. For histologic analysis, slides
were stained with hematoxylin and eosin (H&E) and visualized
by bright field microscopy at 4X microscopic magnification
using Leica DMI-6000B [software: Leica Application Suite X
(Leica Microsystems, Wetzlar, Germany)]. Percent positive H&E
stained area was assessed as illustrated in Figure S1C, to estimate
relative tumor burden between the samples.

H&E stained sections were reviewed to identify appropriate
tumor bearing regions and respective unstained slides processed
for immunofluorescence (IF) staining with human-Lamin A+C
and Ki67 antibodies using standard procedure. Briefly, slides
were deparaffinized in xylene and rehydrated by washing (3min
each) in serially diluted ethanol from 100, 95, 75, 50%, and
then distilled H2O. Antigen retrieval was performed using pre-
warmed 9.8mM Sodium citrate buffer (pH 6.0, with 0.05%Tween
20) for 30min in hot steamer. Slides were rinsed in distilled
H2O and PBS, blocked in blocking solution (10% Normal goat
serum and 1% BSA in PBS), and stained with primary antibody
(diluted in blocking solution, 1:300) overnight in humidified
chamber at 4◦C. The slides were washed in PBS (3 × 5min),
stained with secondary antibody (diluted in blocking solution,
1:300) for 2 hrs at room temperature, washed, and mounted with
ProLong Gold reagent having DAPI (P36935, Life Technologies).
Images were acquired at 4X microscopic magnification and
tiling was done using Leica DMI-6000B (software: Leica
Application Suite X).

Image Analysis
All IF stained slides were quantified and scored for single cell
count in a defined region with x-y coordinates approximated
at tumor center (for h-Lamin A+C, and Ki67) or at center of
corpus callosum (for h-Lamin A+C), respectively, using Image
J (36, 37) and Cell Profiler 2.2.0 (Broad Institute of Harvard and
MIT) (38). Briefly, for single cell counting, an IF image obtained
was imported into Image J, threshold was set, channels split,
and image in relevant single channel was selected and converted
to black and white (BW). An area template having fixed size
was generated to define a contained region at tumor or at the
center of corpus callosum, respectively, maintaining consistency
between different sample slides. This defined area selectively
masked was overlaid and appropriately positioned in the BW
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FIGURE 1 | (A) Scheme of experiments. (B) Representative image (at 10X, transmitted light microscopy) of GBM143 xenograft line cultured for 3 weeks in vitro in

media indicated; cells were collected and orthotopically implanted into cranially irradiated mice 24 hrs post-irradiation (IR). (C) Representative Immunofluorescence (IF)

images (at 4X, tiling) for hLamin A+C staining from 0Gy and 20Gy-IR mice coronal sections to assess tumor growth and invasion. (D) Top: Representative images (at

20X) show IF staining at tumor; and the dot-plot of single cell count for hLamin A+C and Ki67 staining. Bottom: Representative images (at 20X) show IF staining at

center of corpus callosum, and dot-plot of single cell count for hLamin A+C. IH, ipsilateral hemisphere; CH, contralateral hemisphere; IR, irradiation. Statistical

significance is represented as *p < 0.05.
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image, and all background cells out of the masked region were
eliminated. The resultant image was transferred to Cell Profiler
2.2.0 software (Broad Institute of Harvard and MIT) (38), the
masked region was cropped and used as input; the pipeline for
single cell counting was run to detect nuclei and quantify cells
within this defined region.

To evaluate microglial activation, slides were stained for Iba-
1 using standard procedure for IF. Images represented with
20Xmagnification were acquired on Leica DMI-6000B (software:
Leica Application Suite X) and 40X magnification on Zeiss Axio
Observer Z.1 (Software: Zen 2.3 SP1, Jena, Germany). Microglial
morphology was assessed using ImageJ (36, 37). Antibodies
used: Rabbit monoclonal Anti- h-Lamin A+C [EPR4100]
(Cat# Ab108595, Abcam, Cambridge, United Kingdom); Rat
monoclonal Ki67 (SolA15) (Cat #14-5698-82, eBioscience
Invitrogen, Waltham, MA); Rabbit monoclonal Anti-Iba-1
(Cat# 019-19741, Wako). Secondary antibodies from Jackson
ImmunoResearch Laboratories, Inc. (West Grove, PA) included
polyclonal affinity-pure whole IgG: Cy3-Goat Anti-Rabbit IgG
(H+L) (code: 111-165-003) and Cy5-Goat Anti-Rat IgG (H+L)
(code: 112-175-143).

Microdialysis
To evaluate changes in the extracellular milieu of radiated brain,
a small group of mice (3 mice per group) from 0Gy and 20Gy
single-dose irradiated mice cohorts injected with GBM143 24 hrs
post-IR, were microdialyzed on their contralateral hemisphere
(non-tumor bearing side) at day 30 from tumor cell injection
(scheme of experiment in Figure 1A). The microdialysis set-up
and surgical procedure was followed as described from the facility
of Dr. Doo-Sup Choi, at Mayo Clinic, Rochester, Minnesota
(39). Briefly, the mice were housed singly for 2 hrs in the
microdialysis room to acclimatize, and then anesthetized using
Ketamine:Xylazine mixture. Survival surgery was performed on
a rotating platform with stereotactic guidance under sterile
conditions. A microdialysis probe with a 2.0mm cellulose
membrane (Brain Microdialysis, CX-I Series, Eicom, Kyoto,
Japan; MW cut off: 50,000 Da) was inserted at a point 1mm
anterior and 2mm lateral from bregma on the contralateral
hemisphere and secured to the guide cannula. The probe was
connected to a microsyringe pump (Eicom, Kyoto, Japan), which
delivered Ringer’s solution (145mM NaCl, 2.7mM KCl, 1.2mM
CaCl2, 1.0mM MgCl2, pH 7.4) at a 1.0 µl/min flow rate. The
samples were collected in 0.2ml collection tubes maintained at
4◦C for 3.5 hrs, and then immediately frozen and stored at−80◦C
until analyzed.

Metabolomics
To assess the radiation induced metabolic alterations in the
pre-radiated mice brain, Proton Nuclear magnetic resonance
spectroscopy (1H-NMR) and Gas Chromatography- Mass
Spectrometry (GC-MS) based metabolomics was performed on
whole tissue extracts obtained from non-tumor bearing brain
samples of two independent strains of mice: Athymic nudes and
C57BL/6. The experimental design withmice groups included for
each strain is illustrated in Figure S2A.

Proton Nuclear Magnetic Resonance Spectroscopy

(1H-NMR)
Athymic nude mice, 0Gy-control, and 20Gy single-dose
irradiated (10 mice per group) were sacrificed and immediately
frozen in liquid nitrogen. Brian tissues were collected on dry ice
and pulverized in liquid nitrogen. The pulverized mouse brain
tissue (∼55–60mg) was homogenized and extracted with 300
µl of ice-cold 0.6M perchloric acid (HClO4) solution. Samples
tubes were vortexed, centrifuged at 10,000 g for 10min at 4◦C,
and supernatants collected (40). The extraction procedure was
repeated on the pellets (with ∼150 µL HClO4) and supernatant
obtained from two rounds of extraction were combined and
neutralized with 140 µl of 2M potassium bicarbonate (KHCO3).
In 400 µL aliquot of neutralized extract, 100 µL of 0.1M
phosphate buffer, and 50 µL of 1mM TSP-d4 in D2O were
added. Samples were vortexed for 20 s and transferred to 5mm
NMR tubes. The NMR signal was acquired on Bruker AVANCE
III 600MHz instrument (Bruker, Billerica, USA). 1H-NMR
spectra were recorded using 1D NOESY pulse sequence with
presaturation (noesygppr1d) under the following conditions: 90-
degree pulse for excitation, acquisition time 3.90 s, and relaxation
delay 5 s. All spectra were acquired with 256 scans at room
temperature (298K) with 64k data points and 8,417Hz (14 ppm)
spectral width. The recorded 1H-NMR spectra were phase and
baseline corrected using TopSpin 3.5 software (Bruker, Billerica,
MA). The spectra were then processed using Chenomx NMR
Suite 8.3 software (Chenomx Inc., Edmonton, Canada). The
compounds were identified by comparing spectra to database
Chenomx 600MHz Version 10 (Chenomx Inc., Edmonton,
Canada) and literature data (40–46). Quantification was based
on an internal standard (TSP-d4) peak integral. The metabolite
concentrations were exported as µM in NMR sample and
recalculated as µmol/g of wet tissue.

Gas Chromatography–Mass Spectrometry (GC-MS)
For GC-MS analysis, 70 µl neutralized brain extracts (∼6.4mg
of tissue wet weight) from athymic nudes were obtained using
perchloric acid extraction method with 2M KHCO3 based
neutralization as described for 1H-NMR, centrifuged at 10,000 g
for 10min, and cleared supernatant collected in fresh 1.5ml
eppendorf tubes. These samples were completely dried in a
SpeedVac concentrator run overnight. They were subsequently
methoximated using 10 µL MOXTM reagent (Cat# TS-45950,
ThermoScientific, Waltham, MA) at 30◦C for 90min and
then derivatized using 40 µL of N-methyl-N-trimethylsilyl
trifluoroacetamide with 1% trimethylchlorosilane (MSTFA+1%
TMCS: Cat# TS48915, ThermoScientific, Waltham, MA) at
37◦C for 30min. Metabolite levels were determined using GC-
MS (Hewlett-Packard, HP 5980B) with DB5-MS column. GC-
MS spectra were deconvoluted using AMDIS software (NIST,
Gaithersburg, MD) and SpectConnect software (Georgia Tech,
Atlanta, GA, USA) was used to create metabolite peaks matrix.
The Agilent Fiehn GC/MS Metabolomics RTL Library (Agilent,
Santa Clara, CA) was used for metabolite identification. Ion
count peak area was used for analysis of the relative abundance
of the metabolites (47).
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Similar to above, whole brain extracts using perchloric acid
method were also prepared from a cohort of C57BL/6 mice and
evaluated by 1H-NMR and GC-MS. C57BL/6 mice included in
the study were divided into five groups (with 4–5mice per group)
as follows: control (0Gy), 20Gy single-dose irradiated, 4Gy× 10
fractionation-dose irradiated, aged (24 mo), and aged-obese (24
mo) (scheme included in Figure S2A).

Data Analysis
Multivariate analysis of NMR data was performed using
SIMCA 15 software (Sartorius Stedim Biotech, Göttingen,
Germany). Principal component analysis (PCA) was used to
detect any innate trends and potential outliers within the data.
Supervised Partial Least Squares discriminant analysis (PLS-
DA) and Orthogonal-Partial least square–discriminate analysis
OPLS-DA were performed to obtain additional information
including differences in the metabolite composition of groups,
variable importance on projection (VIP) values, and regression
coefficients. OPLS-DAmodels were calculated with unit variance
scaling and the results were visualized in the form of score
plots to show the group clusters. The VIP values and regression
coefficients were calculated to identify the most important
molecular variables for the clustering of specific groups. Non-
parametric Wilcoxon rank sum test and Student T-test were
performed to determine the statistically significant differences
between the groups.

Survival Curves
Athymic nudes, grouped as control (non-irradiated, 0Gy) and
irradiated with 20Gy single dose, were divided into two study
cohorts: (1) Short-term IR: where 5 mice from each group were
injected with GBM143 cells after short-term prior IR-exposure
of 24 hrs, and (2) Long-term IR: where 5 mice from each group
were maintained for 2 months post-irradiation and then injected
with GBM143 cells. Survival time (in days) for each mouse was
recorded until 70 days post tumor cell injection. The overall
survival was calculated by Kaplan-Meier method and log-rank
test was used to compare the survival curves (48). Experimental
design illustrated in Figure S1F.

Statistical Representation
The difference between specific metabolites or a parameter
measured across two groups was estimated for p-value, as
indicated. Graphs were plotted using software(s): GraphPad
Prism 8.2.0 (GraphPad, San Diego, CA), Heatmapper (Wishart
Research Group, University of Alberta andGenomeCanada) (49)
and Microsoft Office Excel. Statistical significance is represented
as p-values: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

RESULTS

Effect of Radiation on Tumor Growth,
Proliferation and Migration
Mice were cranially irradiated with either 20Gy (single dose)
or 0Gy (control), and tissues were collected at moribund to
be evaluated with histology for tumor growth. A small cohort
of mice radiated with 10Gy (single dose) and injected with

GBM143 line was also compared with the 0Gy and 20Gy cohorts
for relative tumor burden using haematoxylin and eosin (H&E)
staining. No difference in tumor size was observed between 0Gy
and 10Gy; however, 20Gy irradiated samples had significantly
higher percent of section area positive for tumor, indicated by
H&E (∼15% positive H&E for 0Gy and 10Gy, and 27% for
20Gy, with p-value of 0.033 between 0Gy and 20Gy), indicating
an overall faster rate of tumor growth (Figure S1D). Thus,
10Gy cohort was not pursued for further evaluation. Sections
from 0Gy and 20Gy were analyzed for tumor growth and
proliferation using human-Lamin A+C and Ki67 staining. There
was observable difference between tumor size of 0Gy and 20Gy
radiated mice based on h-Lamin A+C staining at the tumor.
Also, more cells positively stained for h-LaminA+Cwere present
at the corpus callosum of 20Gy mice (Figure 1C). Quantitative
analysis performed by counting both h-Lamin A+C and Ki67
within the tumor to evaluate proliferation revealed higher trend
of both the stains in 20Gy, with h-Lamin A+C. The h-lamin
A+C was however not significant, due to high-density tumor
region evaluated for both 0Gy and 20Gy; but showed near to
significant difference in Ki67 positive cells stained in that area (p
= 0.05), indicating higher proliferative potential in tumors that
were obtained from 20Gy-pre-irradiated mice brain. Similarly,
h-Lamin A+C was assessed in the midline corpus callosum to
evaluate cell migration toward the contralateral hemisphere, as
illustrated in Figure S1E. The h-Lamin A+C staining in 20Gy
was significantly higher with a p-value of 0.03, compared to
0Gy mice in the midline corpus callosum, suggesting a higher
number of cells migrating toward the contralateral hemisphere
(Figure 1D).

Metabolomics
Microdialysis
To assess for radiation-induced changes in the extracellular
milieu, a pilot experiment with intracranial microdialysis (in
the contralateral hemisphere) was performed in a small cohort
of athymic nude mice (n = 3), involving groups 0Gy and
20Gy, at day 30 after GBM143 injection and microdialysates
were analyzed for untargeted liquid metabolic profiling using
LC-MS (method described in Supplementary Materials 1).
Principal component analysis could separate the groups 0 and
20Gy, indicating metabolic changes in effect of irradiation.
A trend toward elevated levels of metabolites relevant to
cancer progression was observed in the 20Gy mice, including
modified nucleotides (N6-methyladenosine, pseudouridine),
polyol (myo-inositol, quebrachitol) detected in the 20Gy
(Supplementary Excel Sheet 3). However, there were very
limited identifiable metabolites with a total of <60 due to low
sample volume obtained after a 3.5 hrs microdialysis run at
a rate of 1 ul/min (Supplementary Excel Sheet 3). Moreover,
due to technical challenges involved with keeping ≥4 mice per
group in microdialysis and the limited volume of microdialysates
collected for evaluation, significant conclusions could not
be made. We therefore utilized a whole tissue metabolomics
approach in non-tumor bearing mice to evaluate the metabolic
changes post-irradiation.
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Proton Nuclear Magnetic Resonance (1H-NMR)

Spectroscopic Analysis
We sought to identify the radiation inducedmetabolic alterations
in the brain stroma associated with the observed outcome
of higher tumor growth and proliferation in 20Gy mice. To
achieve this, whole brain metabolomics was performed in
two separate mouse strains, athymic nude mice and C57BL/6
mice, as described in methods. Athymic nude mice were
included since the tumor study described above was performed
with human-PDX line in athymic nudes; C57BL/6 mice were
included to eliminate strain dependence and to avoid potential
confounding effects of immunodeficient mice. A cohort of aged-
C57BL/6 mice (24 mo) with and without diet-induced-obesity
was analyzed to assess whether or not the radiation-induced
metabolic changes in the brain were similar to those induced by
aging or obesity-induced senescence. A small group of C57BL/6
mice were administered a fractionated dose of 4Gy× 10 for
comparative analysis.

Data 1H-NMR spectroscopic analysis revealed clear
separation of 0 and 20Gy mice cohorts from athymic nude
mice, using PCA (Figure 2Ai). Supervised OPLS-DA further
separated the two groups based on metabolite composition
differences with predicted-variable importance in the projection
(VIP) values shown. The most important molecular variables
for clustering of specific groups include glutathione (GSH) and
ascorbate (ASC) having VIPpred 1.65, along with differences in
ATP and GTP levels as potentially distinguishing characteristics
(Figure 2Ai). After IR, a significant reduction of GSH, ASC,
and NAD+ levels were observed, along with increases in
ATP and GTP. Additionally, an overall reduced trend in
TCA intermediates was observed in 20Gy (Figure 2Aii). The
multivariate analysis of NMR data performed using SIMCA 15
software for C57BL/6 mice demonstrated separation of groups:
Aged 24 mo, Aged-Obese 24 mo, Control (0Gy), 20Gy single-
dose cranially irradiated, and 4Gy× 10 cranial IR-fractionated.
Supervised PLS-DA showed separation of 0Gy from irradiated
mice groups, 20Gy and 4Gy× 10 (Figure 2B) and all five groups
(Figure S2B). Specifically, the aged-groups (aged: 24 mo and
aged-obese: 24 mo) were separated into a different component
compared to the 0, 20, and 4Gy× 10 groups (Figure S2B). There
was a better separation of groups shown in model: M4 (aged,
0 and 20Gy) as compared to those shown in model:M5 (0, 20,
and 4Gy× 10) (Figure S2B, Table S1 for model parameters).
Comparing all irradiated mice (IR group: 20 and 4Gy× 10
analyzed together) with 0Gy using PLS-DA and OPLS-DA
showed significant group separation. The VIP-total and VIPpred
value estimation indicated the metabolites most relevant to this
group separation, which included GTP, ATP, GSH, and ASC
(Figures S2Bi,ii).

The relative abundance of metabolites identified post-IR for
20Gy single dose from 1H-NMR for C57BL/6 mice showed
reduction in GSH and ASC levels and an increase in ATP and
GTP. No significant difference was observed between 20 and
4Gy× 10 (Figure 2B). To assess how metabolomic profile
of the radiated brain (at doses 20Gy, and, 4Gy× 10) was
different from age-related brain metabolomic profile, C57BL/6
aging-mice cohorts (24 mo) were evaluated for significantly

altered metabolites in comparison to irradiated and control
mice. Alterations specific to the aged-group involved increased
levels of scyllo-inositol and sn-glycero-3-phosphocholine
with concomitant reduction in O-phosphocholine. Other
metabolites reduced significantly in aged-mice were NAA
(N-acetyl aspartate), neurotransmitters, and intermediates of
TCA cycle (Figure S3) (50–54). List of metabolites detected for
athymic nude mice and C57BL/6 by 1H-NMR are included in
Supplementary Excel sheet 1.

Gas Chromatography-Mass Spectrometry (GC-MS)
Lysates processed for 1H-NMR were further evaluated using
GC-MS. The heatmap for relative abundance of metabolites
(i.e., normalized total peak area of a metabolite per mice),
between athymic nude mice, 0Gy and 20Gy, is illustrated in
Figure S2Ci. While there was internal variation observed within
these groups, only a few significantly altered metabolites in 20Gy
were identified, which included an increased trend in urea and a
reduction in levels of creatinine (Crn), N-acetyl aspartate (NAA),
and NAA/Crn ratio post-irradiation. Importantly, ascorbic acid
was significantly reduced in 20Gy and threonic acid was
increased, reflecting ascorbic acid catabolism (Figure 3A). The
heatmap for relative abundance of metabolites averaged for
each group of C57BL6 mice is included in Figure S2Cii. The
significantly altered metabolites between control (0Gy) and
irradiated groups (20Gy and 40Gy× 10) involved increased
levels in urea but no change in Crn, NAA, and NAA/Crn ratio.
However, there was significant reduction in levels of ascorbic acid
with concomitant rise in threonic acid observed post-irradiation,
alike observed for the athymic nudes (Figure 3B). Collectively,
the results of 1H-NMR and GC-MS indicate involvement of ROS
clearance with active utilization of GSH and ASC as antioxidants.
Scheme for ASC and GSH cycle in clearance of ROS and the
role of GSH in regeneration of ASC is illustrated, along with
intermediates of ascorbic acid catabolism, in Figure 3C. Expected
metabolic alterations upon irradiation involve an increase in
levels of ROS, utilization and reduction in GSH and ASC, with
concomitant increase in by-products of ASC catabolism, threonic
acid (ThrO), and Oxalic acid (OxA) (Figure 3C).

Other metabolites contributing to the separation of the
groups in C57BL6 mice, and their relative assessment with aged
mice groups are shown in Figure S4. The heatmap showed
distinct metabolomic signatures for aging from that of irradiation
(Figure S2Cii). At individual metabolite levels, no significant
difference was observed for cholesterol in aged-Obese mice,
which could be due to high internal variation observed within the
group or small cohort size (5 mice/group). However, there was a
reduced trend in free fatty acids and overall higher cholesterol,
as compared to others. Notable metabolites separating the
aged groups from the irradiated involved: increased age-related
markers, scyllo-inositol and sn-glycero-phosphocholine, and
reduction in fumaric, succinic acids, andmetabolic intermediates
of glycolysis and TCA cycle (52–54). Metabolic variations
common to both aged and radiated mice cohorts included a
rise in threonic acid, oxalic acid, D-allose, and myo-inositol.
Additionally, there was a slightly higher trend in urea and Crn;
however, this was not significant for either aged or irradiated
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FIGURE 2 | Metabolomics of pre-radiated brain using 1H-NMR: (A) (i) Principal component analysis (PCA) between athymic nude mice groups, 0Gy and 20Gy.

Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) shows further separation of 20Gy mice group from non-irradiated control based on differences in

the metabolite composition of groups with predicted-variable importance in the projection values shown in graph below. (ii) The graphs show, significantly altered

(Continued)
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FIGURE 2 | metabolites between the 0Gy vs. 20Gy. (B) Multivariate analysis of NMR data performed using SIMCA 15 software (Sartorius Stedim Biotech, Göttingen,

German) for cohort of C57BL/6 mice, having groups as indicated. Supervised Partial Least Squares discriminant analysis (PLS-DA) performed shows, separation of all

three groups. Bar graphs show metabolites most significantly altered between groups. Additional graphs for metabolic variants observed in C57BL/6 mice are

included in Figure S3. Statistical significance is represented as *p < 0.05; **p < 0.01.

mice groups (Figure S4). List of metabolites detected by GC-MS
are included in Supplementary Excel sheet 2.

Immunostaining for Microglia With Iba-1
To evaluate the status of inflammation in the radiated brain and
tumor microenvironment in response to RT, immunostaining for
Iba-1 was performed for microglia in coronal slices from mice
cranially irradiated (0Gy or 20Gy), and injected 24 hrs post-IR
with GBM143 PDX line (Figure 4). Microglial morphology was
assessed in ipsilateral (IH) and contralateral (CH) hemispheres
Microglia were observed to be enlarged, bushy, and branched
for 0Gy-GBM143, as opposed to amoeboid for 20Gy-GBM143,
indicating stages of higher activation and higher phagocytic
activity for the 20Gy-GBM143 injected mice (Figures 4A,B).
Comparing the microglial staining in ipsilateral hemispheres of
0Gy and 20Gy-GBM143 with that of the ipsilateral hemispheres
of two separate mice that were cranially irradiated with 20Gy
but not injected with any human-GBM PDX line (radiation
controls): showed, negligible Iba1+ microglia staining in the
brain slices of 20Gy-IR alone, indicating, the observed microglial
activation to be an effect of crosstalk between irradiation and
tumor pathogenesis. Figure 4D illustrates their relevance in our
experimental setting with maximum microglial activation and
phagocytic activity observed in 20Gy mice.

Effect of Radiation on GBM Outcome
Effect of radiation-associated metabolic alteration on GBM
outcome was assessed by, survival analysis for irradiated mice
cohorts, ST-IR and LT-IR, and their respective control groups,
injected with GBM143. Significant reduction was seen in the
survival of mice after irradiation ST-IR or LT-IR (Figure 5). The
combined graph of ST-IR and LT-IR further showed a significant
difference is survival of 20Gy (ST-IR) and 20Gy (LT-IR) with
median survival of 58 and 51 days, respectively.

Collectively, our data demonstrate radiation-induced
metabolic alterations, including a rise in energy carriers
(ATP and GTP) and reduction in antioxidants (GSH and
ASC) associated with tumor promoting cell processes (cell
proliferation, migration, and inflammation) and poor GBM
outcome. The proposed model is illustrated in Figure 5B, and its
translational significance is illustrated in Figure S5.

DISCUSSION

Radiation therapy (RT) is an indispensable treatment modality
for management of majority of cancers, and the standard of care
for GBM. While, RT exerts its therapeutic potential by killing
the proliferative tumor cells, RT can severely impact the TME
by altering the extracellular milieu at molecular and structural
levels (8, 26, 55). Radiation induced brain injury is widely
documented; however, pro-migratory effects of RT on GBM

cells have recently gained attention. Independent groups have
reported enhanced human glioma cell migration and invasion in
response to radiation dose treatment (56–59). We here evaluated
the tumor growth and migratory potential of human-PDX line
(GBM143) in the pre-radiated brain microenvironment with
purpose to recapitulate the tumor recurrence scenario observed
in clinic. As a measure of tumor growth and invasion, we
quantified the proliferative cells at tumor and migratory cells
crossing the center of corpus callosum and, observed higher cell
migration and proliferation of GBM143 PDX line implanted in
mice brain pre-radiated with 20Gy indicating a tumor permissive
microenvironment of the brain post-RT (Figure 1D) (8).

Radiation treatment leads to production of ROS, which
facilitates tumor cell cytotoxicity in effect of RT. Tumor cells
adapt to this oxidative stress through several mechanisms,
including metabolic shifts and elevated antioxidant peptide
production and intratumoral hypoxia generation (60–62).
However, the RT-induced redox state of the non-transformed
cells in the tumor stroma and how it may cross-interact with
transformed tumor cells to impact tumor growth is less studied.
Increased ROS levels in response to IR can be pro-tumorigenic
(21, 22).

Metabolomics has emerged as the state-of-the-art approach
to identify cancer cell fate (63–69); and metabolic therapy
for management of GBM has been discussed (70, 71). We
evaluated the metabolic changes in the pre-radiated brain
microenvironment in response to 20Gy-IR and the association
with observed tumor aggressivity and inflammatory microglial
phenotype. Cell proliferation and migration are a direct function
of the cell’s energy state (21); therefore, utilizing 1H-NMR we
quantified energy carriers in the radiated brain stroma and, found
elevated levels of ATP and GTP post 20Gy-IR with reduced
levels of antioxidants, glutathione, and ascorbate (Figure 2).
Ascorbate and GSH serve as the prime cellular antioxidants.
Glutathione can recycle itself and reduced ascorbate (72, 73).
Active ASC catabolism with decreased levels of ASC and GSH
were observed, which indicate active ROS scavenging. While
studies have also shown reduced intracellular redox signaling
pathway in response to radiation, which may contribute to
radiation induced oxidative stress (74), the depletion of ROS
scavengers due to their increased demand would cause further
accumulation of intracellular ROS, exacerbating oxidative stress.
Chronically high levels of ROS in the TME can facilitate tumor
growth (62, 75). Similarly, while ATP and GTP are essential
components of cellular homeostasis, a rise in these intracellular
nucleotides can cause their export out of the cell through
extracellular vesicles, thus elevating their levels in extracellular
space (76, 77). Extracellular purinergic nucleotides can affect
both stroma and tumor cell processes. Extracellular ATP
(eATP) has been implicated in facilitating microglial chemotaxis,
inflammation, and several neurological or neuropathological
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FIGURE 3 | Metabolomics of pre-radiated brain using GC-MS: (A) The graphs show significantly altered metabolites between athymic nude mice groups, 0Gy and

20Gy. (B) The graphs show significantly altered metabolites between C57BL/6 mice grouped 0, 20, and 4Gy×10. Additional graphs for metabolic variants in

C57BL/6 mice groups are in Figure S4. Heatmaps for GC-MS are included in Figure S2C. (C) General scheme for ascorbate (ASC) and glutathione (GSH) cycle in

(Continued)
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FIGURE 3 | clearance of reactive oxygen species (ROS). Intermediates of ascorbic acid catabolism are represented in orange boxes. Reactions in green show

ASC-dependent peroxide metabolism; reactions in the central gray box show GSH-dependent regeneration of ASC; and reactions in red show GSH-dependent

peroxide metabolism. Box on the right illustrates the expected metabolic alterations upon irradiation, which include increases in levels of ROS, and utilization of GSH

and ASC, with concomitant increase in by-products of ASC catabolism, Threonic acid (ThrO), and Oxalic acid (OxA). Key to metabolic cycle illustrated: ASC,

Ascorbate; MDHA, Monodehydroascorbate; MDHAR, Monodehydroascorbate reductase; APX, ASC peroxidase; GR, GSH reductase; GRX, Glutaredoxin; PRX,

Peroxiredoxin; ThrO, L-threonic acid; OxA, oxalic acid; DHA, Dehydroascorbic acid; GSH, Glutathione reduced; GSSG, Glutathione, oxidized; NADP+, Nicotinamide

adenine dinucleotide phosphate. Statistical significance is represented as *p < 0.05; **p < 0.01.

processes (78). Additionally, it can be internalized by tumor cells,
increasing their intracellular ATP levels conferring metabolic
reprogramming, increased tumor aggressivity, and treatment
resistance (79–83). A recent lung cancer study has shown
eATP to be involved in epithelial-to-mesenchymal transition, cell
migration, and metastasis (84). While the biological functions
of extracellular guanosine or eGTP are less studied than
adenosine or eATP, their relative concentrations can co-vary,
and biological functions of these nucleotides can cross-interact
(85, 86). GTP is an essential biomolecule that modulates cell
signaling via G-proteins and small GTP-binding proteins to
facilitate cell proliferation, cell migration, and vesicle trafficking,
and, can modulate metabolism and tumor development (87–94).
Exocytosis and vesicle secretion can further facilitate release of
purinergic nucleotides, inflammatory molecules, enzymes, and
ROS into the extracellular milieu, which collectively can alter
the TME to become pro-tumorigenic (75, 83, 95–97). These
cause-effect relation between metabolic alterations and their cell
physiological processes in radiated brain stroma, are illustrated
in Figure 5B.

Microglia are the prime cells of immune surveillance in
normal brain and one of the main the cellular components
of tumor associated macrophages (TAMs) in the immune
microenvironment of GBM (98–101). A persistent activation
of microglia is the hallmark of a chronic neuroinflamation.
Microglial activation and its M1 polarization state is
characteristically exhibited in traumatic brain injury; however,
the extent to which M1 vs. M2 polarization states relate
to radiation-induced changes in microglia remains unclear
(8, 32, 102, 103). Upon inflammatory trigger, microglial
activation matures with sequential changes in its morphology,
from resting ramified state to hyper-ramified, bushy and highly
phagocytic ameboid state (101, 104, 105). A prolonged activation
of microglia leads to a vicious circle, where secretion of pro-
inflammatory cytokines and other neurotoxic agents (ROS and
RNS) leads to further neuronal damage and cell death, which
maintains microglial cells in their activated status (103, 106, 107).
Extracellular ATP (eATP) can act as a chemoattractant and
facilitates microglial activation and, intracellular ATP and GTP
are involved in microglial mobility and secretory processes of
inflammatory cytokines (101, 108–111).

While microglial activation is reported after irradiation in
both juvenile and adult rodent brain (74, 112) intriguingly, we
observed trivial Iba1+ cells in the radiation control, indicating
a possible clearance of the activated microglia over time, as the
brain samples were harvested 58 days post-IR, at a time-point
close to moribund for tumor-bearing mice groups. The observed
microglial morphology and tumor-stromal cross talk in tumor

bearing mice implies that radiation inducedmetabolic alterations
in brain stroma alongwith progressive pro-inflammatory damage
caused by tumor growth could lead to continued feed-forward
recruitment and activation of microglial cells at the tumor.
Since, maximum deleterious alterations and tissue damage would
be expected within 20Gy radiated-GBM143 tumors, maximal
phagocytic activity of microglia was observed in these, indicated
by their all amoeboid phenotype.

The dose and time-dependence of radiation exposure can
significantly alter the impact of RT on TME by affecting tumor or
stromal cell behavior, migration, and treatment response (27, 29,
30, 113–120). The association between cancer, aging and therapy-
associated aging is well documented (50, 51). High-dose IR effects
include hemorrhage, cognitive decline, neurodegeneration, and
premature senescence, which can progress over time (13, 15).

Multivariate analysis of 1H-NMRdata and heatmap of GC-MS
data revealed a clear distinction between aged-mice groups from
20Gy-single dose (Figures S2B,Cii). The metabolic changes
observed in aged and irradiated-mice differed markedly in
relative abundance of most of the metabolites assessed by 1H-
NMR and GC-MS (Figures 3, 4). Increased levels of urea and
decreases in NAA and creatine (Cr) or Crn levels have been
observed in neuropathologies (116, 121). We observed a slight
increase in urea with radiation in both mouse strains, but NAA
and Crn levels were not consistent and demonstrated a decline
only observed in athymic nude mice. These indicate a partial
neurotoxic state induced by 20Gy-IR; with no severe aging-
like signatures in 20Gy. This could in part be due to the time-
dependence of the experiment, where mice brain samples were
harvested formetabolic analysis 24 hrs post-RT tomimic the time
frame in which tumor implantations were performed post IR.

The association between the metabolic effects and time
since radiation was investigated by performing a survival
analysis. Shortest median survival in the LT-IR cohort indicates
progressive IR-induced damage in tumor stroma, making it more
permissive for tumor growth and recurrence. This corresponds
to progressive radiation-induced brain injury and increased
susceptibility to neuropathologies observed in patients treated
with RT (122). Clinical correlation of the study is depicted in
Figure S5.

CONCLUSIONS

We identified an aggressive tumor behavior and microglial
activation following 20Gy single dose brain radiation,
which could become more severe with time. Moreover, we
found metabolic alterations with a rise in energy carriers
(ATP and GTP) and a decline in antioxidants ASC and
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FIGURE 4 | Immunostaining for microglia, with Iba-1: (A) Immunofluorescence (IF) Images for microglial staining (Iba1/DAPI) and morphology (at 20X), in ipsilateral (IH)

and contralateral (CH) hemispheres of 0Gy and 20Gy mice injected with GBM143 PDX line. (B) the IF images skeletonized using Image J software to assess

microglial morphology. (C) the microglial staining in ipsilateral hemispheres of 0Gy-GBM143, and 2Gy-GBM143 compared with that of ipsilateral hemispheres of two

separate mice cranially irradiated with 20Gy-single dose; however, not injected with any human-GBM PDX line. (D) (i) Site of GBM143 injection at IH of mice having

received ± cranial irradiation (ii) Stages of microglial activation observed in experimental setting.
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FIGURE 5 | Effects of radiation-associated metabolic alteration on GBM outcome: (A) Survival curves: Graphs show difference between survival of irradiated (IR) mice

cohorts injected with GBM143 24 hrs post-irradiation (short-term IR, ST-IR) or 2 months post-irradiation (long-term IR, LT-IR). Statistical significance is represented as

**p < 0.01, ****p < 0.0001. (B) Proposed model for radiation associated metabolic alterations and their effects on cell processes and glioblastoma multiforme (GBM)

(Continued)
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FIGURE 5 | outcome. The box marked with yellow outline (irradiated by RT) shows metabolic changes in the radiated brain stromal microenvironment, with rise in

energy carriers ATP and GTP, and reduction in levels of antioxidants, ascorbate and glutathione, and the cellular processes affected by them. With IR, continued and

excess rise in levels of energy carriers and expense of antioxidants within stromal cells of the brain can lead to altered extracellular milieu. Pathophysiological changes

in the extracellular milieu, which can be immediate or long term caused by the radiation are enlisted in purple box. These alterations would collectively contribute to

radiated stroma and GBM cell interactions that are permissive to GBM growth and, aggressive recurrence. Translational relevance of the study and its insights gained

from pre-radiated brain microenvironment to prevent secondary and recurrent GBM spread is illustrated in Figure S5.

GSH to associate with the observed tumor phenotype.
Independent groups have reported metabolic alterations in
GBM cells to be pro-tumorigenic (21–25). We show for
the first time a comprehensive view over the metabolomic
alterations in the pre-radiated brain administered with
high-dose IR (equivalent to late effects of hypo-fractionated
dose), in vivo, that associate with tumor proliferation,
migration, and inflammatory phenotype. These observations
suggest an unprecedented role of the pre-radiated brain
microenvironment on aggressive GBM recurrence, with,
sustained and progressive metabolic stresses to worsen
GBM outcome.

FUTURE DIRECTION

The role of antioxidants in compromising the therapeutic
effect of RT and pro-oxidants in sensitization to RT has
long been debated (123–134). Radiation therapy mediates
its effects directly or indirectly by production of ROS;
thereby, causing oxidative damage to macromolecules and
induction of apoptosis. Therefore, increased expression of
antioxidant peptides in tumors have been thought to reduce
the cytotoxic effects of RT, and GSH inhibition is proposed
to have a therapeutic advantage in sensitizing cells to RT
(73, 135). Ascorbate can act as a pro-oxidant in acidic
microenvironments, such as tumors (136); thus, it may function
as a radio-sensitizer for GBM cells and a radioprotector for
normal cells post-RT (137, 138). While discrepancies remain
regarding ASC’s role as a radio-sensitizer or radio-protector
in GBM, its potential as an anticancer agent has been
reviewed (139–143).

Our study demonstrates an immediate effect of prior exposure
to high-dose irradiation in the non-tumor/untransformed brain
cells as a decrease in antioxidant levels, including GSH and ASC,
consistent with their utilization to neutralize RT-induced free
radicals. The depletion of these antioxidants can lead to further
acute or chronic oxidative stress, altering the brain TME, which
may contribute to the enhanced aggressiveness of recurrent
tumors. While radiation-induced oxidative stress is necessary for
DNA damage in tumor cells, this study raises the question if GSH
and ASC administration after completion of radiation or primary
treatment regime could help mitigate the radiation-induced
metabolic stress in the microenvironment. If the post-radiation
redox state contributes to tumor aggressiveness, there may be
an opportunity to attenuate the RT-associated aggressiveness
of recurrent GBM, enhancing the long-term safety of brain
radiation treatment for glioblastoma (translational relevance
illustrated in Figure S5).
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Figure S1 | Tumor growth assessed post-moribund for cranially irradiated mice

(A–E): (A) GBM143 PDX line obtained from flank tumor, cultured in vitro for 3

weeks. Images acquired in three independent fields (F1–F3), using transmitted

light microscopy (at 10X) indicate morphology of cells to be branched,

neuroglia-like, interspersed with enlarged polygonal cells. (B) Scheme for the

slicing strategy: Mice brain was sectioned into four equidistant pieces (∼1.8mm
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apart); Slices were made from each in the order of being 5µm thick coronal slices

from the cerebral hemisphere only, Rostral to caudal for 22 slides, so as to cover a

depth of 120µm from each of the four tissue pieces. These slices were arranged

onto the glass slides, such that each slice on a slide is obtained from one of the

respective four brain pieces, sectioned equidistantly. Two slides (1 and 22) were

stained with H&E and evaluated for tumor growth. Tumor positive area was

detected in slices obtained from two out of four sectioned pieces for most of the

mice brain samples. Percent positive H and E staining was assessed for each. (C)

Illustration showing arrangement of the slices on a glass slide, and evaluation of

percent positive H&E. (D) Relative H&E staining as observed for slices obtained

from 0Gy, 10Gy, and 20Gy. Dot-plot for the overall tumor burden estimated in

these groups. (E) Scheme illustrating steps involved in performing single cell

count: mice brain coronal sections are stained for h-Lamin A+C –Cy3 (and

Ki67–Cy5), for both 0Gy and 20Gy. A defined region is selected and masked

(area-squared in white). This masked area-image in single channels is imported

into cell profiler software and cropped. This cropped image is used as the input

image, pipeline for nuclei detection run, and single cell count obtained. Similar

steps are performed for a defined region selected at center of corpus callosum for

h-LaminA+C staining (images in box, on right). (F) Effects of radiation induced

alterations on GBM outcome: Scheme of experiment for survival analysis in

athymic nude mice groups, 0Gy and 20Gy irradiated.

Figure S2 | (A) Scheme for experiment involving Proton–Nuclear Magnetic

Resonance spectroscopy (1H-NMR) and Gas chromatography–mass

spectrometry (GC-MS). (B) 1H-NMR: Multivariate analysis for C57BL/6 mice,

having groups as indicated. Supervised Orthogonal Partial Least

Square-Discriminate Analysis (OPLS-DA) to show further separation of 0Gy, with

irradiated group, irradiation (IR) (20 and 4Gy×10); (i) Total variable importance in

the projection (VIP) values (ii) Predicted VIP values. Parameters involved in group

separation using multivariate analysis in M1–M7 models are listed in the Table S1.

(C) Heatmaps for GC-MS data: (i) Heatmap for relative abundance of metabolites

(i.e., normalized total peak area of metabolites for all mice within each group)

between athymic nude mice groups, 0Gy and 20Gy. (ii) Heatmap for relative

abundance of metabolites averaged for each group (i.e., normalized total peak

area for metabolites, averaged for all mice within each group), between C57BL/6

mice grouped indicated.

Figure S3 | Proton–Nuclear Magnetic resonance spectroscopy (1H-NMR): The

graphs show, relative abundance of metabolites between C57BL/6 mice groups.

Group Comparison: Aged (24mo), Aged-Obese (24 mo) verses control (0Gy), &

radiated (20Gy, 4Gy×10). The significantly altered metabolites are categorized as

per their molecular type or biological pathway involvement. Statistical significance

is represented as ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

Figure S4 | Gas chromatography–mass spectrometry (GC-MS): Group

Comparison: Aged (24 mo), Aged-Obese (24 mo) verses control (0Gy), and

radiated (20Gy, 4Gy×10). The graphs show, relative abundance of metabolites

between C57BL/6 mice groups. The significantly altered metabolites are

categorized as per their molecular type or biological pathway involvement.

Statistical significance is represented as ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001,
∗∗∗∗p < 0.0001.

Figure S5 | Translational Neuro-Oncology: The model illustrates sequential

alterations that may contribute to tumor recurrence post-primary treatment

regime. Standard of care for glioblastoma multiforme (GBM) involves tumor

resection, radiation therapy (RT) and chemotherapy (Temozolomide, TMZ).

Residual tumor cells or glioblastoma stem cells (after primary treatment regime)

have the ability to migrate away from initial site, if their surrounding

microenvironment becomes liberal for it. Radiation induced alterations in brain

parenchyma and its extracellular microenvironment (or tumor stromal

compartment), include metabolic changes such as reduced antioxidants, increase

in energy carriers, neuroinflamation, and others. These changes can dramatically

remodel the pre-radiated brain stroma, making it permissive for tumor cells to

re-grow and migrate to distant sites forming new foci; thereby, causing tumor

recurrence and spread. Future therapeutic interventions to prevent secondary

tumor growth may harness these insights to leverage the potential of radiation

therapy, and better treatment with use of cell proliferation and migration inhibitors

and metabolic modulators to advance GBM care.

Table S1 | Model parameters used for multivariate analysis of 1H-NMR data.
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