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Background: Early-stage diagnosis and treatment can improve survival rates of liver

cancer patients. Dynamic contrast-enhanced MRI provides the most comprehensive

information for differential diagnosis of liver tumors. However, MRI diagnosis is affected

by subjective experience, so deep learning may supply a new diagnostic strategy. We

used convolutional neural networks (CNNs) to develop a deep learning system (DLS)

to classify liver tumors based on enhanced MR images, unenhanced MR images, and

clinical data including text and laboratory test results.

Methods: Using data from 1,210 patients with liver tumors (N = 31,608 images), we

trained CNNs to get seven-way classifiers, binary classifiers, and three-way malignancy-

classifiers (Model A-Model G). Models were validated in an external independent

extended cohort of 201 patients (N = 6,816 images). The area under receiver operating

characteristic (ROC) curve (AUC) were compared across different models. We also

compared the sensitivity and specificity of models with the performance of three

experienced radiologists.

Results: Deep learning achieves a performance on par with three experienced

radiologists on classifying liver tumors in seven categories. Using only unenhanced

images, CNN performs well in distinguishing malignant from benign liver tumors

(AUC, 0.946; 95% CI 0.914–0.979 vs. 0.951; 0.919–0.982, P = 0.664). New CNN

combining unenhanced images with clinical data greatly improved the performance

of classifying malignancies as hepatocellular carcinoma (AUC, 0.985; 95% CI 0.960–

1.000), metastatic tumors (0.998; 0.989–1.000), and other primary malignancies

(0.963; 0.896–1.000), and the agreement with pathology was 91.9%.These models

mined diagnostic information in unenhanced images and clinical data by deep-

neural-network, which were different to previous methods that utilized enhanced

images. The sensitivity and specificity of almost every category in these models

reached the same high level compared to three experienced radiologists.
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Conclusion: Trained with data in various acquisition conditions, DLS that integrated

thesemodels could be used as an accurate and time-saving assisted-diagnostic strategy

for liver tumors in clinical settings, even in the absence of contrast agents. DLS therefore

has the potential to avoid contrast-related side effects and reduce economic costs

associated with current standard MRI inspection practices for liver tumor patients.

Keywords: liver cancer, liver mass, deep learning, diagnosis, artificial intelligence, MRI

INTRODUCTION

Liver cancer is the second leading cause of cancer-related
deaths worldwide (1) and the incidence rate has been growing
on a global scale (2), which is in contrast to the stable
incidence or declining trends formost cancers (3). Hepatocellular
carcinoma (HCC) accounts for 90% of primary liver cancers,
and could result in a major global health problem. Early-
stage HCC detection and diagnosis can allow the patients to
receive the treatment earlier and achieve better survival rates
(1). All the continental and national liver disease societies have
recommended that surveillance should be carried out for high-
risk patients with cirrhosis (4). Ultrasonography as the preferred
test for surveillance is unsatisfactory because of the limitations
of ultrasound operator dependency and its low sensitivity to
small liver cancers (5). Dynamic contrast-enhanced imaging is
recommended as the first-line diagnostic tool for HCC when the
screening test result is abnormal (6). Undoubtedly, compared
with computed tomography (CT), enhanced MRI is the better
choice because of its various tissue contrast mechanisms and it
being only way to assess all major and auxiliary imaging features
(7). However, enhanced MRI could not be used widely like
ultrasonography in screening and surveillance owing to its high
cost and the risk of contrast- related side effects (8–12).

Actually, even with enhanced MRI, it still remains challenging
to diagnose, owing to liver tumor diversity and complex imaging
features. In addition to HCC, primary malignant tumors in
the liver include intrahepatic cholangiocarcinoma (ICC), mixed
hepatocellular-cholangiocarcinoma (HCC-CC), and other rare
tumors (13, 14). The liver is also the target of metastasis
for many malignant tumors, such as colorectal, pancreatic,
neuroendocrine, breast cancer, etc. Moreover, there are several
types of benign tumors in the liver, such as cyst, hemangioma,
focal nodular hyperplasia (FNH), adenomas, high-risk cirrhotic
nodules [regenerative nodules (RN), and dysplastic nodules
(DN)] (14). The evaluations of images are generally subjective
and are possibly affected by radiologists’ experience (15, 16).

Unlike traditional image-dependent “semantic” features
evaluation from human experts, deep learning can automatically
learn feature representations from sample images with
convolutional neural networks (CNNs) (17, 18). It has shown to
match or even surpass human performance in the application
of specific tasks and may even discover additional differential
features not yet identified in current radiological practice (19).
CNNs have been achieving good performances in medical
imaging for several tumor types (20–22), but for liver tumors
only a few exploratory studies have been reported (16, 23–25).

These studies trained models based on enhanced images from
contrast-enhanced CT/MRI in small-scale (<500 patients)
datasets, however, they only considered specific liver tumor
categories and did not simulate clinical practice conditions,
which restricted their utility in the diagnostic decision-making
phases of the workflow. In addition, the potential diagnostic
value of clinical information and unenhanced sequences,
including T1 pre-contrast, T2, and diffusion sequences, were not
evaluated in deep-learning models. Here, we report the results of
a large study of liver tumors, which covered all types of hepatic
local lesions except for inflammatory masses. There were two
aims of this study: First, we developed CNNs that implemented
assisted diagnosis for liver tumors by classifying them in
seven categories. Second, we developed a CNN that utilized
unenhanced sequences to distinguish malignant from benign
tumors, then, our modified CNN that combines unenhanced
images with clinical data achieved end-to-end output for
precise classification of malignant tumors. These models were
integrated into the DLS. In an external independent cohort, their
performance was compared with experienced radiologists that
had read all sequences and clinical information.

MATERIALS AND METHODS

Patients
This study was approved by the independent institutional review
boards of Sir Run Run Shaw Hospital and performed according
to the Helsinki declaration. In this study, a sample size was not
prespecified. Instead, we included the largest possible number of
patients with liver tumors to ensure that deep learning models
were trained as fully as possible. The inclusion criteria were as
follows: (1) participants had liver tumors, and (2) participants
accepted enhanced MRI inspection. The exclusion criteria were
as follows: (1) those who had accepted treatment related to the
lesion before MRI inspection, including surgery, transcatheter
arterial chemoembolization (TACE), radiofrequency ablation,
chemotherapy, radiotherapy, targeted drug therapy, etc.; (2)
those with inflammatory lesions; (3) those with a clinically
diagnosed malignancy (without pathology confirmed); (4) any
missing important medical records or laboratory results of the
malignancy individuals; and (5) unqualified image quality. Only
patients who had malignancies confirmed by biopsy or post-
surgical histopathology were enrolled. The diagnosis of some
benign lesions was supported by histopathology, but the labels
of other benign lesions without surgery provided by the imaging
diagnosis report were considered as our gold standard. For
these liver masses diagnosed with a combination of clinical
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information and imaging criteria, the follow-up time was 6–10
months. Those labels were the result of a consensus as explained
by the radiology department: The report was firstly given by the
doctor who read the images. Then, the report was reviewed by the
senior doctor. In case of a disagreement, the final decision was
confirmed by a department conference. The test set consists of
liver focal lesions enhanced by MRI in the same hospital between
July 2018 to December 2018 according to the include and exclude
criteria above (Figure S1). In addition, general demographics for
all patients, pathology reports (if any), and malignant patients’
related medical history, liver-related symptoms, and laboratory
test results were documented.

Taxonomy
Three groups of models were trained. The first task was to
classify the liver focal lesions of the training set into seven
categories: 0. cyst, 1. hemangioma, 2. focal liver lesion (FNH),
3. other benign nodules (cirrhotic nodules, RN, DN, rare benign
tumors), 4. HCC, 5. metastatic malignant tumors from other
sites (colorectal, breast, lung, pancreas, etc.), 6. primary hepatic
malignancy other than HCC (intrahepatic cholangiocarcinoma,
adenocarcinoma, etc.). The second task was to divide all the
tumors into two categories: a. benign (include 0, 1, 2, 3 above),
b. malignant (include 4, 5, and 6). In the third task, malignant
tumors were divided into three categories the same as category
4, 5, and 6 in the seven-category method above. The test
set was also classified as described above and labeled. Those
classification models included all liver mass-like lesions (except
for inflammatory lesions). In category 3, 5, and 6, several different
specific tumor types were all mixed in the training and test set.
Three experienced radiologists independently read and labeled
the MRI of the validation set following this standard and they
could refer to additional information such as medical history,
laboratory test results, etc. according to daily clinical work habits.

MRI Acquisition Protocol
Abdominal MRIs were performed in a supine position with
1.5-T, 3-T, and 750W MR scanners, including GE MR Singna
HDX 3.0T, GE MR Singna HD Excite scanners 1.5T, Simen MR
Skyra 3.0T, Simen magnetom avanto Dot1.5T, and GE discovery
MR 750 scanners. T2-weighted sequence, diffusion-weighted
sequence (b-values: 800 s/mm2) from standard institutional
liver MR imaging protocols were performed with acquisition
times of 2–2.5 and 2–2.5min. Contrast-enhanced T1 sequences
were used with acquisition times of 12–18 s. Two different
contrast agents were used, i.e., Gadopentetate dimeglumine and
Gadoxetic Acid Disodium (Primovist) at doses of 0.2 and 0.1
mmol/kg, respectively. Except for pre-contrast T1, T2, and
diffusion images, post- contrast images were analyzed, including
late arterial phase (∼15 s post-injection), portal venous phase
(∼60 s post-injection), and equilibrium phase (∼3min post-
injection). Imaging parameters varied across different scanners
and time frames (Table S4).

Image Processing
Eligible MRI images were downloaded from the Picture
Archiving and Communication Systems (PACS) and stored as
Digital Imaging and Communications in Medicine (DICOM)

files. Six sequences were selected and the region of interest (ROI)
on T2 sequence was annotated. All the sequences were resampled
to a resolution of 0.7 × 0.7 × 7mm. Then the annotations
of the other five sequences were generated according to the
origin and spacing information of sequences, which were checked
manually. Software was developed to correct cases that were not
matched. SimpleITK was used to read DICOM images. After
preprocessing, resampling, and configuration, the DICOM files
were converted to images in preparation for the training. Some
common augmentation methods were performed on the images
such as rotation, flipping, scaling, shifting, and shearing.

Deep Learning Model Development
Deep CNNs have achieved good results in medical image
classification in recent years. The most straightforward way to
improve the performance of deep CNNs is to increase their
depth and width. Szegedy et al. (26) proposed a deep CNN
architecture codenamed Inception that increased the width of
each stage. Multiple versions of Inception-Net have been widely
used in classification tasks. Residual connections introduced
by He et al. (27) make it easy to train very deep networks.
Inception- ResNet, which combines both ideas, outperforms the
previous networks. We utilized a Google Inception-ResNet V2
CNN architecture (28) that was pre- trained on approximately
1.28 million images (1,000 object categories) from the 2014
ImageNet Large Scale Visual Recognition Challenge (29), then
we removed the final classification layer from the network and
retrained it with our dataset, fine-tuning the parameters across
all layers (30). Our CNN was trained using backpropagation. The
loss function was defined as categorical cross entropy between
predicted probability and the true class labels in multi-class
classification problems. We used stochastic gradient descent
(SGD) optimization, with the same global learning rate of 0.1,
a decay factor of 0.5 every 20 epochs, a momentum of 0.9, and
batch size of 16 for training the weights. The TensorFlow (31)
deep learning framework was used to train, validate, and test
our network. We resized each image to 299 × 299 pixels in
order to make it compatible with the original dimensions of
the Inception-ResNet V2 network architecture. During training,
images were augmented. Each image was rotated randomly
between −40◦ and 40◦ and flipped vertically and horizontally
with a probability of 0.5. Five-fold cross-validation was used in
training CNN, and the parameters of the model with the highest
average accuracy on the cross-validation sets were used to train
CNN on the whole training set so as to get the final model.

For our dataset, either six (T1, T2 diffusion, late arterial,
portal venous, and equilibrium) or three (T1, T2 and diffusion)
sequences and clinical data were applied as inputs of our
model. Each group of images from six or three sequences can
be input to the network through different channels. For the
three-way classification model, we modified the network to
receive the image and clinical data as inputs simultaneously. The
convolution layers were used to extract features from images, and
then these features together with encoded clinical data were input
to the fully connected layer for classifying liver tumors. Our deep
learning model can accept clinical data as input. Clinical data
was encoded using one-hot encoding. For example, gender can
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be encoded as [0,1] for male and [1,0] for female. The output of
network is a one-dimensional vector about the predicted value
for each group of images, which is expressed as [P1, P2,..., Pi],
i represents i-category classification, Pi represents the predicted
value for the i-th category. To calculate the individual-level
predicted value, the predicted vector for each image-group of one
patient was summed up, then the category with the largest value
was used as the final diagnosis of this patient.

Statistical Analysis
Upon finishing the training phase, the performance was
evaluated using the validation set, which is composed of images
from patients of an external independent dataset not used during
the training. Then the predicted probability of each patient
was obtained by aggregating the predicted probability values
of each group of images. For classification purposes, the ROC
curve was used to show the diagnostic ability of the deep
learning model in discriminating specific class from others.
The ROC curve and the corresponding area under ROC curve
(AUC) for each class were calculated in each model using the
python library sklearn (32). Differences between various AUCs
were compared by using a Delong test. Average sensitivity and
specificity of radiologists were displayed in ROC charts, then
the sensitivity and specificity of radiologists’ consensus were
used to compare with the models (see in Tables). Ninety-five
percentage CIs for sensitivity, specificity, and accuracy were
calculated with the Clopped-Pearson method (33). P-values for
sensitivity and specificity comparisons were computed using
McNemar’s test (binomial distribution for exact probabilistic
method). In addition, the agreements between the predicted
results with pathological/formal report were compared using the
Cohen’s Kappa statistic (34, 35) and P-values were estimated by a
two-sample two-tailed z-test score. All tests were two-tailed, and
p≤ 0.05 was considered to be indicative of statistical significance.

Confusion matrixes demonstrated the mis-classification
similarity between the CNNs and human experts. Element (i, j)
of each confusion matrix represented the empirical probability to
predict class j given that the ground truth was class i.

To analyze the internal features learned by the CNNs
of validation sets, the Barnes- Hit implementation of the t-
SNE technique (t-distributed Stochastic Neighbor Embedding)
(36) was used to reduce the dimensionality and facilitate the
visualization of the classes. The values associated with the last
fully hidden connected layer were used as an input, and theta was
set to 0.5, perplexity to 50, and 10,000 iterations. Colored point
clouds represented the different disease categories, representing
how the algorithm clusters the diseases.

Saliency Map
To gain further intuition into how the network made its
decisions, saliency maps (37), that can visualize the pixels that a
network is fixating on for its prediction, are increasingly being
used (20, 38). Back-propagation is an application of the chain
rule of calculus to compute loss gradients for all weights in
the network. The loss gradient can also be back-propagated to
the input data layer. By taking the L1 norm of this input layer
loss gradient across the RGB channels, the resulting heat map

intuitively represents the importance of each pixel for diagnosis.
We generated saliency maps about seven categories and typical
individual examples to visualize areas on the images that were
deemed important for the classification results. All saliency maps
were produced using Keras 2.2.0.

RESULTS

Training and Validation Cohort
Between January 1, 2014 to June 30, 2018, MRI images were
obtained for the training set from the hepatic focal lesions
database in Sir Run Run Shaw Hospital affiliated to Medicine
School, Zhejiang University. According to the inclusion and
exclusion criteria (Figure S1), the complete training set consisted
of 31608 MRI images from 1,210 individuals, including 5,268
groups, and each group included six images from different
scan sequences (T2, diffusion, Pre-contrast T1, late arterial,
portal venous, equilibrium phase). Between July 1, 2018 to
December 31, 2018, 6,816 images from 201 individuals for the
validation set were obtained from Sir Run Run Shaw Hospital
according to strict enrollment criteria to minimize selective bias
(Figure S1), which ensured that the validation set could reflect
the disease composition and distribution waiting to be diagnosed
in real-world clinical scenarios. Only malignancies that had
been confirmed by biopsy or post-surgical histopathology were
enrolled. The diagnosis of some benign lesions was supported
by histopathology, but the labels of other benign lesions without
surgery provided by formal imaging diagnosis reports were
considered as our gold standard. The study classified hepatic
local lesions into seven categories: 0. cyst, 1. hemangioma, 2.
focal liver lesion (FNH), 3. other benign nodules [cirrhotic
nodules, regenerative nodules(RN), dysplastic nodules(DN), rare
benign tumors], 4. HCC, 5. metastatic malignant tumors from
other sites (colorectal, breast, lung, pancreas, etc.), and 6.
primary hepatic malignancy other than HCC (adenocarcinoma,
Intrahepatic cholangiocarcinoma, etc.). 0, 1, 2, and 3 above
belonged to benign, 4, 5, and 6 belonged to malignant (see
Methods, Taxonomy in details). Baseline characteristics of the
training set and validation set are shown in Table S1. The disease
composition and distribution of the validation set were not
exactly the same as the training set (Table S2). According to
TRIPOD statement (39), this validation set can be regarded as
an external independent set. The training dataset in the current
study is the largest published liver-enhanced MRI dataset with
the most types of liver tumors (non- inflammatory lesion).

Deep-Learning Frameworks for Liver
Tumor Classification
Our CNN computational strategy is demonstrated in Figure 1.
In the training set, liver tumors were marked in T2 sequences by
trained senior abdominal radiologists based on formal diagnostic
reports. Then, six images from six sequences (T2, diffusion, Pre-
contrast T1, late arterial, portal venous, and equilibrium phase)
were obtained for each cross section of the lesion by processing
the images. The medical history and laboratory test results
of individuals with malignant tumors were searched from the
medical record system and encoded by the auto encoder to obtain
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FIGURE 1 | Data and strategy. (A), Number of patients and images per category. (B), Strategy for development and validation. (B, i), Magnetic resonance images of

patients in training set were first downloaded from the PACS; Liver tumors was outlined in related images of T2-weighted sequences as Regions of interest (ROI) by

ITK-SNAP software; pre-processed images and obtained six different scan sequences pictures for each cross section of the lesion (T2, diffusion,T1 pre-contrast, late

arterial phase, portal venous phase, equilibrium phase); (B, ii), six sequences of each cross section input to CNN as a whole-image from six channels, encoded clinical

data was input to CNN; (B, iii), the Inception-ResNetV2 architecture was used and fully trained using the training set or partly retrained using the new-training set with

clinical data; (B, iv), classifications were performed on images from an independent validation set, and the values were finally aggregated per patient to extract the

T-SNE and the statistics; (B, v), Clinical data was encoded using one-hot encoding as preparation for three-way malignancy classifier. HH, Hepatic hemangioma;

Nodules, other benign nodules; Metastatic, Metastatic malignancy from other sites; Primary, Primary malignancy except HCC.

clinical data, including age, gender, cirrhosis-related history,
other cancers, tumor marker(AFP, CEA,CA-125,CA19-9, PSA,
Ferritin), and liver function (albumin, total bilirubin, prolonged
prothrombin time, hepatic encephalopathy, ascites). The coding
table is in Table S3. The images and clinical information can be
used as direct input to the neural networks according to different
tasks (Figure 1). Based on the computational strategy outlined
in Figure 1, three group models were trained. First, CNNs were
developed to classify images into seven categories. Model A and
B used six sequences and three un enhanced sequences (T2,
diffusion, Pre-contrast T1) to train CNN, respectively. Second,
six sequences (Model C) and three unenhanced sequences
(Model D) were utilized to train CNNs for binary classification
of benign and malignant. Third, malignant cases with complete
clinical data in the training set were selected as a new training set
and the integral computational pipeline (Figure 1) was applied

to train new models in order to classify malignant tumors in
to three categories. Model F and Model G, respectively, utilized
six and three sequences alongside clinical data as the direct
input, while Model E utilized only six imaging sequences as
input. The 5-fold cross-validation results during training were
reported in Supplementary Materials-Data File S1. Then three
experienced radiologists were asked to independently classify
MRI images in the validation set through the Picture Archiving
and Communication Systems (PACS). They could refer to
other information about patients such as their medical history,
laboratory tests, and so on. This design could better reflect the
true level of doctors in daily clinical situation than previous
works (16, 23–25) that asked doctors to make judgements only
based on images. When the results of the three radiologists
were inconsistent, then they discussed together in order to get
a diagnoses referred to as reader consensus.

Frontiers in Oncology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 680

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhen et al. Deep Learning for Liver Tumor Diagnosis

CBA

FED

FIGURE 2 | Performance of CNN models and radiologists in external validation set. (A–C) Receiver operating characteristic (ROC) curves in the validation set (n =

201 patients). (A) Model A: seven-way classifier with six sequences. (B) Model B: seven-way classifier with three unenhanced sequences. (C) Model C,D: binary

classifier for benign and malignancy with six sequences and three unenhanced sequences. (D–F) ROC curves in the new validation set of malignant tumors (n = 99

patients). (D–F), (D) Model E: three-way classifier with six sequences. (E) Model F: three-way classifier with six sequences and clinical data. (F) Model G: three-way

classifier with three sequences and clinical data. The crosses indicate the performance of average radiologists for each category, the length of the cross represents the

confidence Interval (CI).

Deep-Learning Models in Seven-Way
Classification Diagnosis
Using the computational pipeline of Figure 1, Inception-ResNet
V2 was first trained to classify liver tumors in to seven
categories according to clinical practical criterion and tested in
the validation cohort. Model A with six sequences achieved a
high performance in seven-way classification in the validation
set (Figure 2A), with AUC values for each category ranging
from 0.897 (95% CI 0.828–0.966, metastatic malignancy) to
0.987 (95% CI 0.934–1.000, FNH), which was better than
Model B with three unenhanced sequences (Figure 2B), although
no significant difference existed (Table 1). Compared with the
average level of readers, Model A achieved a competitive level
for most categories, but for metastatic malignancy, the average
reader seemed to perform better than Model A (Figure 2A).
The performance between the model and reader consensus was
further compared (Table 1). The model sensitivity for seven
categories ranged from 53.3% (95%CI 26.6–78.7%, other primary
malignancy) to 100% (95% CI 66.4–100%, FNH). The sensitivity
of reader consensus for seven categories ranged from 55.6%

(95% CI 21.2–86.3%, benign nodules) to 94.7% (95% CI 82.3–
99.4%, FNH). There was no significant difference (p > 0.05) in
the sensitivity for each category between Model A and reader
consensus, except for metastatic malignancy (P = 0.003). In this
category, reader consensus had a better performance than Model
A because doctors could refer to clinical information including
related medical history and laboratory test results, which are of
great value for the diagnosis of metastatic tumors. For seven
categories, the specificity of model A and reader consensus
ranged from 91.6% (95% CI 86.0–95.4%, HCC) to 99.5% (95%
CI 97.1–100%, benign nodules) and 94.8% (95% CI 90.0–
97.7%, HCC) to 100% (95% CI 98.1–100%, FNH), respectively.
Among all categories, only the specificity of FNH demonstrated

a significant difference (P = 0.008) between Model A and

reader consensus. Model A showed a higher sensitivity of 77.8%

(95% CI 40.0–97.2%) and specificity of 99.5% (95% CI 97.1–
100%) than reader consensus for benign nodules. For benign

nodules, the number of patients with an accurate diagnosis by

models was more than every experienced radiologist (Figure S2

for confusion matrix). Seven cases of cirrhosis nodules were
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TABLE 1 | Diagnostic performance of seven-way classifiers and radiologists in the validation set.

Value (95%CI) McNemar’s P-valuea Delong P-value

Model A Model B Reader consensus Model A vs. Reader Model A vs. Model B

Cyst

AUC 0.986 (0.960, 1.000) 0.970 (0.932, 1.000) 0.147

Sensitivity, % 89.5 (75.2, 97.1) 89.5 (75.2, 97.1) 94.7 (82.3, 99.4) 0.688

Specificity, % 96.9 (93.0, 99.0) 96.9 (93.0, 99.0) 98.2 (94.7, 99.6) 0.727

Hemangioma

AUC 0.944 (0.897, 0.991) 0.936 (0.886, 0.986) 0.66

Sensitivity, % 82.6 (68.6, 92.2) 87.0 (73.7, 95.1) 89.1 (76.4, 96.4) 0.508

Specificity, % 95.5 (90.9, 98.2) 93.6 (88.5, 96.9) 98.1 (94.5, 99.6) 0.344

FNH

AUC 0.987 (0.934, 1.000) 0.936 (0.824, 1) 0.102

Sensitivity, % 100 (66.4, 100) 66.7 (29.9, 92.5) 88.9 (51.8, 99.7) 1.000

Specificity, % 95.8 (92.0, 98.2) 94.8 (90.63, 97.5) 100 (98.1, 100) 0.008

Benign nodules

AUC 0.914 (0.787, 1.000) 0.865 (0.711, 1.000) 0.139

Sensitivity, % 77.8 (40.0, 97.2) 66.7 (29.9, 92.5) 55.6 (21.2, 86.3) 0.500

Specificity, % 99.5 (97.1, 100) 99.5 (97.1, 100) 98.4 (95.5, 99.7) 0.625

HCC

AUC 0.925 (0.871, 0.978) 0.879 (0.813, 0.9452) 0.137

Sensitivity, % 87.2 (74.3, 95.2) 74.5 (59.7, 86.1) 87.2 (74.3, 95.2) 1.000

Specificity, % 91.6 (86.0, 95.4) 86.4 (79.9, 91.4) 94.8 (90.0, 97.7) 0.267

Metastatic malignancy

AUC 0.897 (0.828, 0.966) 0.841 (0.758, 0.923) 0.039

Sensitivity, % 59.6 (42.1, 75.3) 40.5 (24.8, 57.9) 89.2 (74.6, 97.0) 0.003

Specificity, % 97.6 (93.9, 99.3) 97.0 (93.0, 99.0) 97.6 (93.9, 99.3) 1.000

Primary malignancy except HCC

AUC 0.899 (0.793, 1.000) 0.892 (0.783, 1.000) 0.844

Sensitivity, % 53.3 (26.6, 78.7) 46.7 (21.3, 73.4) 60.0 (32.3, 83.7) 0.688

Specificity, % 97.9 (94.6, 99.4) 96.8 (93.1, 98.8) 96.2 (92.4, 98.5) 0.727

aP-value was calculated between Model A (seven-classification) vs. Reader consensus using the McNemar’s test.

all predicted correctly, indicating that the network performs
well in differentiating high-risk cirrhosis nodules from HCC.
Two wrongly predicted cases of benign nodules were confirmed
as bile duct adenoma (predicted HCC) and angiomyolipoma
(predicted HCC), respectively (Figure S3). HCC false negative
cases possessed some common features, such as small tumor
sizes or being highly differentiated (Figure S4). Those wrongly
predicted cases were associated with a lack of enough similar
cases in the training set, which may mean the network was not
fully trained.

The internal features learned by the CNN using t-SNE (t-
distributed Stochastic Neighbor Embedding) (36) were examined
(Figure 3). Each point represents a group of liver tumor
images from six different sequences projected from the 2048-
dimensional output of the CNN’s last hidden layer into two
dimensions. For benign tumors, we observe clusters of points
of the same clinical category clustered together (Figure 3A),
whereas the point distributions of three categories of malignant
tumors were not very clearly separated, which is consistent
with the observation in the statistical indicators. Figure 4 shows

saliency maps that identify the pixels on which the Inception-
ResNet V2 model was fixating its attention on for prediction.
As is seen, the network fixates most of its attention on the liver
lesions themselves and ignores the background, which is in line
with the clinical implication that the lesion and nearby region
are more informative of diagnosis. However, the patterns are
not specific enough to extract traditional radiologic features,
and overall, the saliency map suggests that the deep learning
model considered the most important regions when making the
prediction, as presented in Figure 4.

Deep-Learning Models in Malignancy
Diagnosis
Model D was trained on the more challenging task of
distinguishing benign and malignant tumors using only using
three unenhanced sequences, which exhibited comparable
performance to Model C with six sequences. Validated in the
independent set, the AUC value was 0.946 (95% CI 0.914–
0.979) for Model D and 0.951(95% CI 0.919–0.982) for Model
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FIGURE 3 | Illustration of classifiers learned by deep-learning projected to 2 dimensions for visualization via the t-SNE algorithm using values of the last fully

connected layer in the CNNs of the validation set. (A–C), Scatterplots where each point represents an image of lesions and the color represents the true category,

show how the algorithm clusters. (A), Model A: seven-way classifier with six sequences images, shows that seven clusters of the same clinical classes, and we can

see benign tumor clusters are better than that of three malignant tumors. The purple point clouds(benign nodules) are effectively divided from red point clouds (HCC).

(B), Model E: three-way classifier with six sequences images for malignant tumors. (C), Model G: three-way classifier with three sequences images and clinical data

for malignant tumors, shows that three different color point clouds are more effectively clustered than Model E. (D) Insets of T2 images show some categories. (i),

Hepatocellular carcinoma (ii), Metastatic malignant tumors from pancreas (iii), Intrahepatic cholangiocarcinoma (iv) DN that are difficult to identify with HCC. (v)

malignant fibrous histiocytoma represented by outlier point clouds of c(d,v).

C, but two ROC curves exhibited no significant difference in
Delong’s test (P = 0.664), which demonstrated that Model
C and Model D have similar performances (Figure 2C). The
sensitivity of Model C and Model D was 91.9% (95% CI
84.7–96.5%) and 90.9% (95% CI 83.4–95.8%), respectively,
which were slightly lower than 99.0% (95% CI 94.5–100%) of
reader consensus, but did not reach statistical significance (P
= 0.375 and 0.219, respectively, estimated by the McNemar’s
test using binomial distribution). Specificity of Model C and
Model D also had no significant difference compared with
consensus (P = 0.549 and 0.754, respectively) (Table 2). In
Model D, 93.6% (44/47) of HCC was correctly predicted as
a malignancy, while the whole seven individuals of RN/DN
nodules were all correctly predicted as benign. It showed that
the network without enhanced images can effectively differentiate
malignant from benign tumors, even for HCC and high-risk
cirrhosis nodules that are difficult to distinguish in traditional
HCC diagnostic imaging frameworks, such as LI-RADS, in the
absence of contrast agents. As for atypical HCC that were
wrongly predicted (very small lesions, benign tumors with
carcinogenesis, highly differentiated, etc.), more cases for training
are needed.

Deep-Learning Models in Three-Way
Classification Diagnosis for Malignancy
An approach that joined clinical data to CNN resulted in a much

higher performance in Model F and Model G (Figures 2E,F,

Table 3). The AUCs of Model G improved to 0.985 (95%
CI 0.960–1.000, HCC), 0.998 (95% CI 0.989–1.000, metastatic

malignancy), and 0.963 (95% CI 0.896–1.000, other primary

malignancy), which were significantly better than those of 0.881

(95% CI 0.810–0.951), 0.833 (95% CI 0.745–0.922) and 0.780

(95% CI 0.636–0.925) in Model E (Figure 2D) with six sequences

(P-values of 0.002, 0.0002, and 0.008, respectively). However, no

statistical significance was observed in each category between

Model F and Model G (P-values of 0.002, 0.0002, and 0.008,

respectively), which demonstrated that after adding clinical data,

classifiers with six sequences and three sequences had similar

performances. Sensitivity and specificity of each category in

Model G had no statistical significance compared with those

of reader consensus (Table 3). Among three categories, the

latter two included many specific tumors from different sites

and histopathological sources (Table S2). The CNN network

with the new approach is highly inclusive with the tumor type
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FIGURE 4 | Saliency map for example images from seven categories of the validation set and a special case which not appeared in training set. These maps reveal

the pixels that most influence a CNN’s prediction. Saliency maps show the pixel gradients with relative to the CNN loss function. Darker pixels represent pixels with

greater influence. Clear correlation between lesions and saliency maps are revealed. We selected T2 image as the original control, the middle is reconstructed image

of three sequences (the left column is from three plain scan sequences, the right column is from three enhanced sequences), the right is a corresponding saliency

map. (A) cyst, (B) FNH, (C) hemangioma, (D) benign nodule, (E) HCC, (F) primary adenocarcinoma, (G) metastatic malignancy originating from pancreas, (H)

malignant fibrous histiocytoma, which still gains a good display although this rare type did not appear in the training set.

complexity. From t-SNE visualization of the last hidden layer
representations of Model G andModel E (Figures 3B,C), clusters
of points which belonged to the same clinical category were
better gathered together in Model G than Model E, therefore,
this also demonstrated that the modified end-to-end CNN with
unenhanced images and clinical data as collaborative inputs
achieves better classification performances than the network
using enhanced images.

Consistency Evaluation Between
Models/Radiologists and Gold Standard
The agreement was then measured comparing deep-learning
models, and the radiologists’ consensus with the

pathological/formal reports using Cohen’s Kappa statistic

(Table 4). It was observed that the agreement of all deep-learning

models and radiologists with pathological/formal reports reached

statistical significance (P < 0.01, estimated by the two-sample

two-tailed z-test score), indicating the consistency between

them. According to the interpretation Cohen suggested about

the Kappa results (34), Model A had substantial consistency
(kappa > 0.6), while Model C, Model D, Model E, and Model
F had almost perfect consistency compared with the gold
standard(kappa > 0.8). Regarding time spent, it can take
a radiologist several minutes to analyze a patient’s imaging
depending on the difficulty of each individual, but deep-learning
models just need a few seconds.
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TABLE 2 | Diagnostic performance of binary classifiers and radiologists in the validation set.

Value (95%CI) McNemar’s P-value Delong P-value

Model C Model D Reader consensus Model C vs. Reader Model D vs. Reader Model C vs. Model D

AUC 0.951 (0.919, 0.982) 0.9416 (0.914, 0.979) 0.664

Sensitivity, % 91.9 (84.7, 96.5) 90.9 (83.4, 95.8) 89.1 (76.4, 96.4) 0.375 0.219

Specificity, % 94.1 (87.6, 97.8) 94.1 (87.6, 97.8) 90.4 (79.0, 96.8) 0.549 0.754

TABLE 3 | Diagnostic performance of three-way classifiers and radiologists in the malignancy validation set.

Value (95%CI) McNemar’s P-Valuea Delong P-Value

Model E Model F Model G Reader

consensus

Model G vs.

Reader

Model E vs.

Model G

Model F vs.

Model G

HCC

AUC 0.879 (0.808, 0.949) 0.972 (0.938, 1.000) 0.951 (0.906, 0.997) 0.002 0.792

Sensitivity, % 93.6 (82.5, 98.7) 95.7 (85.5, 99.5) 95.7 (85.5, 99.5) 89.1 (76.4, 96.4) 0.289

Specificity, % 67.3 (52.9, 79.7) 96.2 (86.8, 99.5) 90.4 (79.0, 96.8) 90.4 (79.0, 96.8) 0.063

Metastatic malignancy

AUC 0.814 (0.722, 0.907) 0.980 (0.947, 1.000) 0.985 (0.958, 1.000) 0.0002 0.403

Sensitivity, % 59.5 (42.1, 75.3) 100 (90.5, 100) 94.6 (81.8, 99.3) 89.2 (74.6, 97.0) 0.688

Specificity, % 93.6 (84.3, 98.2) 96.8 (88.8, 99.6) 100 (94.2, 100) 95.1 (86.3, 99.0) 1.000

Primary malignancy except HCC

AUC 0.761 (0.613, 0.909) 0.989 (0.951, 1.000) 0.905 (0.801, 1.000) 0.008 0.081

Sensitivity, % 53.3 (26.6, 78.7) 86.7 (59.5, 98.3) 73.3 (44.,9 92.2) 60.0 (32.3, 83.7) 0.688

Specificity, % 95.2 (88.3, 98.7) 100 (95.7, 100) 96.4 (89.9, 99.3) 91.6 (83.4, 96.5) 0.250

aP value was calculated between Model G (three-sequence images + clinical data) vs. Reader consensus using the McNemar’s test.

TABLE 4 | Consistency analysis of models and radiologists compared with

pathological or formal report.

Accuracy Kappa Z score P-Value

Model A 79.1 (72.8, 84.5) 0.744 22.9 <0.01

Model B 71.1 (64.4, 77.3) 0.649 20.0 <0.01

Model C 93.5 (89,2, 96.5) 0.861 12.2 <0.01

Model D 93.0 (88.6, 96.1) 0.851 12.1 <0.01

Model E 72.7 (62.9, 81.2) 0.541 7.31 <0.01

Model F 93.9 (87.3, 97.7) 0.901 11.8 <0.01

Model G 91.9 (84.7, 96.5) 0.867 11.4 <0.01

Reader 1 88.1 (82.8, 92.2) 0.853 25.7 <0.01

Reader 2 77.1 (70.7, 82.7) 0.723 22.8 <0.01

Reader 3 84.6 (78.8, 89.3) 0.810 24.4 <0.01

Reader consensus 86.1 (80.5, 90.5) 0.829 25.1 <0.01

DISCUSSION

The findings of the current study show the feasibility and
potential superiority of the integrated DLS in liver tumor
MRI diagnosis in clinical situations. Deep learning achieves a
performance on par with experienced radiologists in classifying

liver tumors to seven categories. Utilizing unenhanced sequences,
DLS can distinguish malignant from benign tumors, and then
by combining medical texts and laboratory test results lead
to a precise diagnosis for malignant tumors, even better
than three experienced radiologists who have considered
enhanced sequences. To the best of our knowledge, this is
the largest study in the field of deep-learning-guided liver
tumor diagnosis based on MR images worldwide, which has
the most variable types of focal liver lesions (only inflammatory
lesions excluded).

Evaluations of MR images by radiologists are generally
subjective and are possibly influenced by their experience to
an extent (40), even in LI-RADS which is majorly applicable
to patients at high risk for HCC. Deep learning models
have advantages in overcoming these problems. CNNs learning
feature representations with an automated procedure and the
interpretation maintains consistency and, therefore, diagnostic
reproducibility. Thus, for developing countries such as China
or other undeveloped countries, where there is an unbalanced
distribution of medical resources between urban and rural
areas, the deep-learning models could help in bridging the
diagnosis gap of MRI between national hospitals and primary
care hospitals, which can also be served as a quick and
reliable opinion for junior radiologists in the diagnosis of
hepatic lesions.
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The confusion matrix (Figure S2) shows that both the
seven-way classifier and doctors have poor performances in
malignant classification, especially with HCC and other primary
malignancies that are difficult to distinguish from each other,
which may be because that intrahepatic cholangiocarcinoma
have some similar imaging manifestations with HCC. It is
worth noting that some rare types, such as malignant fibrous
histiocytoma which belongs to other primary malignancies, have
not been fully studied in the training set due to a lack of sufficient
cases. The same situation exists with metastatic tumors with
different origins such as pancreatic neuroendocrine cancer, lung
squamous cell carcinoma, and so on. The inclusion of these
individuals to the study reduced the diagnosis efficacy of the
model, however, considering the clinical application scenarios,
we did not exclude these individuals. After adding clinical data,
the performance of three-way CNNs are greatly accelerated
with an accuracy over 90%, which is better than radiologists,
even in the model utilizing unenhanced sequences. Moreover,
the binary CNN with unenhanced images exhibits almost the
same performance with that using enhanced sequences and the
prediction accuracy for seven RN/DN and HCC achieved 100%
and over 90%, respectively. These results indicated that deep
learning can mine more information in unenhanced sequences
and clinical data to make judgments than human experts.
Therefore, CNN has the potential ability to use non-contrast MRI
to make diagnoses of liver tumors, even for high-risk cirrhotic
nodules. This advantage could protect patients from potential
gadolinium unsafety, especially for those allergic to contrast
agents or those who cannot tolerate it with liver or kidney
failure. Considering the high expenditure of gadolinium and
hepatobiliary contrast agents, non-contrast MRI could be served
as a potential cost-effective screening and surveillance tool (12)
for high-risk patients under the assistance of DLS. More patients
with cirrhotic nodules and small HCCs will be included in future
multi-center prospective collaborative research and the DLS will
be further validated.

In addition, two false negative cases in puncture biopsies were
selected to be validated separately, which were not included in the
training or test set. Combined with the patient’s medical history
and blood test results, they were still considered as malignant and
were verified in subsequent treatment (Figure S5). But the seven-
way CNNs and binary CNNs suggested they were malignant.
Image-based features represent the phenotype of the entire tumor
in three dimensions and not just the portion that was punctured
for pathological testing (11, 17), and thereby can assess the
condition of the entire lesion and yield more comprehensive and
accurate results (41), which is another advantage of CNN-based
image recognition.

Many previous studies have gained impressive achievements
in medical image classification using deep neural networks,
such as in the classification of skin cancer (20), lung cancer
screening (21), diabetic retinopathy examination (22), liver
fibrosis assessment (42–44), etc. However, owing to the diversity
and complexity of liver masses, there are only a few studies
(16) that applied deep learning for multi-classification of liver
tumors using CT (23) and MRI (16, 24, 25). Hamm et al. (16)
selected six common specific hepatic lesion types (n = 494

patients) and utilized enhanced sequences to train the model.
The model was not validated in an independent set. The study
of Yamashita et al. (25) was also based on enhanced sequences
in a small dataset. Whereas, our study evaluated the value of
non-enhanced sequences (T2, diffusion, T1 pre-contrast) and
achieved good performances in a binary model, which has the
potential to reduce high costs and the risk of contrast-related
side effects. Moreover, different from all previous studies, we
modified the input layer to receive a variety of data input and
used the concatenate operation to combine image features with
clinical data features, and then classified liver tumors through
a fully connected layer. This end-to-end deep learning model
with clinical data and images can fully utilize comprehensive
information to improve diagnostic performance.

The DLS is applicable for patients with all types of liver
tumors, except inflammatory lesions. The MR images used in the
study were gained from different MRI scanners and acquisition
protocols, which contributed to increased data diversity and
heterogeneousness in training the algorithm and demonstrated
the robustness of models. Therefore, once the DLS is established,
radiologists just need to perform a standardized selection of
ROI for liver tumors on a T2 sequence in the daily workflow
of MRI reading to conduct such analysis, which is extremely
convenient and timesaving for clinical applications. We are
working on constructing a cloud-based multi-institutional
artificial intelligence platform and a user-friendly website to
provide freely accessible telemedical assistance for clinicians to
accelerate the interpretation of MR images, meanwhile, to collect
the related follow-up pathological information and feed it back to
DLS so as to continuously improve its performance.

Our study has several limitations, which should be
acknowledged. First, the study is a single-center retrospective
study, although the validation set has maximally simulated the
scenario of a clinical practice, multicenter prospective research is
still necessary to evaluate performance in a real-world, clinical
setting. Second, more patients with some specific types of focal
liver diseases (RN, DN, small HCC, HCC without pathology,
inflammation, etc.) need to be included in future training, in
order to be applicable across the full distribution and spectrum
of lesions encountered in a clinical practice. Third is a potential
problem for medical applications about the interpretability of
“black box” algorithms (45). In the current study, darker pixel
regions in the saliency map and clusters of point clouds in t-SNE
revealed that CNN prediction at least follows some aspects of
human expert knowledge, which can be seen as an application
of interpretable deep-learning on multimodal medical data,
in addition, research into explainable AI and evaluation of
interpretability is occurring at a rapid pace (46, 47).

In the future, we would ideally include some types of
less common liver masses, such as abscesses, adenomas, rare
malignancies, etc. Importantly, further high-quality, prospective,
multicenter studies will also be performed, especially for high-
risk patients with cirrhosis. For these patients, the main
differentials for small HCC are benign regenerative/ dysplastic
nodules and pre-malignant nodules. These are quite challenging
clinically. This is an inherent problem in retrospective liver
nodule research as most of these will not be confirmed
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histologically, however many of these nodules when followed
turn out to have been early malignancy. Therefore, early
diagnosis of these premalignant nodules may be the most
important value that deep learning networks can offer over
human experts, which would have to be explored by a rigorously
designed prospective study. On the other hand, we will explore
the utilization of more ideal data visualization tools (46–48) to
allow further degrees of visual understanding of how algorithms
make decisions, through identifying relevant imaging features
and showing where these features are found on an image, so as
to make the “black box” more transparent.

CONCLUSIONS

In summary, we have developed a deep learning-based system
which can supply a reliable and timesaving assisted diagnosis
in a clinical setting by classifying liver tumors on MRI to
seven categories with high accuracy. Meanwhile, it can use non-
enhanced MRI to distinguish malignant tumors from benign
tumors, and, after adding clinical data, it can provide accurate
classification and diagnosis for malignant tumors, which could
avoid contrast-related side effects and reduce costs. The DLS was
trained with data in a various acquisition condition, and this
classification system covers most types of liver tumors, which is
unprecedented. All of these suggested a good potential of DLS for
clinical generalization. Further prospective multicenter studies
in larger patient populations and high-risk cirrhosis patients are
still needed.
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Figure S1 | Flowchart of the procedures in the selection of training and validation

set.∗Lesion-related treatment included surgery, transcatheter arterial

chemoembolization, radiofrequency ablation, chemotherapy, radiotherapy,

targeted drug therapy, etc. Number of patients with typical malignant imaging

performance and in advanced stages without surgical indications, usually received

therapy directly without biopsy. Reasons for exclusion included a unified method

for preprocessing resulted in some images not being of a good enough quality

owing to different parameters in multiple sequences of multiple machines from

different manufacturers. For patients in the follow-up, 82 individuals were reviewed

by ultrasound or radiology inspection in the following 6–10 months from the

current examination date, and the diagnosis remains consistency.

Figure S2 | Confusion matrix comparison between CNNs and radiologists. These

show the number of patients for each class of gold standard and predicted class.

The number of patients who were correctly predicted are found on the diagonal.

(A) Confusion matrices for Model A and radiologists for the seven-way

classification task in the validation set reveal similarities in misclassification

between human experts and the CNN; confusion matrices for Model B, which

performance is inferior to Model A. (B) Confusion matrices for Model E,F,G and

radiologists for the three-way classification task in new validation set reveal the

CNN with clinical data achieve higher performance than experienced experts.

Figure S3 | Example HCC false positive cases. (i), Epithelioid angiomyolipoma. (ii),

Bile duct adenoma. (A) T2WI (B) DWI (C) Precontrast-T1WI (D) late arterial phase

(E) portal venous phase (F) equilibrium phase.

Figure S4 | Example HCC false negative cases. (i). Hepatocellular adenoma with

carcinogenesis. (ii), small hepatocellular carcinoma. (A) T2WI (B) DWI (C)

Precontrast-T1WI (D) late arterial phase (E) portal venous phase (F)

equilibrium phase.

Figure S5 | Example false negative case in puncture biopsy report, actually

positive in clinical assessment and verified in subsequent treatment. (A–E)

T2-Weighted image of a lesion in the same section (A) Jan 14, 2017,

histopathology report after biopsy showed: Nodular cirrhosis. But combined with

history and tumor indicators, it was still considered that the risk of malignancy was

extremely high and TACE was given. (B,C),The second and third TACE were given

in Feb 23, 2017 and May 18, 2017, the lesion shrunk enough to almost disappear.

(D,E), The lesion enlarged by the follow-up on Nov 21,2017 and Jan 18, 2018,

which suggested it was a malignant tumor. (F,G) T2-Weighted image of the lesion

of another case. Histopathology report after biopsy showed: Fibrous tissue

hyperplasia, a small amount of shed atypical cells were seen. MRI report showed:
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Liver cancer with intrahepatic metastasis, left and right intrahepatic portal vein

tumor thrombus. With comprehensive consideration, this case is a malignant

tumor, but the local biopsy leads to a negative result because of partial necrosis of

the lesion.

Table S1 | Baseline characteristics of the training and validation set.

Table S2 | Disease distribution of each category in the training and

validation cohort.

Table S3 | Medical text and laboratory data coding table.

Table S4 | Imaging parameters in various sequences of magnetic

resonance imaging.
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