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The processes of recurrence and metastasis, through which cancer relapses locally or

spreads to distant sites in the body, accounts for more than 90% of cancer-related

deaths. At present there are very few treatment options for patients at this stage of

their disease. The main obstacle to successfully treat advanced cancer is the cells’

ability to change in ways that make them resistant to treatment. Understanding the

cellular mechanisms that mediate this cancer cell plasticity may lead to improved

patient survival. Epigenetic reprogramming, together with tumor microenvironment,

drives such dynamicmechanisms favoring tumor heterogeneity, and cancer cell plasticity.

In addition, the development of new approaches that can report on cancer plasticity

in their native environment have profound implications for studying cancer biology and

monitoring tumor progression. We herein provide an overview of recent advancements

in understanding the mechanisms regulating cell plasticity and current strategies for their

monitoring and therapy management.
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CANCER CELL PLASTICITY: A NEW LEVEL OF HETEROGENEITY
IN A TUMOR

Tumor heterogeneity can be inter-tumoral, if genetic variations are found among different patients
with tumors of the same type, or intra-tumoral, involving different cancer cells in the same tumor.
In particular, intra-tumor heterogeneity can be caused by genetic variation, modulation in the
expression of a gene, transition among cellular states or environmental changes (1). Thus, it is easy
to understand that intra-tumor heterogeneity drives cancer progression and represents the main
cause of treatment failure (2).

Initially, two models were proposed to justify intra-tumor heterogeneity: the “clonal evolution”
model and the “cancer stem-like cell” (CSC) model. The first contemplates differences among
cancer cells due to stochastic alterations in genes; according to this theory, clones which gain a
growth advantage are selected over time (3, 4). The second involves CSCs, a minority population
of cancer cells with self-renewing capacity that initiates and maintains tumor growth, in contrast
with the majority of the cancer cells which show a more differentiated phenotype (5–7). Lately, a
third model has been proposed: the “CSC plasticity” model, where CSCs possess the capacity to
move between stem and differentiated states. This shift may be caused by intrinsic cues such as
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genetic mutations and/or epigenetic modifications but also by
extrinsic cues from the tumor microenvironment (inflammation,
injury, senescence). In addition, the tumor-initiating potential is
enhanced by the overexpression of transcription factors involved
in the process of epithelial-to-mesenchymal transition (EMT)
(8–10) and CSCs exhibit an induced EMT program (11). These
data suggest that EMT is strictly linked to CSC features. Indeed,
CSCs switch between epithelial and mesenchymal states and
this process depends on both genetic mutations, epigenetic
modifications and transcriptional modulation of cancer cells
and signals provided by the tumor microenvironment through

the mediation of growth factors, cytokines, cancer-associated

fibroblasts (CAFs), tumor associated macrophages (TAMs) and

hypoxia (12, 13) (Figure 1). These transitions promotemetastasis

at distant sites as well as drug resistance and, therefore, disease
recurrence (14–16). In breast cancer cells co-expression of

epithelial and mesenchymal genes promotes stemness inducing

the formation of 3D-spheroid structures named “tumor-spheres”

(17). Moreover, cells with intermediate state of EMT showed

FIGURE 1 | Mechanisms governing CSC plasticity model. Intra-tumor heterogeneity relies on the capacity to shift dynamically and reversibly between CSC and

non-CSC/differentiated state. Tumor cell modifications as genetic and epigenetic alterations and microenvironment perturbations as inflammation, injury, and

senescence represent the major causes of cancer cells plasticity. Moreover, CSCs exhibit an induced epithelial-to-mesenchymal transition (EMT) program and,

particularly, they display an intermediate state of EMT. This process depends on both genetic mutations, epigenetic modifications and transcriptional modulation of

cancer cells and signals provided by the tumor microenvironment (i.e., growth factors, cytokines, CAFs or TAMs). Created with BioRender.com.

similar tumor-initiating potential when compared with fully
differentiated mesenchymal cells in a mouse model of prostate
cancer (18). Thus, we suppose that cancer cell stemness may
be associated with a partial EMT phenotype and, indeed, cells
which exhibit this intermediate EMT state possess a much more
pronounced plasticity (19). According to this definition, the
CSC plasticity model suggests that the two historical models of
cancer heterogeneity, i.e., the clonal evolution model and the
CSC model, are not mutually exclusive (1, 20–22). We believe
that this third model suggests a new level of complexity in tumor
heterogeneity concept.

NOVEL APPROACHES FOR MONITORING
TUMOR CELL PLASTICITY AND
PROGRESSION

Solid tumors are consisted of several sub-clonal cells populations,
which compete in a Darwinian manner under the selective
pressures of endogenous and exogenous factors, leading to the
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clonal evolution of a dominant subclone that will characterize
the tumor’s molecular landscape. Hence, it will be highly
heterogeneous and will dynamically change during the disease
progression, so longitudinal sampling is essential to define
therapeutic strategies.

Currently, cancermolecular profile is evaluated through “solid
biopsies” from primary tumor ormetastatic nodule; however, this
approach has several issues: (i) biopsies are not representative
of the whole tumor mass; (ii) often tumor site is not accessible;
(iii) frequently, biopsies cannot be serially performed; (iv) each
metastasis could have a different genomic landscape; (v) finally,
therapeutic selective pressure has to be considered too (23–28).
To overcome these limitations the novel approach of “liquid
biopsy” is gaining attention.

The rapid turnover of cancer cells results in the constant
release into the bloodstream of: (i) cell-free circulating tumor
DNA (ctDNA); (ii) tumor derived RNA (predominantly micro-
RNAs and long-non-coding-RNA) (29); (iii) circulating tumor
cells (CTCs); and (iv) extracellular vesicles (EVs) (sub-cellular
structures with a membrane that contain nucleic acids and/or
proteins) (30–33). This enables clinicians to repeatedly and non-
invasively interrogate the dynamic evolution of human cancers.

CTCs are (probably) intravasated or passively spread from the
primary and/or secondary tumor sites into the bloodstream, and
could be responsible for the beginning of distant metastases.

In cancer patients CTCs can be isolated single or in clusters
with other CTCs or with endothelial cells, platelets, leukocytes
and fibroblasts, conferring them resistance to oxidative stress,
and protection from the immune system (34). Their absolute
number is really low (∼1 CTC per 1× 109 blood cells), especially
in early cancer stage, and can vary between cancer types (34–36).

CTCs detection and isolation challenges are related to
the high sensitivity and specificity required, and several
factors still hamper standardized clinical application. Different
approaches have been extensively investigated to isolate CTCs:
(i) technologies such as density gradient stratification, membrane
filtration, photoacoustic detection, dielectric mobility, and
microfluidic separation are based on CTCs physical properties
(density, size, mechanical plasticity, and dielectric mobility)
that are different from those of other blood cells (37,
38). However, these techniques have low specificity (39), so
new antibody-based functional assays have been developed:
(ii) cytometric high-throughput imaging which provides the
scanning of cells on slides; (iii) negative depletion of leucocytes
and erythrocytes (Batch cell lysis, Microfluidic CTC-iChip,
Immunomagnetic separation) (40) using specific antigens such
as CD45 for leucocytes and glycophorin for erythrocytes; (iv)
positive CTC enrichment by specific markers expressed on
the cell surface (CellSearch, Magsweeper, Microfluidic CTC-
Chip) such as epithelial cell adhesion molecule (EpCAM)
(41) cytokeratins (CK8, CK18, CK19) (42) or tumor specific
markers (TTF-1, PSA, HER-2 etc.) (43, 44). Nevertheless, no
agreement has been reached on the specific antibodies to test.
Indeed, EpCAM is usually lost during EMT, that sustains
CTC migration, extravasation and apoptosis/anoikis resistance
(45). Additionally, CTCs may develop a stem-like phenotype
(46, 47). Hence, it is possible to find “commingling” CTCs

that express epithelial, EMT or cancer stem cells phenotype;
these CTCs have the highest plasticity potential and thus may
represent CSCs (48). Different expression levels of stem cell
markers such as CD24, CD44, CD133, ALDH, NANOG, OCT4,
were found in ovarian (49), breast (50), and prostate CTCs
(51). Remarkably, CTCs differentially express genes involved in
oncogenic signaling pathways depending on their plasticity or
stemness levels (52–54).

Finally, innovative developed approaches to CTCs/CSCs
isolation are based on: (v) CTCs functional features such as
protein secretion and cell migration (Epispot assay, Invasion
assay) that allow the attachment of these cells to synthetic
substrates co-treated with specific matching molecules (55); (vi)
nanotechnology (Immunomagnetic nanobeads, Nanostructures
substrates in microchip) (56, 57); (vii) the combination
of surface/cytoplasmic markers, size and dielectrophoretic
migration properties (DEPArray) (58).

Despite different approaches, in our opinion none of them
completely satisfy the necessary requirements since low purity,
loss of CTCs, and a narrow detection range still need to
be tackled.

Finally, an additional central aspect to consider in the cancer
plasticity is the complex network of epithelial-stromal cells
interactions. Stroma undergoes, in parallel with the epithelial
compartment, in a dynamic remodeling that may predict and
explain several clinico-pathological features (59–63). To date,
several in-vitro and in in-vivo models have been created and
novel approaches have been used to study this interaction and its
remodeling (64–66): genomic (scRNA-seq); protein translation
and secretion (serial analysis of gene expression, antibody arrays
and bead-based arrays, mass spectrometry and yeast, bacterial
and mammalian secretion traps); autocrine, paracrine and long
distance (cells co-culture, proximal culture); and directly in
human tissue (multispectral imaging analysis). However, stroma
characterization is still incomplete and fragmentary, also because
of the difficulty to perform an “evolution tracking” of the whole
stromal compartment.

Since malignancies development and progression are the
result of these complex interactions, we believe that the treatment
with chemotherapeutic agents against the cancer epithelial
compartment combined with novel stroma-targeted therapies,
may efficiently reduce cancer recurrence, also thank to the
targeting and eradication of CSCs.

CLINICAL RELEVANCE OF CANCER CELL
PLASTICITY: LIMITATIONS AND NEW
OPPORTUNITIES

Though the presence of CTCs has been known since the
1869 (67), their clinical relevance was demonstrated only in
1994 (68). Despite their low number in the blood stream,
they are related to clinical outcomes (34–36). In our opinion
CTCs and CSCs may represent the key for early diagnosis,
better prognostic stratification and a more accurate therapeutic
response prediction; in addition, their concentration and
pheno/genotyping could be easily measured and repeated
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over time. To date, however, only few authors tried to
demonstrate advantages of liquid biopsy over the solid biopsies
in cancer surveillance and follow-up (69, 70); this is also
due to the important technical issues still to be overcome. In
addition, according to recent insights, CSCs do not constitute
an autonomous compartment; rather, they play an active
role in the microsystem, constituted both by the epithelial
and the stromal compartments; indeed several authors have
demonstrated the mutual influences between CSCs and their
microenvironment (71–74).

We think that one promising approach to eradicate CSCs may
be to target the EMT (75): inhibitors of TGFβ-induced EMT as
well as SRC, MEK, or ALK5 inhibitors have been tested (76, 77).
Interestingly, also inflammatory cytokines—IL6 and IL8 in
particular—may represent potential therapeutic targets of EMT:
IL-6 acts as a direct regulator of breast CSCs (BCSCs) self-renewal
(78) and high levels of IL-6 are demonstrated to be associated
to poor clinical outcome (79); on the other hand, BCSCs have
been successfully eradicated both in vitro and in animal models
by blocking the IL-8 receptor CXCR1 (80). In addition, in
patients with HER2 positive breast cancer, treatment with HER2
inhibitors decreased the content of BCSCs (81), suggesting
that combination therapies that include HER2 targeting agents
may overcome BCSCs resistance. Based on this knowledge,
we believe that therapies targeting BCSCs represent an urgent
need to prevent recurrence. Other authors have suggested
to target also Notch, Hedgehog, Wnt and PI3K/Akt/mTOR
pathways (82). Intriguingly recent evidences demonstrate that
CSCs rely on mitochondrial biogenesis for their propagation
(83). Lamb et al. previously demonstrated that the antibiotic
doxycycline, in a known inhibitor of the 28S mitochondrial
ribosome subunit, inhibits CSC propagation in vitro (84). In
2018 we performed a pilot clinical trial and demonstrated
that doxycycline treatment decreases the expression of CSC
markers in breast cancer tumor samples (85). We thus propose
that selected antibiotics, in monotherapy or in combination,
may be further studied as interesting drugs for the eradication
of CSCs.

From now on, this review concentrates on specific issues
concerning cancer cell plasticity in breast cancer, glioblastoma,
and melanoma, which represent our expertise and, in our
opinion, the most challenging models in this field. A detailed
table is then provided reporting the latest knowledge in other
tumor models.

CSC PLASTICITY IN BREAST CANCER

Breast cancer has been largely investigated in terms of its
etiology (86–89) and still little is known on the mechanisms
of its progression. Breast cancer cells commonly gain genetic
and epigenetic modifications in their genome (90), contributing
to its characteristic intra-tumor heterogeneity (91–96). Intra-
tumor heterogeneity is strongly influenced by numerous factors
from the tumor microenvironment: breast cancer cells are
indeed under continuous selective pressure due to attacks by the
immune system or administered therapies (97, 98). This supports

breast cancer progression, conferring a competitive advantage to
specific subclones (92).

In recent decades, a hierarchical organization has been
proposed, where cancer cells with self-renew capacity, the so-
called BCSCs, are postulated to be at the top of the tumor
pyramid. Al-Hajj et al. in 2003 first isolated a population
of BCSCs expressing high levels of CD44 and low levels of
CD24 (CD44+CD24−/low) and capable to form tumors when
injected into immune deficient mice (99). Since then, numerous
studies have tested other biomarkers to sort BCSCs: among all,
aldehyde dehydrogenase 1 (ALDH1) resulted to be a potentially
useful alternative or complement to the CD44+CD24−/low

phenotype, particularly in high grade and HER2 positive tumors
(100). BCSCs not only possess high tumorigenic properties
but represent the cells that mediate tumor metastasis. Indeed,
the CD44+/CD24−/low phenotype is highly expressed in triple
negative breast cancers (101, 102) and is associated to poor
overall survival (103, 104); moreover, it has been reported among
cancer cells spread into the bone marrow (105) or to the lung
(106) of patients with breast cancer. At present, BCSCs are
believed to enter the circulation and become CTCs: indeed, high
expression levels of BCSC markers have been found in CTCs
(107). Thanks to their capacity of anoikis resistance, CTCs with
BCSC phenotype have the potential to seed metastatic lesions
(108). Studies from liquid biopsy samples demonstrate that CTCs
with a BCSC phenotype are enriched in the group with clinical
disease progression (107).

A large number of studies also suggest that BCSCs display
resistance to traditional cancer therapies (109–116). Cytotoxic
chemotherapies target the bulk of the tumor composed of highly
proliferative breast cancer cells and does not affect BCSCs
that, over time, cause tumor relapse (81). In addition, genetic
alterations may confer to BCSCs intrinsic chemoresistance,
including modifications in proteins involved in the detoxification
of chemotherapy agents (117). As reported above, BCSCs express
high levels of ALDH1, that metabolizes cyclophosphamide, thus
minimize its toxic effects (101). Also, tumor microenvironment
plays a crucial role in BCSC chemoresistance: in hypoxic
conditions, activation of hypoxia induced factors not only
promotes the formation of new blood vessel but also a BCSCs
quiescent phenotype (118, 119).

CSC PLASTICITY IN GLIOBLASTOMA

Glioblastoma (GBM) is the most frequent and deadly glial tumor
(120); it is morphologically (121) and molecularly (97, 122, 123)
characterized by high intra- and inter- tumor heterogeneity,
which may play a pivotal role in recurrence and therapy
resistance (124, 125).

The Cancer Genome Atlas has identified four GBMmolecular
subtypes: proneural, neural, classical, and mesenchymal (126).
However, it has been demonstrated how multiple molecular
subtypesmay co-exist in the same tumormass (122) or howGBM
presents hybrid states with the expression of a peculiar signature
overlapping two molecular subtypes (127). The establishment
and the constant evolution of this heterogeneity equilibrium are

Frontiers in Oncology | www.frontiersin.org 4 April 2020 | Volume 10 | Article 569

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Fanelli et al. Recent Advances in Cancer Plasticity

due to glioma stem cells (GSCs) (128) and can be influenced
by cytotoxic therapies and other endogenous factors (129, 130).
However, how GSC heterogeneity is determined still remains
unclear; in-vitro studies have shown that GSCs preserve their
capability for recapitulating their primary heterogeneity also
after many cell divisions, and temozolomide (TMZ) does not
influence this capacity (131, 132); though, the same cytotoxic
drug is able to drive GSCs heterogeneity and further drug
resistance (133).

GSCs’ isolation and characterization are based on stem
markers expression; therefore, their choice is fundamental. One
of the first discovered marker was CD133 (134); however, its
expression is highly variable (∼20–60%) (135), and also CD133–
cells have a clonogenic potential. Indeed, Chen et al. (136) divided
GSCs into three subtypes based on malignant potential (MP):
type 1 (high MP) and type 3 (mild MP) were CD133−; whereas,
type 2 GSCs (moderate MP) were CD133+. An additional
marker is CD15, which is more frequently expressed in GBM
than CD133; CD15+ GSCs are more clonogenic, proliferative
and tumorigenic (137). CD44 represents another reliable marker:
indeed, CD44+ GSCs present high tumor-sphere forming
and tumorigenic potential, and have the capability to restore
the heterogeneity of the parental GBM (138). Furthermore,
ALDH1A3+GSCs, besides having the above mentioned features,
express other stem cell markers, such as musashi and nestin, and
are able to differentiate into several neural lineages (139, 140),
and promote TMZ resistance (141).

Nevertheless, a clear-cut segregation of GBM cells between
CSCs and non-CSCs is not possible yet; instead, it is more
conceivable the ability of GBM cells to transit among states
or the acquisition of intermediate or metastable cellular
state, exhibiting a wide and continuous range of CSC
signature (142, 143).

CSC PLASTICITY IN MELANOMA

Melanoma represents a significant challenge, with low curative
rates (<10%) and poor prognosis (median survival: 6–9 months)

in the metastatic stage (144–146). Aggressive melanoma has
revealed to co-express specific genes and proteins of multiple
cellular types, including embryonic stem cells and endothelial
cells, underlying cell plasticity.

3D in vitro models demonstrated that melanoma cells
are able to form perfusable, vasculogenic-like channels, a
biological phenomenon called vasculogenic mimicry (VM) (147).
The treatment with endostatin has proved no effect on the
inhibition of melanoma VM (148), thus portraying aggressive
melanoma as being able to survive by its own perfusion
network (149).

On the other hand, a large number of molecular studies
jointly revealed a strong stem signature in aggressive melanoma,
with still unknown practical significance (150–152). In particular,
Nodal, a signaling pathway active in embryonic development,
was notably upregulated in more aggressive melanoma (153).
The nodal family of proteins, are a subset of the TGFβ
superfamily and cooperate to the pluripotency of human
embryonic stem cells (154). This observation led researchers
to recognize a commonality in the phenotype of aggressive
melanoma, linking vascular, embryonic and cancer stem
cell properties.

CSC PLASTICITY IN OTHER SOLID
TUMORS

Several authors have demonstrated how it is possible to isolate
CSCs in most solid malignancies. However, several aspects
and molecular features regarding cell stemness still remain
uncovered; this means that even if most markers across different
cancer are the same (Table 1), a common and reliable signature
is still lacking, due to technical issues mostly. Nevertheless, in
our opinion, a change in clinical trials approach may be of
help to overcome this limitation. Indeed, the implementation of
biobanks of fresh tissues and biological fluids may represent a
precious source for the next future when new techniques and
novel approaches will be introduced.

TABLE 1 | CSCs markers in other solid tumors.

Type of cancer CSCs Markers References

Head and neck squamous cell carcinoma ALDH1, BMI1, c-MET, CD44, CD133 (155–159)

Lung cancer ALDH1A1, ABCG2, BMI1, CD44, CD133, CD87, CD90, CD166, EpCAM, NANOG,

NUCLEOSTEMIN, OCT4, PODXL-1, SOX2

(117, 160–163)

Esophageal carcinoma ALDH1, ABCG2, CD13, CD44, CD90, CD271, INTEGRIN7, ICAM1, LGR5, SOX9 (164)

Gastric cancer BMI1, CD44, CD54, CD71, CD90, CD133, CD166, LGR5, MUSASHI-1, OCT4, SOX2 (165)

Hepatocellular carcinoma CD13, CD24, CD34, CD90, CD133, EpCAM, OV-6, SOX9, SOX12 (166–169)

Pancreatic cancer ALDH1, c-MET, CD24, CD44, CD133, CXCR4, DCLK1, EpCAM, Lgr5 (170)

Colon cancer ALDH1, CD26, CD29, CD44S, CD166, CXCR4 (171, 172)

Prostate cancer ALDH7A1, ATXN1, CD24, CD44, PTEN, CD133, GATA3, KLF4, MYC, NKX3-1, TACSTD2,

TNFSF11, TNFRSF11B

(50, 52, 173)

Ovarian cancer ALDH1A1, c-MYC, CD24, CD44, CD117, CD133, CD243, CD338, EpCAM, IL-17R, LIN28,

NANOG, OCT4, ROR1, SOX2

(49, 174–180)

Most stemness markers are the same but a universal signature is still lacking.
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CONCLUSIONS AND FUTURE
DIRECTIONS

Future research studies will be needed in order to improve

our understanding of the complex phenomenon of cancer

cell plasticity. The recent insights on the role of plasticity

in cancer progression and relapse highlights the need to

develop new and combinatorial therapies, that aim to: (i)

inhibit specific cell markers; (ii) interfere with stemness and
EMT signaling pathways; (iii) affect also components of the
tumor microenvironment.
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