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Background: Sirtuin 7 (SIRT7), a protein-coding gene whose abnormal expression

and function are associated with carcinogenesis. However, the prognosis of SIRT7 in

different breast cancer subtypes and its correlation with tumor-infiltrating lymphocytes

remain unclear.

Methods: The expression and survival data of SIRT7 in patients with breast cancer were

analyzed using Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling

Interaction Analysis (GEPIA), The Human Protein Atlas (HPA), UALCAN, Breast Cancer

Gene-Expression Miner (BC-GenExMiner), and Kaplan-Meier plotter databases. Also,

the expression correlations between SIRT7 and immune infiltration gene markers were

analyzed using TIMER and further verified the results using immunohistochemistry.

Results: SIRT7 exhibited higher expression levels in breast cancer tissues than the

adjacent normal tissues. SIRT7 expression was significantly correlated with sample

type, subclass, cancer stage, menopause status, age, nodal status, estrogen receptor

(ER), progesterone receptor (PR), and triple-negative status. High SIRT7 expression was

associated with poor prognosis in breast cancer-luminal A [overall survival (OS): hazard

ratio (HR) = 1.54, p = 1.70e-02; distant metastasis-free survival (DMFS): HR = 1.56,

p = 2.60e-03]. Moreover, the expression of SIRT7 was positively correlated with the

expression of IRF5 (M1 macrophages marker, r = 0.165, p = 1.13e-04) and PD1 (T

cell exhaustion marker, r = 0.134, p = 1.74e-03). These results suggested that the

expression of SIRT7 was related to M1 macrophages and T cell exhaustion infiltration

in breast cancer-luminal.

Conclusions: These findings demonstrate that the high expression of SIRT7 indicates

poor prognosis in breast cancer as well as increased immune infiltration levels of M1

macrophages and T cell exhaustion in breast cancer-luminal. Thus, SIRT7 may serve

as a candidate prognostic biomarker for determining prognosis associated with immune

infiltration in breast cancer-luminal.
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INTRODUCTION

Breast cancer is the most common malignant disease affecting
women worldwide (1). Most breast cancer-related deaths are
caused by metastases (2). Based on gene expression profiles,
breast cancer is classified into three main subtypes: luminal
(luminal A and luminal B), human epidermal growth factor
receptor (HER2)-positive, and triple-negative breast cancer
(TNBC) (3). A large number of patients experienced relapse
due to organ metastases, especially those with the worst TNBC
prognosis (4). In addition, a study reported that patients with
distant metastatic breast cancer faced a 5-year survival rate of less
than 25% (5). Currently, surgery, radiotherapy, chemotherapy,
endocrine therapy, and other combined therapies are commonly
used in the clinic with certain effects (6). However, these
conventional therapies work only at the early stages but not that
effective for patients at advanced stages or with distantmetastasis.

Over the past decade, several studies demonstrated the role of
adaptive immune response in regulating cancer growth. Recently,
a study published in the Cancer Cell identified key changes
in immune cells in cancerous tumors that may help predict
the prognosis of cancer patients (7). The results may help
researchers develop new technologies to diagnose and predict
the survival status of breast cancer patients and to study the
behavioral characteristics of other common cancer lesions. The
absolute number of tumor-infiltrating lymphocytes (TILs) is
essential to confer potential protective immunity against tumor
(8) and may be an independent prognostic factor for some
tumors (9). Murray et al. (10) reported that the patients with
high TILs in tumor tissue had a better prognosis than patients
with low TILs. Subsequently, several studies have demonstrated
this phenomenon in diverse tumor types, including breast
cancer (11), colorectal cancer (12), and renal cell cancer (13).
Many authors attempted to describe the immune response to
breast cancer to evaluate its role and efficacy as a prognostic
marker of cancer (14). The prognosis of breast cancer is related
to not only the biological characteristics but also the tumor
microenvironment (15). CD8+ lymphocyte is a crucial member
of the tumor microenvironment that mediates tumor-specific
immune responses. In breast cancer patients, high infiltration
of CD8+ lymphocytes predicts a significantly higher response to
chemotherapy compared to low infiltration (16). Previous studies
on the prognostic value of invasive immune cells in breast cancer
reported that numerous invasive CD8+ cytotoxic lymphocytes
in tumor tissues were significantly associated with the survival
and prognosis of patients (17). Macchetti et al. (18) performed
a flow cytometric analysis of TILs in 23 patients with T1–T2
breast cancer. They found that the average percentage of tumor-
infiltrating CD4+ T cells increased, rather than CD8+ T cells, and
that this infiltration was associated with poor patient prognosis.
A recent study has demonstrated that stromal TILs can predict
the disease-free survival in patients with HER2+ breast cancer to
some extent (19). Therefore, there is an urgent need to identify
novel immune-related therapeutic targets in breast cancer.

Sirtuins (SIRTs) belong to the nicotinamide adenine
dinucleotide (NAD+)-dependent histone deacetylases (HDACs)
Class III family, which are highly conserved between bacteria

and human (20). SIRTs are implemented in pathways of DNA
repair, inflammation, aging, and cell survival through substrate
deacetylation (21). SIRT7, a key member of the SIRTs family,
is involved in several physiological processes, including rRNA
transcription and modification, cellular metabolism, cellular
stress, and DNA damage repair. Tang et al. (4) reported
that SIRT7 was significantly downregulated in human and
mouse breast cancer with lung metastasis. Additional studies
have shown that resveratrol-dependent activation of SIRT7
deacetylase activity can antagonize transforming growth factor
(TGF)-β signaling, inhibit epithelial-mesenchymal transition,
and ultimately inhibit lung metastasis of breast cancer, thereby
improving survival rates. It has been reported that certain genes,
such as LAYN and BRD4, have multiple functions in TILs
(22–24). However, the potential functions of SIRT7 in tumor
progression and tumor immune response remain unclear.

In this study, we comprehensively investigated the expression
pattern of SIRT7 and its association with the prognosis of
breast cancer patients using several bioinformatics web servers
including Tumor Immune Estimation Resource (TIMER), Gene
Expression Profiling Interaction Analysis (GEPIA), The Human
Protein Atlas (HPA), UALCAN, Breast Cancer Gene-Expression
Miner (BC-GenExMiner), and Kaplan-Meier plotter. We also
evaluated the relationship between SIRT7 expression levels
and different clinical pathological parameters of breast cancer,
such as sample type, patient’s age, cancer stage, and breast
cancer subclass. Next, we compared the expression levels of
SIRT7 association with prognosis in different breast cancer
subtypes. Moreover, we investigated the correlation between
SIRT7 expression and immune infiltration levels in breast cancer
by TIMER database and immunohistochemistry.

METHODS

Tumor Immune Estimation Resource
Database Analysis
TIMER (https://cistrome.shinyapps.io/timer/) is a
comprehensive resource for systematic analysis of immune
infiltrates across diverse cancer types (25). It includes 10,897
samples from 32 cancer types to estimate the role of immune
infiltration. The infiltration of immune cells in tumor tissues can
be detected and quantified from the RNA-seq expression profile
data, thereby determining the relationship between tumor and
immune cells. Moreover, the database can accurately quantify
the purity of tumors and the immune infiltration levels and
assess the correlation between infiltration and clinical prognosis.
We analyzed the expression of SIRT7 in different cancer types
by gene module and the correlation between SIRT7 expression
and immune infiltration, including B cells, CD4+ T and CD8+

T cells, neutrophils, macrophages, and dendritic cells. Different
cancer types (tumor/normal) were plotted on the x-axis and
SIRT7 expression on the y-axis. The levels of gene expression
were represented by log2 RSEM.

Also, we explored the correlation between SIRT7 expression
and gene markers of immune cells [CD8+ T cells, T cells, B cells,
monocytes, tumor-associated macrophages (TAMs), M1 and M2
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macrophages, neutrophils, natural killer cells, and dendritic cells]
through relevant modules. Relevant modules generated scatter
maps of expression between a pair of user-defined genes in
a given cancer type, as well as the statistical significance of
Spearman’s correlation and estimation.

Gene Expression Profiling Interaction
Analysis
GEPIA (http://gepia.cancer-pku.cn/) is an interactive web
application based on the gene expression analysis of 9,736 tumors
and 8,587 healthy tissue samples from The Cancer Genome
Atlas (TCGA) and The Genotype-Tissue Expression (GTEx)
databases. The analysis results included ∼20,000 coding genes,
∼25,000 non-coding genes, ∼14,000 pseudogenes, and ∼400 T-
cell receptor fragments (26). In the study, we used the GEPIA
database to analyze the expression levels of SIRT7 in breast cancer
tissues and normal tissues by the “Expression DIY” tab.

Human Protein Atlas Analysis
HPA (https://www.Proteinatlas.org/) makes use of antibody
method for immunostaining on tissues and cell lines as well as for
differential expression analysis of proteins in normal and tumor
tissues (27). In this study, we checked the expression of SIRT7 in
the protein expression module of the HPA database and analyzed
the immunohistochemical results of SIRT7 in tumor tissues and
normal tissues (Antibody: HPA053669).

UALCAN Analysis
UALCAN (http://ualcan.path.uab.edu/) is an effective online
analysis and mining website for an in-depth analysis of gene
expression data using TCGA levels 3 RNA-seq and clinical data
from 31 cancer types (28). It allows the relative expression of
genes between tumors and normal samples, as well as in different
tumor subgroups based on sample type, individual tumor stage,
major subclasses, and other clinical pathological features. We
entered the target gene SIRT7 on the home page of the website,
selected breast invasive carcinoma, and obtained differential
expression of the target gene in breast cancer tissues and normal
tissues. This study will analyze the differential expression of
SIRT7 from various angles such as sample type (normal/primary
tumor), breast cancer subclass (luminal, HER2+, and triple-
negative), cancer stage (stages 1, 2, 3, and 4), and menopause
status (premenopause, perimenopause, and postmenopause).

BC-GenExMiner 4.4 Analysis
BC-GenExMiner (http://bcgenex.centregauducheau.fr/), a
statistical mining tool of published annotated breast cancer
transcriptomic data [DNA microarrays (n = 10,001) and RNA-
seq (n = 4,712)] (29, 30). The prognostic module measures
the prognostic effect of candidate genes in breast cancer and
identifies potential prognostic markers. The correlation module
calculates the correlation between genes located in the same
chromosomal region or related coexpression gene clusters (31).
First, we logged in to the BC-GenExMiner home page, selected
RNA-seq TCGA for gene expression data, and entered the gene
“SIRT7.” We then analyzed SIRT7 expression levels based on
various classified parameters such as age (≤51 and >51); nodal

status (N+/N−); estrogen receptor (ER), progesterone receptor
(PR), and HER2 status (ER+/ER−, PR+/PR−, HER2+/HER2−);
molecular subtypes; and triple-negative status (TNBC vs.
Not TNBC).

Kaplan-Meier Plotter Database Analysis
The Kaplan-Meier database (http://kmplot.com/analysis/) could
assess the effects of 54,675 genes on survival using 10,461
cancer tissue samples, which included 5,143 breast cancer, 1,816
ovarian cancer, 2,437 lung cancer, and 1,065 gastric cancer
samples (32). We compared the expression levels of SIRT7
in different breast cancer subtypes (basal, luminal A, luminal
B, and HER2+). Overall survival (OS) and distant metastasis-
free survival (DMFS) were calculated using the Kaplan-Meier
method, and the result was shown in Figure 4. Hazard ratio
(HR) for 95% confidence interval and p < 0.05 were considered
statistically significant.

Immunohistochemistry
This study was performed on archived tissues from 10 diagnosed
cases of breast cancer-luminal. These samples were obtained
from Shenzhen Second People’s Hospital. This study was
approved by the Ethics Committee of Shenzhen Second People’s
Hospital in accordance with the principles of the Declaration
of Helsinki. To validate the relationship between SIRT7
expression and tumor-infiltrating immune cells, we performed
immunohistochemistry to assess SIRT7, IRF5, and PD1. First, the
collected tissue samples were fixed and embedded in paraffin to
make paraffin tissue sections and placed on slides. The slides were
deparaffinized and rehydrated through graded alcohols and were
then subjected to an antigen retrieval procedure (10mM sodium
citrate, 0.05 % Tween-20, pH 6.0 for 25min). Endogenous
peroxidase was blocked with 3% H2O2 (freshly made) for 10min
at room temperature. Then the tissues were incubated by primary
antibodies and incubated at 4◦C overnight and incubated by
secondary antibodies. The concentration of the three antibodies
was optimized; the following primary antibodies were used:
rabbit anti-SIRT7 (1:100, Affinity Biosciences), rabbit anti-IRF
(1:100, Affinity Biosciences), and rabbit anti-PD1 (1:200, Affinity
Biosciences). MXB was used to detect secondary antibodies. The
color reaction was then carried out using 3′-diaminobenzidine
(DAB). The expression density of SIRT7, IRF5, and PD1 in
breast cancer tissue was quantitated by scoring staining intensity,
including negative (–) and weak (+) staining, moderate (++)
and strong (+++) staining, respectively (33).

Statistical Analysis
The differences in OS and DMFS between high risk and low risk
of SIRT7 were analyzed using Kaplan-Meier method. The results
of Kaplan-Meier plots and GEPIA were presented with HRs and
p-values from a log-rank test. Spearman correlation coefficient
was used to measure the expression correlation among genes. A
value of p < 0.05 was considered statistically significant.
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FIGURE 1 | (A) Human sirtuin (SIRT)7 expression levels in different tumor types from The Cancer Genome Atlas (TCGA) database were determined using Tumor

Immune Estimation Resource (TIMER). Compared with normal tissues, SIRT7 was upregulated in breast, bladder urothelial carcinoma (BLCA), cholangiocarcinoma

(CHOL), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma (UCEC) and

downregulated in colon adenocarcinoma (COAD) and kidney chromophobe (KICH) cancers. (B) Gene Expression Profiling Interaction Analysis (GEPIA) for the

expression of SIRT7 in tumor tissues and normal tissues. TCGA data revealed that SIRT7 mRNA was significantly higher in breast cancer tissues (1,085 cases) than

that in normal tissues (112 cases). (C) SIRT7 expression in breast cancer tissues and normal tissues from the Human Protein Atlas (HPA) database.

Immunohistochemical staining revealed that SIRT7 exhibited low expression in normal tissue samples (a–c) and high expression in tumor tissues (d–f). p-value

significant codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤. < 0.1.

RESULTS

High Expression of Sirtuin 7 in Breast
Cancer
We examined the difference in SIRT7 expression between tumor
and adjacent normal tissues by using RNA-seq data from

multiple malignancies in TCGA. The results were shown in
Figure 1A. From the TIMER database, we found that SIRT7
was upregulated in breast cancer, cholangiocarcinoma, kidney
renal clear cell carcinoma, kidney renal papillary cell carcinoma,
liver hepatocellular carcinoma, lung adenocarcinoma, lung
squamous cell carcinoma, prostate adenocarcinoma, thyroid
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FIGURE 2 | UALCAN analysis for the correlation between sirtuin (SIRT)7 mRNA expression level and clinicopathological parameters of breast cancer. (A) Sample type

(normal/primary tumor). (B) Breast cancer subclass (luminal, HER2+, and triple negative). (C) Cancer stage (stages 1, 2, 3, and 4). (D) Menopause status

(premenopause, perimenopause, and postmenopause). N, normal; P, primary tumor; Lum, luminal; HER2, HER2+; TNBC, triple negative; S1, stage 1; S2, stage 2;

S3, stage 3; S4, stage 4; Pre, premenopause; Peri, perimenopause; Post, postmenopause; BRCA, breast cancer.

carcinoma, and uterine corpus endometrial carcinoma, while it
has lower expression levels in colon adenocarcinoma and kidney
chromophobe cancers compared with adjacent healthy tissues.

To validate the results in breast cancer, GEPIA was used
to analyze 1,197 samples from the TCGA database. As shown
in Figure 1B, TCGA data revealed that SIRT7 mRNA was
significantly higher in breast cancer tissues (1,085 cases) than
that in normal tissues (112 cases) (p < 0.01), which is consistent
with the TIMER database. In addition, we used the antibody
HPA053669 of SIRT7 to analyze the immunohistochemical
results of normal and tumor tissues usingHPA and found that the
protein expression and antibody staining level of three cases of
breast cancer were moderate (Figure 1C). This further confirmed
that the expression of SIRT7 in tumor tissues was significantly
higher than that in normal tissues.

Relationship Between Sirtuin 7 Expression
and Clinical Pathological Parameters of
Patients With Breast Cancer
UALCAN is used to study gene expression levels based on
TCGA data and clinical patient data. It is used not only

to compare primary tumors and healthy tissue samples but
also to compare clinical pathological parameters of patients
based on pathological staging, tumor grade, and other clinical
pathology features. We next investigated SIRT7 expression on
the basis of patients’ different clinical pathological parameters,
such as sample type (normal/primary tumor), breast cancer
subclass (luminal, HER2+, and triple-negative), cancer stage
(stages 1, 2, 3, and 4), and menopause status (premenopause,
perimenopause, and postmenopause) using UALCAN database.
As shown in Figure 2A, the expression of SIRT7 in breast
cancer samples was significantly higher than that in normal
breast tissues (p < 10−12). An analysis of subclass showed that
SIRT7 was higher expressed in different subclasses than that
in normal breast tissues (normal vs. breast cancer-luminal, p
< 10−12; normal vs. HER2-positive breast cancer, p < 10−6;
normal vs. TNBC, p < 10−12). Compared with subtypes of
luminal and HER2, SIRT7 was higher expressed in the three
negative subtypes (luminal vs. TNBC, p < 10−4; HER2 vs.
TNBC, p = 0.096) (Figure 2B). For cancer stages, the higher
expression of SIRT7 in late-stage cancers compared to early
stages suggests a possible role of SIRT7 in cancer progression
and invasion (Figure 2C). Besides, as shown in Figure 2D, the
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TABLE 1 | Relationship between mRNA expression of SIRT7 and

clinicopathological parameters of breast cancer.

Variables SIRT7

N P-value

Age

≤51 2,630 5.20e-03

>51 4,405

Nodal status

− 4,097 4.00e-04

+ 3,149

Estrogen receptor status (ER) (IHC)

− 2,101 <1.00e-04

+ 6,011

Progesterone receptor status (PR) (IHC)

− 1,355 <1.00e-04

+ 1,908

HER2 receptor status (HER2) (IHC)

− 2,387 2.27e-01

+ 387

Triple-negative status

TNBC 573 7.30e-03

Not TNBC 6,265

expression of SIRT7 in postmenopause was higher than that in
perimenopause (perimenopause vs. postmenopause, p = 0.04).
SIRT7 expression in perimenopause was lower than that in
premenopause (premenopause vs. perimenopause, p= 0.04).

BC-GenExMiner 4.4 was used to explore the correlation
between SIRT7 mRNA levels and the six common risk factors,
namely, age, nodal status, ER status, PR status, HER2 receptor
status, and triple-negative status (Table 1). Regarding age, SIRT7
mRNA expression was significantly higher in ≤51 years group
than that in >51 years group (p = 5.20e-03; Figure 3A). The
results showed that there were remarkably different expression
levels of SIRT7 mRNA in nodal status (N+ > N–, p = 0.0004;
Figure 3B), ER status (ER– > ER+, p < 0.0001; Figure 3C),
PR status (PR– > PR+, p < 0.0001; Figure 3D), triple-negative
status (TNBC > not TNBC, p= 0.0073; Figure 3F), respectively.
However, no significant expression difference of SIRT7 mRNA
was found in HER2 receptor status (Figure 3E). These results
suggest that SIRT7 expression may serve as a potential diagnostic
indicator in breast cancer.

Decreased mRNA Expression of Sirtuin 7
Was Associated With Better Overall
Survival and Distant Metastasis-Free
Survival in Patients With Breast
Cancer-Luminal A
The results showed that the expression of SIRT7 mRNA in the
breast cancer group was higher than that in the normal group.
Therefore, the relationship between SIRT7 transcription level
and tumor prognosis warranted exploration. In this study, to
determine whether SIRT7 can be used as a prognostic biomarker,

we compared the expression levels of SIRT7 association with
prognosis in different breast cancer subtypes (luminal A, luminal
B, HER2+, and basal) using Kaplan-Meier survival curves.
Notably, SIRT7 expression significantly affected the prognosis
of different subtypes. In breast cancer-luminal A, high SIRT7
expression was associated with poor prognosis (OS: HR = 1.54,
p = 1.70e-02; DMFS: HR = 1.56, p = 2.60e-03) (Figures 4A,B).
In contrast, no significant correlation was observed between the
expression of SIRT7 and the prognosis in breast cancer-luminal
B, breast cancer-HER2+, and basal (Figures 4C–H). These
findings indicate that SIRT7 expression may be a prognostic
indicator of mortality risk in patients with breast cancer-
luminal A.

Sirtuin 7 Expression Is Correlated With the
Immune Infiltration Levels in Breast Cancer
TILs are independent predictors of sentinel lymph node status
and survival in patients with cancer (34, 35). Studies showed
that the levels of stroma and immune cells in tumor tissue
may be related to the clinical features of the disease. Moreover,
the infiltration of tumor-associated normal cells may affect the
genomic analysis of clinical tumor samples (36). Therefore, we
investigated whether the expression of SIRT7 was correlated with
the immune infiltration levels in breast cancer using TIMER.
Most of the homologous data in TIMER are from TCGA
(25), which can be used to detect and quantify the immune
infiltration levels in tumor tissues from the expression profile
data of RNA-seq.

We used the TIMER database to study the correlation between
SIRT7 and various immunocytochemical markers of immune
cells (CD8+ T cells, T cells, B cells, monocytes, TAMs, M1 and
M2 macrophages, neutrophils, natural killer cells, and dendritic
cells) in different breast cancer subtypes (luminal, basal, and
HER2+). Tumor purity is an important factor affecting immune
infiltration analysis of clinical tumor samples (36). Therefore, we
showed that SIRT7 expression is significantly related to tumor
purity in different breast cancer subtypes. The results showed
that the expression levels of SIRT7 were correlated with most
markers of different immune cells in breast cancer subtypes
(breast cancer-luminal, n = 611; breast cancer-basal, n = 139;
breast cancer-HER2+, n = 67). Particularly, the expression
levels of SIRT7 were significantly positively correlated with
seven gene markers in breast cancer-luminal (Table 2), such as
CD19 (r = 0.105, p = 1.46e-02), IRF5 (r = 0.165, p = 1.13e-
04), KIR2DL1 (r = 0.106, p = 1.31e-02), T-bet (r = 0.103,
p = 1.00e-02), FOXP3 (r = 0.12, p = 5.06e-03), PD1 (r =

0.134, p =1.74e-03), and GZMB (r = 0.108, p = 1.14e-02).
However, the expression levels of SIRT7 were only significantly
negatively correlated with two gene markers in breast cancer-
luminal, such as VSIG4 (r = −0.108, p = 1.16e-02) and BDCA-
1 (r = −0.114, p = 7.69e-03). These findings implicate that
SIRT7 plays a specific role in immune cell infiltration, such
as B cells, M1 macrophages, M2 macrophages, natural killer
cells, dendritic cells, Th1 marker neutrophils, regulatory T
cells, and T cell exhaustion, especially M1 macrophages and T
cell exhaustion.
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FIGURE 3 | Differential expression levels of sirtuin (SIRT)7 mRNA in patients with breast cancer were performed by bc-GenExMiner v4.4 based on different types of

classified parameters: (A) age (≤51 and >51 years), (B) nodal status (N+ vs. N−), (C–E) receptor status (ER+ vs. ER−, PR+ vs. PR−, HER2+ vs. HER2−), (F)

triple-negative status (TNBC vs. Not TNBC).

Correlation Analysis Between Sirtuin 7
Expression and Markers of Different
Subsets of Immune Cells
We investigated the relationship between SIRT7 expression
and tumor-infiltrating of immune cells (M1 macrophages
and T cell exhaustion) based on the expression level of
immune marker genes in the TIMER databases (Figure 5A).
We found that the expression of SIRT7 was positively
correlated with the expression of IRF5 (M1 macrophages
marker) and PD1 (PDCD1) (T cell exhaustion marker)
in breast cancer-luminal. These results suggested that the
expression of SIRT7 was related to M1 macrophages and T cell
exhaustion infiltration.

Next, we further analyzed the correlation between SIRT7
expression and these markers by immunohistochemistry,
and tumor infiltration of M1 macrophages and T cell
exhaustion were shown in Figure 5B. The levels of the
expression were quantitated by scoring staining intensity,
including negative (–) and weak (+) staining, moderate (++)
and strong (+ + +) staining, respectively. We found that

SIRT7 mainly localized in the nucleolus and nucleoplasm.
SIRT7 showed strong expression in most breast cancer-
luminal subtype samples, and few samples showed moderate
expression. Interestingly, the expression levels of IRF5 and
PD1 were high in SIRT7 strong expression samples, while
the expression levels of IRF5 and PD1 were relatively low
in SIRT7 weak expression samples. The results further
revealed that IRF5 and PD1 tend to express in a positive
correlation way, suggesting that the high expression of SIRT7
relates to high infiltration levels of M1 macrophages and T
cell exhaustion.

DISCUSSION

In this study, an extensive bioinformatics examination was
used to comprehensively analyze the SIRT7 expression pattern,
investigate its association with breast cancer prognosis,
and predict the correlation between SIRT7 expression and
the immune infiltration levels of different immune cells in
breast cancer-luminal.
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FIGURE 4 | Kaplan-Meier survival curves comparing the high and low expressions of SIRT7 in different breast cancer subtypes (luminal A, luminal B, HER2+, and

basal). (A,B) Survival curves of overall survival (OS) and distant metastasis-free survival (DMFS) in breast cancer-luminal A (n = 2,504). (C,D) Survival curves of OS and

DMFS in breast cancer-luminal B (n = 1,425). (E,F) Survival curves of OS and DMFS in breast cancer-HER2+ (n = 335). OS and DMFS survival curves of breast

cancer (n = 1,402, n = 1,747). (G,H) Survival curves of OS and DMFS in breast cancer-basal (n = 879).

Frontiers in Oncology | www.frontiersin.org 8 May 2020 | Volume 10 | Article 621

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Huo et al. SIRT7 and Luminal Breast Cancer

TABLE 2 | Correlation analysis between SIRT7 and relate genes and markers of immune cells in breast cancer.

Description Gene markers BRCA-Luminal (N = 611) BRCA-HER2 (N = 67) BRCA-Basal (N = 139)

None Purity None Purity None Purity

Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value Cor P-value

B cell CD19 0.068 9.27e-02 0.105 1.46e-02 0.239 5.51e-02 0.182 1.72e-01 0.058 4.94e-01 0.102 2.52e-01

CD79A 0.049 2.29e-01 0.084 5.09e-02 0.234 5.71e-02 0.189 1.56e-01 0.076 3.74e-01 0.138 1.21e-01

T cell (general) CD3D 0.031 4.37e-01 0.079 6.46e-02 0.301 1.35e-02 0.3 2.21e-02 0.023 7.84e-01 0.085 3.38e-01

CD3E 0.014 7.28e-01 0.064 1.38e-01 0.294 1.61e-02 0.284 3.06e-02 −0.010 9.02e-01 0.053 5.52e-01

CD2 −0.012 7.62e-01 0.03 4.88e-01 0.261 3.33e-02 0.264 4.51e-02 −0.016 8.51e-01 0.047 5.97e-01

CD8+ T cell CD8A 0.004 9.17e-01 0.045 2.97e-01 0.283 2.08e-02 0.27 3.93e-02 −0.021 8.081-01 0.032 7.19e-01

CD8B 0.025 5.32e-01 0.069 1.08e-01 0.333 6.17e-03 0.323 1.34e-02 −0.102 2.29e-01 −0.101 2.55e-01

Monocyte CD86 −0.100 1.34e-02 −0.078 7.05e-02 0.130 2.94e-01 0.132 3.22e-01 0.022 7.97e-01 0.071 4.25e-01

TAM CCL2 −0.040 3.22e-01 −0.016 7.02e-01 0.174 1.58e-01 0.142 2.87e-01 0.072 3.99e-01 0.098 2.69e-01

CD68 −0.033 4.18e-01 −0.015 7.19e-01 0.086 4.90e-01 0.094 4.84e-01 0.009 9.20e-01 0.037 6.78e-01

IL10 −0.060 1.36e-01 −0.04 3.46e-01 0.028 8.23e-01 0.001 9.93e-01 −0.069 4.19e-01 −0.068 4.49e-01

M1 Macrophage INOS (NOS2) −0.036 6.71e-01 −0.029 5.06e-01 0.142 2.51e-01 0.201 1.31e-01 −0.036 6.71e-01 −0.069 4.38e-01

IRF5 0.150 1.81e-04 0.165 1.13e-04 0.242 4.91e-02 0.224 9.12e-02 0.117 1.70e-01 0.155 8.09e-02

M2 Macrophage CD163 −0.069 8.90e-02 −0.043 3.15e-01 −0.053 6.67e-01 −0.096 4.72e-01 −0.095 2.63e-01 −0.111 2.12e-01

VSIG4 −0.144 3.51e-04 −0.108 1.16e-02 −0.161 1.93e-01 −0.15 2.62e-01 −0.063 4.58e-01 −0.075 4.01e-01

MS4A4A −0.113 4.83e-03 −0.093 3.04e-02 0.107 3.87e-01 0.111 4.08e-01 −0.047 5.84e-01 −0.041 6.43e-01

Neutrophils CD66b (CEACAM8) 0.012 7.66e-01 0.025 5.68e-01 −0.010 9.39e-01 −0.076 5.72e-01 −0.080 3.48e-01 −0.12 1.76e-01

CD11b (ITGAM) −0.107 7.76e-03 −0.056 1.93e-01 0.072 5.60e-01 0.055 6.83e-01 0.011 8.93e-01 0.023 7.93e-01

CCR7 0.040 3.16e-01 0.086 5.12e-02 0.205 9.63e-02 0.163 2.26e-01 −0.099 2.43e-01 −0.08 3.68e-01

Natural killer cell KIR2DL1 0.067 9.48e-02 0.106 1.31e-02 0.089 4.74e-01 0.13 3.31e-01 0.094 2.71e-01 0.131 1.42e-01

KIR2DL3 0.055 1.73e-01 0.056 1.95e-01 0.302 1.31e-02 0.302 2.14e-02 0.083 3.27e-01 0.105 2.38e-01

KIR3DL1 −0.015 7.03e-01 0.023 5.86e-01 −0.047 7.07e-01 −0.104 4.37e-01 −0.009 9.17e-01 0.024 7.87e-01

KIR3DL2 0.042 2.95e-01 0.063 1.40e-01 0.181 1.42e-01 0.224 9.14e-02 0.105 2.17e-01 0.181 4.13e-02

KIR3DL3 0.013 7.47e-01 0.035 4.20e-01 0.111 3.72e-01 0.148 2.69e-01 0.157 6.37e-02 0.203 2.13e-02

KIR2DS4 0.025 5.36e-01 0.029 5.06e-01 0.277 2.32e-02 0.284 3.10e-02 0.147 8.29e-02 0.244 5.49e-03

Dendritic cell HLA-DPB1 −0.015 7.10e-01 0.046 2.80e-01 0.286 1.91e-02 0.303 2.06e-02 0.040 6.39e-01 0.092 3.01e-01

HLA-DQB1 −0.003 9.32e-01 0.046 2.80e-01 0.286 2.84e-02 0.276 3.61e-02 0.124 1.45e-01 0.168 5.73e-02

HLA-DRA −0.106 8.56e-03 −0.063 1.42e-01 0.164 1.84e-01 0.165 2.15e-01 0.011 8.97e-01 0.05 5.77e-01

HLA-DPA1 −0.105 8.89e-03 −0.068 1.13e-01 0.107 3.87e-01 0.102 4.46e-01 −0.022 7.92e-01 0.016 8.55e-01

BDCA-1(CD1C) −0.131 1.11e-03 −0.114 7.69e-03 0.207 9.27e-02 0.202 1.29e-01 −0.097 2.56e-01 −0.099 2.67e-01

CD11c (ITGAX) −0.015 7.14e-01 0.02 6.47e-01 0.248 4.33e-02 0.207 1.18e-01 0.045 5.95e-01 0.093 2.97e-01

Th1 T-bet (TBX21) 0.051 2.05e-01 0.103 1.00e-02 0.233 5.82e-02 0.214 1.07e-01 −0.019 8.24e-01 0.018 8.42e-01

STAT4 −0.088 2.92e-02 −0.054 2.10e-01 0.324 7.80e-03 0.315 1.61e-02 −0.087 3.05e-01 −0.075 3.97e-01

STAT1 −0.050 2.13e-01 −0.02 6.40e-01 0.117 3.46e-01 0.122 3.61e-01 0.028 7.41e-01 0.082 3.55e-01

IFN-γ (IFNG) 0.009 8.19e-01 0.03 4.83e-01 0.222 7.13e-02 0.23 7.83e-02 0.040 6.40e-01 0.092 3.03e-01

TNF-α (TNF) 0.001 9.84e-01 0.007 8.79e-01 −0.004 9.73e-01 −0.117 3.81e-01 0.070 4.12e-01 0.07 4.30e-01

Th2 GATA3 0.061 1.33e-01 0.039 3.62e-01 0.102 4.12e-01 0.2 1.31e-01 0.079 3.52e-01 0.117 1.87e-01

STAT6 0.019 6.40e-01 0.02 6.47e-01 −0.081 5.14e-01 −0.011 9.36e-01 0.019 8.22e-01 0.045 6.17e-01

STAT5A −0.061 1.31e-01 −0.025 5.60e-01 0.212 8.56e-02 0.242 6.66e-02 0.117 1.69e-01 0.135 1.29e-01

IL13 0.012 7.67e-01 0.026 5.47e-01 0.247 4.36e-02 0.287 2.92e-02 −0.064 4.52e-01 −0.042 6.38e-01

Tfh BCL6 −0.054 1.79e-01 −0.053 2.16e-01 −0.030 8.09e-01 −0.066 6.25e-01 0.023 7.86e-01 0.042 6.38e-01

IL21 0.013 7.51e-01 0.037 3.94e-01 0.093 4.53e-01 0.084 5.29e-01 −0.047 5.83e-01 −0.023 7.99e-01

Th17 IL17A −0.045 2.67e-01 −0.036 3.98e-01 0.106 3.94e-01 0.158 2.37e-01 −0.031 7.15e-01 −0.001 9.90e-01

Treg FOXP3 0.078 5.40e-02 0.12 5.06e-03 0.275 2.47e-02 0.25 5.81e-02 0.026 7.64e-01 0.088 3.24e-01

CCR8 −0.058 1.52e-01 −0.036 4.05e-01 0.156 2.06e-01 0.172 1.98e-01 −0.118 1.65e-01 −0.105 2.39e-01

STAT5B −0.049 2.21e-01 −0.036 4.00e-01 0.060 6.28e-01 0.022 8.69e-01 −0.047 5.78e-01 −0.048 5.93e-01

TGFβ (TGFB1) 0.033 4.19e-01 0.074 8.29e-02 0.121 3.28e-01 0.181 1.73e-01 −0.062 4.64e-01 −0.061 4.95e-01

T cell exhaustion PD-1 (PDCD1) 0.088 2.95e-02 0.134 1.74e-03 0.328 6.98e-03 0.318 1.51e-02 0.096 2.57e-01 0.169 5.70e-02

CTLA4 0.025 5.40e-01 0.052 2.29e-01 0.261 3.34e-02 0.234 7.71e-02 −0.003 9.68e-01 0.05 5.72e-01

TIM-3 (HAVCR2) −0.103 1.06e-02 −0.075 7.84e-02 0.134 2.81e-01 0.168 2.07e-01 0.005 9.56e-01 0.05 5.77e-01

GZMB 0.068 9.16e-02 0.108 1.14e-02 0.268 2.87e-02 0.262 4.69e-02 0.052 5.43e-01 0.098 2.69e-01

Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity.

Bold values indicate that P < 0.05 when Cor > 0.1.

Frontiers in Oncology | www.frontiersin.org 9 May 2020 | Volume 10 | Article 621

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Huo et al. SIRT7 and Luminal Breast Cancer

FIGURE 5 | Correlation between sirtuin (SIRT)7 expression and immune infiltration levels of M1 macrophages and T cell exhaustion in breast cancer-luminal. (A)

SIRT7 expression is significantly positively correlated with M1 macrophages (r = 0.165, p = 1.13e-04) and T cell exhaustion (r = 0.134, p = 1.74e-03). (B) Tumor

infiltration of M1 macrophages and T cell exhaustion in breast cancer-luminal. The expression of SIRT7 (a: +++, d: +). The expression of IRF5 (b: ++, e: –). The

expression of PD1 (PDCD1) (c: +++, f: +). The expression density of SIRT7, PD1, and IRF5 in breast cancer tissue was quantitated by scoring staining intensity,

including negative (–) and weak (+) staining, moderate (++) and strong (+++) staining, respectively.

SIRT7, a member of the SIRT family of NAD+-dependent
protein deacetylases, is a key mediator of many cellular
activities (37). The SIRT family is associated with malignant
progression of tumors, and SIRT7 is supposed to be involved
in lymph node metastasis of breast cancer (38). The expression
of SIRT7 is related to cell growth. It is highly expressed
in metabolically active cells, while it is lowly expressed or
not expressed in non-proliferative cells (20, 39, 40). Some
studies suggested the carcinogenic potential of SIRT7, whose
expression levels were associated with several cancers, including
breast, ovarian, and lung cancers, thereby classifying SIRT7

as a carcinogenic gene (41–44). SIRT7 is also a potential
prognostic factor for breast cancer (45). However, the potential
functions of SIRT7 in tumor progression and tumor immunology
remain unclear.

We examined the expression levels of SIRT7 in breast
cancer using TIMER, GEPIA, and HPA databases. We
found that SIRT7 was highly expressed in breast cancer,
which is consistent with Geng et al. (46). Some studies
reported that age at diagnosis was an independent prognostic
factor for breast cancer (47, 48), especially for breast cancer-
luminal A. However, the correlation between age and SIRT7
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expression remains unclear (49). In multivariate analysis,
after adjusting for age, nodal status, ER, PR, HER2, and
triple-negative status, we found that SIRT7 expression
was significantly associated with age, nodal status, ER,
PR, and triple-negative status. These results suggest that
SIRT7 expression may be a potential diagnostic indicator
of breast cancer. Different molecular types of breast cancer
are associated with different prognostic survival of patients
(50). Although SIRT7 expression is associated with poor
prognosis in some cancers, such as colorectal cancer (51), the
effect of SIRT7 expression on the prognosis of breast cancer
subtypes is unclear. To definitively address this question,
we classified breast cancer into three main subtypes, refer
to the study of Polyak and Filho. (3). We believe that this
classification is practical, straightforward, informative, and
clinically useful, exhibiting considerable differences between
subtypes. To determine whether SIRT7 can be used as a
prognostic biomarker, we analyzed the expression of SIRT7
in different subtypes from the Kaplan-Meier plotter. There
were significant differences in clinical and pathological
features and prognosis between different subtypes. Notably,
we found that the high expression of SIRT7 in breast cancer-
luminal A was associated with poor prognosis, suggesting
that the expression of SIRT7 will affect the prognosis of
breast cancer.

Another important aspect of this study is that SIRT7
expression is associated with the immune infiltration levels in
breast cancer-luminal. Several studies reported that TILs were
currently considered to be biomarkers highly associated with
breast cancer. Generally, it is recognized that the infiltration
of TILs was related to the prognosis in breast cancer, and that
adjuvant treatment is relatively effective (52, 53). In addition,
several clinical studies evaluated the predictive importance
of TILs for prognosis in breast cancer (54). However, the
relationship between SIRT7 and immune infiltration in breast
cancer-luminal remains unclear. Therefore, in this study, we
comprehensively analyzed SIRT7 expression and associated
immune infiltration and investigated the relationship between
SIRT7 expression and immune infiltration levels in breast cancer-
luminal. To the best of our knowledge, this study is the first
to evaluate the association between SIRT7 expression and the
levels of immune infiltration in breast cancer subtypes, especially
in breast cancer-luminal. Our results demonstrated a positive
correlation between SIRT7 expression and the levels of M1
macrophages (marker: IRF5) and T cell exhaustion (marker:
PD1) infiltration. Macrophages are a group of differentiated
immune cells and classify as M1 macrophages and M2
macrophages (55). They play an important role in development,
homeostasis, and immunity (56). IRF5 is a marker of M1
macrophages and plays the role of regulating tumor infiltration
(57). Previous studies showed that IRF5 changed the immune
microenvironment of tumors by regulating the expression of
pro-inflammatory and anti-inflammatory cytokines/chemokines
in breast cancer (58, 59). Our studies observed that an increase

in SIRT7 expression was correlated with the M1 macrophage
marker IRT5. It suggests that there is a specific correlation
between SIRT7 expression and immune infiltrating of M1
macrophages. Furthermore, SIRT7 expression was significantly
correlated with T cell exhaustion markers such as PD-1. It
is known that PD1/PDL1 are important immune checkpoint
components, which mainly regulate the function of tumor cells
and TILs (60), and the PD1/PDL1 axis was proved to be a
promising therapeutic target in aggressive breast cancers (61).
Moreover, Woo et al. (62) reported that PD-1 might play
an important role in the tolerance of tumor antigens. These
correlations may indicate the potential mechanism of SIRT7
regulating T cell functions. Taken together, these findings suggest
that SIRT7 expression is related to the immune infiltration levels
in breast cancer, especially breast cancer-luminal, providing a
direction for further research.

A limitation is that our data do not include detailed
information of body mass index, comorbidities, and treatment
options. The data we collected in this study lack this sort of
information, but we promise we will pay more attention to the
integrity of patient baseline information in the following studies,
and we will further confirm the estimated results in experiments
and study the mechanism of this gene in breast tumor immunity.

In summary, the high expression of SIRT7 indicates poor
prognosis in breast cancer-luminal, as well as increased
immune infiltration levels of M1 macrophages and T
cell exhaustion, suggesting that SIRT7 may serve as a
prognostic biomarker associated with immune infiltration in
breast cancer-luminal.
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