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ETS1 has shown dichotomous roles as an oncogene and a tumor suppressor gene in

diverse cancers, but its functionality in breast cancer tumorigenesis still remains unclear.

We utilized the Cancer Genome Atlas (TCGA) database to analyze comprehensive

functions of ETS1 in human breast cancer (BRCA) patients by investigating its expression

patterns and methylation status in relation to clinical prognosis. ETS1 expression was

significantly diminished by hyper-methylation of the ETS1 promoter region in specimens

from BRCA patients compared to a healthy control group. Moreover, ETS1high BRCA

patients showed better prognosis and longer survival compared to ETS1low BRCA

patients. Consistent with clinical evidence, comparative transcriptome analysis combined

with CRISPR/Cas9 or shRNA based perturbation of ETS1 expression revealed direct as

well as indirect mechanisms of ETS1 that hinder tumorigenesis of BRCA cells. Taken

together, our study enlightens a novel function of ETS1 as a tumor suppressor in breast

cancer cells.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and the second leading cause of death from
cancer in women (1). Development and progress of breast cancer are mediated by a complicated
process in which many genes and signaling pathways are intertwined (2). Profiling of gene-
expression in patient specimen has been used to identify the key molecular switches of tumor
development (3). Human breast cancer datasets, including The Cancer Genome Atlas (TCGA) (4)
and Curtis (5) provide comprehensive genomic profiles of breast cancer.

ETS1 (ETS proto-oncogene 1, transcription factor) has initially been characterized as the proto-
oncogenic transcription factor that contributes to tumor angiogenesis and invasiveness in cancer
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cells (6–8). Previously, high levels of ETS1 expression have been
closely associated with higher chance of metastatic potential
and poor prognosis in various types of cancers (9–14). ETS1
is known to enhance the expression of numerous tumorigenic
genes involved in tumor angiogenesis, cancer cell invasion,
and energy metabolism (15). These include vascular endothelial
growth factor (VEGF) and certain proteases such as MMP-1,
MMP-3, and MMP-9, as well as urokinase type plasminogen
activator (uPA), which is associated with extracellular matrix
(ECM) degradation (16–19). Despite the established oncogenic
function of ETS1 in human cancers, recent studies have
proposed contrasting roles of ETS1 as anti-oncogenes suggesting
dichotomous roles of ETS1 for tumorigenesis in context-
dependent manner (20, 21). However, the functionality and
molecular action mechanisms of ETS1 in BRCA tumorigenesis
still remain unclear.

In this study, we revealed ETS1 as the tumor suppressor gene
in BRCA cells. In humans, poor prognosis of BRCA patients
was negatively correlated with ETS1 expression, repressed by
hyper-CpG methylation in ETS1 promoter locus. Furthermore,
we showed the direct and indirect mechanisms of ETS1 to hinder
tumorigenesis of BRCA cells. Overall, our findings enlighten the
novel function of ETS1 as the tumor suppressor gene, which can
be the potential target for novel therapeutics in BRCA.

MATERIALS AND METHODS

Cell Culture, Plasmid, and Reagents
MDA-MB-231 cells were cultured in DMEM (WELGENE: LM
001-05) supplemented with 10% FBS (Gibco: 10099-141) and 100
U/ml of penicillin-streptomycin (Thermo: 15140122). Mutant
MDA-MB-231 cells (1CRE) harboring deleted promoter region
(−540 to −80) of ETS1 were established using the CRISPR/Cas9
method (22). Mutations were confirmed by Sanger sequencing,
and the effect of CRE deletion on ETS1 level was tested
by immunoblotting. Cells were harvested with 0.05% trypsin-
EDTA (Gibco: 25300-054). The following chemicals were used;
phorbol 12-myristate 13-acetate (PMA, Calbiochem: 524400)
and Ionomycin (Calbiochem: 407950).

Knockdown and Ectopic Expression of
ETS1 by Lentiviral Transduction
Gene knockdown was accomplished using the shRNA system
with control shRNA (TR30021) or ETS1 targeted shRNA
(TL313153) (OriGene Technologies, Rockville, MD). MDA-
MB-231 cells were exposed to lentiviral concentrates. Gene
overexpression was accomplished using Human cDNA clone
ETS1 (RC215203L2) (OriGene Technologies, Rockville, MD).
MCF-7 cells were infected with lentiviral particle encoding
hETS1. After lentiviral transduction, cells were harvested and
sorted with Moflo XDP (Beckman Coulter, Fullerton, CA) for
GFP negative and positive cells.

RNA Isolation, cDNA Synthesis, and
Quantitative RT-PCR
Total RNA was extracted using a TRI Reagent (Molecular
Research Center) following standard protocols. Reverse

transcription of 1 µg RNA was performed using oligo (dT)
primer (Promega: C1101) with Improm II Reverse Transcription
system (Promega) according to the manufacturer’s protocols.
Quantitative RT-PCR was performed using SYBR Green Dye
mix (Takara: RR420) on Rotor-Gene Q (Qiagen, Hilden,
Germany). Data was normalized to human hypoxanthine-
guanine phosphoribosyl transferase (HPRT). Primer sequences
are provided in Supplementary Table 1.

Chromatin Immunoprecipitation
(ChIP)-PCR Assay
ChIP-PCR assays were performed by Simple ChIP plus
Enzymatic Chromatin IP Kit (Cell Signaling: #9005) according to
the manufacturer’s protocols. Briefly, cells were cross-linked with
1% of formaldehyde and lysed for nuclei preparation. Nucleus
pellet was treated with micrococcal nuclease and sonicated
for chromatin fragmentation. Protein-chromatin complex was
incubated with antibody targeting anti-ETS1 (Cell Signaling:
#14069) at 4◦C overnight. Rabbit IgG (Vector Laboratories)
was used as negative control. After immuno-precipitation, 50 µ

Dynabeads protein G or A (Life technologies) were added and
rotated further for 6-h at 4◦C. Ab/protein/chromatin complex
were reverse-crosslinked at 65◦C overnight, and DNA was
purified by DNA purification columns (Cell Signaling: #10010).
The relative enrichment of specific regions in precipitated
DNA was measured by quantitative PCR (qRT-PCR). To
quantify protein binding in specific genomic locus, purified
DNA was used for qRT-PCR. Primer sequences are listed in
Supplementary Table 2.

Immunoblot Assay
Whole cell lysates were extracted using RIPA buffer according to
manufacturer’s protocols. Protein concentration was measured
by Bradford protein assay (Bio-Rad: #5000001), and 20 or
30 µg of proteins were used for SDS-PAGE (10%) and then
transferred onto a nitrocellulose membrane (Bio-Rad: 162-0097).
The following primary antibodies targeting ETS1 (Santa Cruz
Biotechnology: sc-55581) and ACTIN (Abcam: ab3280) were
used. Protein expression was visualized with ImageQuantTM

LAS 4000 (GE healthcare Life Science, Piscataway, NJ). ACTIN
expression was used as a loading control for whole cell lysates.

Flow Cytometric Analysis
MDA-MB-231 (WT) and 1CRE cells were harvested, washed
with PBS, fixed by 2ml of cold 70% ethanol dropwise, and
incubated at −20◦C overnight. For checking proliferation by Ki-
67, diluted anti-Ki-67 antibody (BioLegend: #652404) was added
and incubated at room temperature (RT) for 30min in the dark.
After incubation, cells were washed and re-suspended in 200
µl of PBS. Cells were then analyzed with BD LSRFortessa (BD
Biosciences, San Jose, CA) and FlowJo software (Treestar, San
Carlos, CA).

Xenograft Cancer Model
Six-week-old female nude mice (Orient Bio) were injected
subcutaneously withMDA-MB-231 (5× 106) or1CRE cells (5×
106) to the left or right abdomen, respectively. In addition, nude
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FIGURE 1 | Clinical implication of ETS1 level in breast cancer patients. (A) Comparison of ETS1 expression between normal (n = 113) and BRCA patient (n = 1052)

specimens in publicly available datasets (TCGA). Each symbol represents an individual; horizontal lines indicate the mean. ***P < 0.001 (Student t-test). (B) ETS1

expressions of ETS1low (n = 70) and ETS1high (n = 70) groups. (C) Correlation between ETS1 expression and survival rate. A total of 1,052 samples were divided into

(Continued)
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FIGURE 1 | ETS1high (n = 70) and ETS1low (n = 70) groups according to ETS1 expression levels. Overall survival analysis was performed based on ETS1 levels in

BRCA patients. Blue and red lines indicate patients with ETS1low (n = 70) and ETS1high expression (n = 70), respectively. P-value was calculated using log-rank test (P

= 0.0165). (D) Profiles of genetic alterations of ETS1 in the 1,098 human BRCA specimens in TCGA dataset. (E) ETS1 expression levels of three groups (unaltered,

group 1, and group 2). (F) Overall survival rates in three groups (unaltered, group 1, and group 2) of breast cancer patients. Black line indicates unaltered group. Blue

and red lines indicate patients with ETS1low (P = 0.0551) and ETS1high expression (P = 0.0452), respectively, compared to unaltered group. P-values were calculated

by log-rank test. *P < 0.05, **P < 0.005.

mice were injected subcutaneously with MCF-7 GFP negative
(ETS1−) or MCF-7 GFP positive (ETS1+) (5 × 106) to the
left or right abdomen, respectively. Tumor size was measured
every 4 days by caliper measurements. All mice were housed
in a specific pathogen-free barrier facility, and allocated and
randomized for the experiments by a technician at the animal
facility. The experiments were performed in accordance with
protocols approved by POSTECH Institutional Animal Care
and Use Committee, Korea. All experiments were performed in
accordance with relevant guidelines and regulations.

RNA-Sequencing
Total RNA was extracted and purified with RibospinTMII
(GeneAll biotechnology: 314-150). RNA was subjected to library
preparation with TruSeq Stranded mRNA Sample Preparation
Kit (Illumina: RS-122-2101∼2), and RNA-sequencing was
performed by NextSeq 500 Sequencing System (Illumina, San
Diego, CA). Sequences were mapped to hg19 with TopHat
(version 2.0.12). Estimated expression level was generated with
Cufflinks (version 2.2.1), and differentially expressed genes were
selected using Cuffdiff (version 2.2.1). RNA-seq was performed
on two biological replicates. The set of differential expressed
genes were analyzed using DAVID gene functional classification
tool (23).

Dataset for Human Samples and Human
Cell Lines
TCGA (The Cancer Genome Atlas) data were analyzed
using a web-based program. Wanderer Website (http://gattaca.
imppc.org:3838/wanderer/) was used to determine differential
expressions of ETS1, target genes, and methylation profiles in
the tumor and normal specimens (24). OncoLnc (http://www.
oncolnc.org/) was used to calculate survival rate according to
ETS1 expression level in tumor samples (25). Top or bottom
10% of total patients in ETS1 expression or methylation level
was selected for further analysis. The cBioPortal (http://www.

cbioportal.org/) was used to determine the correlation between
ETS1 alteration and survival rate in tumor samples.

Statistical Analysis
Error bars indicate standard deviation (SD). All t-tests performed
were student two-tailed tests (∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P
< 0.001).

Data Accessibility
RNA-seq datasets have been deposited in GEO database with
accession code GSE106634.

RESULTS

Clinical Relevance of ETS1 Expression in
Breast Cancer Patients
To determine whether ETS1 acts as a pro- or anti-tumorigenic
factor in BRCA tumorigenesis, we performed correlative analysis
of ETS1 expression with clinical outcome of BRCA patients.
Through the analysis of The Cancer Genome Atlas (TCGA)
database, we found that, in contrast to previous studies (10,
13, 26–29), breast cancer specimens (n = 1,052) significantly
reduced ETS1 expression compared to normal tissues (n =

113, Figure 1A). This observation was further validated by
analyzing another large clinical dataset, Curtis, that contained
2,000 breast tumor samples (5). Consistently, significantly
curtailed expression of ETS1 in breast cancer specimens (n =

1,992) was observed in BRCA specimens compared to normal
specimens (n = 144; Supplementary Figure 1A). Next, to assess
whether ETS1 expression level has clinical implications, we
classified breast cancer patients into two groups based on
ETS1 expression in BRCA specimens (ETS1high and ETS1low;
Figure 1B). Intriguingly, we found that BRCA patients in the
ETS1low group were significantly more likely to have a poor
prognosis in TCGA (P = 0.0165) as well as the Curtis (P =

0.0076) database (Figure 1C and Supplementary Figures 1A,B),
compared to BRCA patients in ETS1high group not in triple-
negative type specific manners (Supplementary Figures 1C,D)
suggesting the potential of ETS1 as the anti-tumorigenic
factor in breast cancer. To confirm whether ETS1 has anti-
oncogenic function in general or in specific types of tumor, we
extended previous analysis to other cancers as well. Intriguingly,
significantly reduced expression of ETS1 was observed in not
all but specific types of cancers, including Bladder Urothelial
Carcinoma (BLCA), colon adenocarcinoma (COAD), and Lung
adenocarcinoma (LUAD), compared to normal specimens
(Supplementary Figure 2A), which is highly correlated with
poor clinical outcomes in general, consistent with BRCA
(Supplementary Figure 2B). Collectively, these results suggest
anti-tumorigenic functions of ETS1 in a tumor-dependent
manner. Next, we questioned whether low levels of ETS1 in
BRCA patients is associated with genetic alterations around
ETS1 genomic locus compared to healthy counterparts, using
cBioPortal (Computational Biology Center, Memorial Sloan
Kettering Cancer Center). We found that about 7% of BRCA
patients (79 among 1,098) in TCGA dataset showed genetic
alterations in the ETS1 gene including amplification or deep
deletion, which led to down- or up-regulation of ETS1 levels,
respectively (Figure 1D). Hence, we then divided the patients
into three groups, based the effect of generic alteration of ETS1 on
its expression; ETS1low, ETS1high, and ETS1unaltered (Figure 1E),
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FIGURE 2 | Impact of DNA methylations status of ETS1 promoter on its expression in BRCA patients. (A) Mean methylation (β value) on CpG sites of ETS1 locus

between normal (n = 98) and BRCA patient (n = 743) specimens by TCGA Wanderer tool. Blue and red lines indicates normal or BRCA patients, respectively.

*P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA with Bonferroni test). (B,C) Scatterplots depicting linear regression (black line) and Pearson correlation analysis

(Continued)
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FIGURE 2 | with corresponding P-values. Correlation between ETS1 expression and methylation status represented by β value on each CpG site of locus #1 (B) and

locus #2 (C) in normal and tumor samples. Each symbol represents an individual human specimen. (D) ETS1 expression levels between Metlow vs. Methigh groups in

cg26559804. Blue or red dot indicates methylation low (Metlow; n = 100) or methylation high (Methigh; n = 100), respectively. (E) Overall survival rates in two groups

(Metlow vs. Methigh ) of breast cancer patients. Blue and red lines indicate patients with Metlow and Methigh (P = 0.0191), respectively. P-values were calculated using

log-rank test.

and assessed the effect of genetic alteration on clinical outcomes
in BRCA patients. Compared to ETS1unaltered, genetic alterations
triggering diminished ETS1 expression (ETS1low) were highly
correlated with poor clinical outcomes, while ETS1high showed
increased survival rate (Figure 1F). Altogether, these clinical
results indicate ETS1 as a novel tumor suppressor gene in BRCA.

The Effects of DNA Methylation Status on
ETS1 Promoter Region for Its Expression
in BRCA Patients
Next, we questioned how breast tumor cells maintain lower
ETS1 expression than normal cells. To answer this, we decided
to focus on DNA methylation, which is one of the major
epigenetic mechanisms to control gene expression (30, 31),
by comparing methylation status of CpG sites on ETS1
genomic locus between BRCA patients (n = 732) and healthy
counterparts (n = 84) (24). Intriguingly, we found that tumor
specimens showed significantly higher methylation levels
in two CpG island regions, located around the promoter of
ETS1 (locus #1 and locus #2), compared to normal specimens
(Figure 2A and Supplementary Table 3). Then, we determined
whether methylation status of ETS1 promoter regions is
accompanied with ETS1 expression level. Hyper-methylation

in locus #1 but not #2 of ETS1 promoter region was closely
associated with decreased ETS1 expression in BRCA specimens,
indicating inverse correlation of ETS1 methylation status with
its expression (Figures 2B,C). Among 10 CpG sites in locus #1,
methylation status of cg26559804, cg26503877, and cg11588197
showed significant inverse correlation with ETS1 expression
in multiple types of cancers (Supplementary Figure 3).
Moreover, seven remaining CpG methylation sites seemed
to be BRCA-specific, since other tumors showed comparable
CpG methylation patterns in normal and tumor specimens
(Supplementary Figure 3). Next, we examined the methylation
level of the ETS1 promoter (Metlow vs. Methigh) and its clinical
outcomes in BRCA patients. Consistent with ETS1 expression,
enhanced CpG methylation (Methigh) was correlated with low
ETS1 level (Figure 2D), resulting in poor prognosis (Figure 2E).
Collectively, these results suggest that DNAmethylation on ETS1
promoter locus is a key factor to determine ETS1 expression and
disease prognosis in BRCA patients.

ETS1 Regulates Growth and Proliferation
of Tumor Cells
The abovementioned findings on BRCA patients support ETS1
as a tumor suppressor in breast cancer. To elucidate how
ETS1 affects tumorigenesis of BRCA, we tested the effects
of knockdown of ETS1 on tumorigenicity of breast cancer
cells. To achieve this goal, we employed MDA-MB-231 cells,
well-characterized breast cancer cell lines with high levels of

ETS1 expression (32). MDA-MB-231 cells were transfected
with mock and ETS1 targeting shRNA vector tagged with
GFP and found around 70% diminished ETS1 protein level
in ETS1-shRNA+ cells compared with mock-shRNA+ cells
(Figure 3A). Interestingly, knockdown of ETS1 expression
significantly increased proliferation capacity of breast cancer
cells measured by Ki-67 expression (Figure 3B). To confirm
previous observations, we generated mutant MDA-MB-231 cells,
in which a core regulatory element (CRE; −540 to −80) of
ETS1 promoter was deleted by CRISPR/Cas9 methods, and
named as “1CRE” (22). Similar to shRNA based knockdown
system, 1CRE cells demonstrated decreased expression of ETS1
with enhanced proliferation and growth rate (Figures 3C–E)
suggesting anti-tumorigenic function of ETS1 in BRCA cells.
To further validate anti-tumorigenic roles of ETS1 in vivo, WT
or 1CRE cells were subcutaneously transplanted into the left
or right sides of flank using nude mice and monitored tumor
growth in vivo, respectively. Indeed, mice engrafted with 1CRE
cells developed significantly larger volume of tumor compared to
mice injected with WT cells (Figure 3F). Since MDA-MB-231 is
a triple negative breast cell line that can only represent a specific
subset of breast cancer, we tried to confirmwhether ETS1 inhibits
the proliferation of tumor cells with MCF-7 cells (ER+, PR+

and HER2− cell; Supplementary Figure 4). Ectopic expression
of ETS1 in MCF-7 cells significantly reduced cell proliferation in
vitro (Supplementary Figure 4A) and suppressed tumor growth
in vivo (Supplementary Figure 4B). Altogether, these results
indicate that ETS1 suppresses proliferation and growth of breast
cancer cells in vitro as well as in vivo.

ETS1 Regulates Expression of Cell
Proliferation-Related Factors
To determine how ETS1 regulates proliferation and growth
of breast cancer cells, we performed an RNA-sequencing
(RNA-seq) based transcriptome analysis with WT and 1CRE
cells (Figure 4A and Supplementary Table 4). Among 180
differentially expressed genes (DEG), 80% of DEGs were down-
regulated in 1CRE cells compared to WT cells, indicating a
major role of ETS1 in BRCA as transcriptional activator. To
enlighten down-stream pathways affected by ETS1 in breast
cancer cells, we performed Gene Ontology (GO) and found
that various tumorigenic pathways, including cell adhesion,
angiogenesis, and proliferation, were significantly altered
in 1CRE cells (Figure 4B and Supplementary Table 5).
Intriguingly, we noticed that several well-known tumor
suppressor genes were significantly under-expressed in
1CRE cells, of which expression levels were also reduced
in BRCA tumor tissue compared to normal tissue from
TCGA (Figures 4A,C and Supplementary Tables 6, 7) (33).
Furthermore, we found a strong correlative expression between
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FIGURE 3 | ETS1 inhibits the proliferation and growth of breast cancer cells in vitro as well as in vivo. MDA-MB-231 cells were transfected with negative control (NC)

and ETS1 shRNA-GFP reporter vector, and transfected cells were sorted according to GFP-expression. The FACs plots are representative of data from three

independent experiments. (A) Immunoblotting analysis for ETS1 protein levels in NC and knockdown cells. (B) Analysis of cell proliferation (Ki-67) comparing NC and

(Continued)
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FIGURE 3 | ETS1 KD cells. (C) Immunoblotting analysis for levels of ETS1 in MDA-MB-231 (WT) cells and 1CRE cells. (D) Quantification of cell proliferation based on

detection of Ki-67 protein by flow cytometry. (E) Cell count for 72-h culture periods. *P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA with Bonferroni test). (F)

Tumor growth curves in nude mice after injection of WT (left) and 1CRE (right) cells. Tumor volumes were measured at an interval of 4 days (n = 10). Images of

representative tumor-bearing mice (top) and isolated tumors (bottom). *P < 0.05, **P < 0.01, ***P < 0.001 (two-way ANOVA with Bonferroni test). Data is

representative of three independent experiments. For reasons of clarity, blots were cropped to the bands of interest. Samples derived from the same experiment and

gels/blots were processed in parallel. See full-length blots in Supplementary Figure 6.

ETS1 and these tumor suppressor genes (ADAMTS9, TXNIP,
STAT5A, and NOTCH1) in BRCA specimen samples that were
actually under-expressed in BRCA compared to normal tissue
(Figures 4D,E), suggesting the potential mechanism of ETS1
as the tumor suppressor through direct activation of other
tumor suppressor genes in BRCA cells. Indeed, we found highly
conserved putative ETS1 binding sites on the promoter regions of
ADAMTS9, TXNIP, STAT5A, and NOTCH1 using ECR browser
(Supplementary Figure 5), and the direct binding of ETS1 in
these genomic loci was confirmed by ChIP assay (Figure 4F) in
BRCA cells. To elucidate the effects of ETS1 binding on these loci,
we first knockdowned ETS1 expression and checked its impact
on transcriptional change of these tumor suppressor genes in
MDA-MB-231 cells. Consistent with 1CRE cells, knockdown
of ETS1 significantly attenuated the expression level of these
tumor suppressor genes (Figure 4G). Furthermore, knockdown
effects of ETS1 were confirmed by rescuing ETS1 expression
in 1CRE cells that significantly enhanced the expression of
ADAMTS9, TXNIP, STAT5A, and NOTCH1 compared to1CRE
cells (Figure 4G). Altogether, these data indicate dichotomous
functions of ETS1 as anti-tumorigenic factors through direct
activation of targets but also trans-activating other tumor
suppressor genes in breast cancer cells.

DISCUSSION

In this study, we defined ETS1 as the tumor suppressor in BRCA
together with detailed molecular action mechanisms. Analysis of
human breast cancer specimens showed a lower level of ETS1
through hyper-DNA methylation on the ETS1 promoter region
in BRCA compared to normal specimens, which was closely
correlated with poor prognosis in a large number of BRCA
patients. Furthermore, we elucidated the action mechanisms of
ETS1 as a tumor suppressor not only by directly activating down-
stream targets linked with tumor cell proliferation/growth but
also trans-activation of other tumor suppressor genes, such as
ADAMTS9, TXNIP, STAT5A, and NOTCH1.

Previous studies have shown dual functions of ETS1 as
both pro-oncogenic (9–13) and anti-oncogenic (19, 20, 31)
factors. How does ETS1 have paradoxical roles in tumorigeneisis?
Interestingly, we found a distinct expression pattern of ETS1
depending on tumor types. For example, unlike BRCA, high
level of ETS1 was observed in cancer specimens from GBM,
HNSC, KIRC, PCPG, SARC, and THCA; while other tumor
types, including BRCA, showed low levels of ETS1 compared
to normal specimens (Supplementary Figure 2A, data not
shown). In addition, we have shown that ETS1 directly
activates several invasiveness factors, such as ENG and MMP14
(Supplementary Table 5) enhancing invasive phenotypes in vitro

as well as in vivo (22). Similarly to ETS1, various factors are
thought to have dual roles, as tumor suppressor and activator,
in a cell type-dependent manner; however, how they switch
between the two functionalities has never been established. For
instance, PGC-1α, a master regulator of energy metabolism, has
recently been shown to exert anti-metastatic effects in cancer
through inhibition of EMT, but it also plays the opposite role
in specific cancer subtypes by providing growth advantages (34).
In addition, TGFβ has shown its anti-tumorigenic function at
early stage of cancer, while it supported tumor metastasis in
later stages of cancer (35). Furthermore, it is intriguing that
1CRE cells decreased the expression of gene sets involved
in immune responses, such as Type I interferon signaling
(OAS-1, -3 and IFIT-1, -2, -3, etc.) and anti-viral responses
(TREM183, BNIP3 etc.) which suggest potential roles of ETS1 to
modulating immunogenicity of BRCA cells. Hence, it is essential
to understand how ETS1 has dichotomous roles in tumorigenesis,
which is currently under investigation.

Our comparative transcriptome analysis between MDA-MB-
231 cells (WT) and 1CRE cells has clearly revealed that ETS1
is directly involved in multiple steps to hinder tumorigenesis
including angiogenesis, cell survival, proliferation, and even
cell adhesion (Figure 4B). To take a step forward from this
analysis, we have identified a unique feature of ETS1 to inhibit
tumorigenesis of BRCA cells by directly trans-activating core
regulators of tumorigenesis as tumor suppressor genes in BRCA
cells. ADAMTS9 (36, 37) and TXNIP (38) have been shown
to inhibit cancer cell proliferation, and STAT5A and NOTCH1
are well-known for their versatile roles to suppress proliferation,
survival, differentiation, or senescence of cancer cells (39–
42). ETS1 directly bound in genomic loci of these regulators
(Figure 4F) and activated their transcription in breast cancer
cells (Figure 4G). Hence, our results enlightened that ETS1 exerts
its anti-tumorigenic function in at least two distinct ways: (i)
direct activation of gene-sets involved in BRCA tumorigenesis,
and (ii) indirect inhibition of tumorigenesis through trans-
activation of canonical tumor suppressor genes in BRCA cells.

Previously, transcription factors (TFs) were implicated in a
majority of human diseases, such as cancer and autoimmune
diseases. In addition, TFs were considered to be “undruggable”
targets, except for ligand-inducible nuclear receptors (43).
However, numerous recent cases have successfully targeted TFs,
suggesting TFs to be feasible targets for drug development
(43). Since ETS1 level is strikingly correlated with a patient’s
prognostic status, ETS1-targeted therapy seems attractive.
Previously, our group and others have identified up-stream
signaling pathways and major transcriptional activators for
ETS1 transcription in breast cancer cells (22, 44). In addition,
previous studies have shown the importance of post-translational
modification (phosphorylation, acetylation, sumoylation, and
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FIGURE 4 | ETS1 resultes muti-turmogeneic pathways in breast cancer cells. Transcriptome datasets from WT and 1CRE cells were visualized by (A) heatmap

analysis and further applied in (B) biological process of Gene Ontology (GO) enrichment analysis. (C) Venn diagram depicting the overlap of differentially expressed

genes (DEGs) together with down-regulated genes in tumor compared to normal tissue, based on TSGene (33), a web resource for tumor suppressor genes. (D)

(Continued)
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FIGURE 4 | Scatterplots depicting linear regression (black dot line) and Pearson correlation analysis with corresponding P-values. Correlation between ETS1 and

target genes in BRCA. Each symbol represents an individual human specimen. (E) mRNA expression of ETS1 target genes in normal and tumor specimens. (F) ChIP

assay was performed using anti-ETS1 antibody with MDA-MB-231 cells. Relative enrichments were determined by qRT-PCR with primers specific for ETS1 binding

sites in the target gene locus. Representative data from three independent experiments. (G) Validation of representative target genes by qRT-PCR. Representative data

from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 (One-way ANOVA with Bonferroni test). *P < 0.05, **P < 0.01, ***P < 0.001 (Student t-test).

ubiquitination) and co-factor interaction (45). In this context,
our result proposed potential therapeutic approach targeting
cis-regulatory elements of ETS1 to modulate the overall level
in cancer cells. Therefore, in the future, we will direct our
studies to investigate these mechanisms for the development of
therapeutics targeting ETS1 in BRCA.

In this study, we defined ETS1 as a tumor suppressor
that inhibits growth and proliferation of breast cancer cells in
both humans and mice. Our study indicated that ETS1 might
be a good therapeutic target for BRCA due to its intrinsic
and extrinsic propensities to inhibit tumorigenesis. Moreover,
given the intense interest in understanding the biomarkers for
predicting breast cancer prognosis, our findings indicate that
evaluating ETS1 level in tumors may be an important predicator
for BRCA patients.
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