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Glioblastomamultiforme (GBM) remains an incurable condition, associated with amedian

survival time of 15 months with best standard of care and 5-year survival rate of <10%.

We report on four GBM patients on combination treatment regimens that included

oncolytic virus (OV) immunotherapy, who achieved clinical and radiological responses

with long-term survival, thus far, of up to 14 years, and good quality of life. We discuss the

radiological findings that provide new insights into this treatment, the scientific rationale

of this innovative and promising therapy, and considerations for future research.
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INTRODUCTION

Glioblastomamultiforme (GBM) represents∼50% of adult primarymalignant brain tumors, which
occur at an annual incidence of 2–3 per 100,000 adults (1), and is the most common cause of death
among patients with central nervous system tumors. The standard treatment regimen includes
resection followed by radiation and chemotherapywith temozolomide (TMZ) (2). Notwithstanding
this aggressive approach, the median life expectancy for GBM patients is only 15 months (3), with
limited treatment response after recurrence (4); only 5–10% of patients live for more than 5 years
(5). With such a dismal prognosis, the need for new therapeutic approaches for GBM is significant.

For over a century, there have been anecdotal reports describing the coincidence of various
viral or bacterial infections with tumor remission among cancer patients (6). Oncolytic viruses
(OVs) have been characterized and defined as preferentially replicating in tumor cells and inducing
their death while sparing normal cells (7). In addition to the direct lytic effect of OVs on
tumor cells, a strong virus-activated innate and adaptive immune response contributes to the
overall therapeutic outcome. These responses can overcome immunosuppressive forces in the
tumor microenvironment, ultimately shifting “cold” tumors to “hot” tumors (8). The release
of tumor-associated antigens and induction of immunogenic cell death subsequently stimulate
anti-tumor immune responses with potential for long-lasting tumor control (9). Some OVs also
infect tumor-associated endothelial cells, resulting in breakdown of the tumor vasculature and
subsequent necrosis of uninfected tumor cells (10). Tumor cell preference for OV propagation is
based on oncogenic signaling pathways or defects in innate antivirus responses frequently seen in
malignant cells (11, 12). Recent years have seen significant breakthroughs in OV engineering, which
has generated OVs encoding proteins that enhance their tropism for tumor cells (13–15).
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While the first OV-based immunotherapy (virotherapy) has
gained US Food and Drug Administration (FDA) and European
Medicines Agency (EMA) approval for treatment of melanoma
(16), oncolytic virotherapy for other tumor types is at various
stages of clinical testing (17). Over the past three decades, OVs
from >15 families have been preclinically assessed as potential
treatment modalities for glioblastoma (18). Among these, nine
have been included in numerous clinical trials (19). Importantly,
these studies confirmed the general safety of OV application
for brain tumors, with serious adverse effects rarely occurring.
Durable complete responses were shown in up to 20% of patients,
and regulatory fast-track designation by the FDA has been
awarded to DNX-2401, Toca511, and PVS-RIPO (19).

Although the initial response is geared toward antiviral
defense, the OV-elicited immune activation plays a major role
in the therapeutic outcome (20). Consequently, virotherapy
has gained significant attention as a partner for other
immunotherapeutic approaches, such as dendritic cell
(DC) therapy, cancer vaccines, T-cell therapies and immune
checkpoint inhibitors (CPI) (21–23). CPIs selectively target
immune inhibitory signals that contribute to the immune
suppressive tumor environment, and thereby reinvigorate
anti-tumor T-cell responses. CPIs have been shown to be
particularly effective in combating tumors that are hypermutated
or with specific neoantigen signatures (24), including recurrent,
multifocal biallelic mismatch repair deficiency (bMMRD)-
associated GBM (25). Tumoral OV infection precipitates
endogenous DC migration and activation, which elicit a shift
toward antitumor immunity. DC-based immunotherapies have
been proposed to synergize with OVs (21, 26).

This case series presents the clinical and radiological
outcomes of four patients with histologically-confirmed GBM
treated with experimental combination virotherapy regimens as
compassionate treatment. Given the nature of this early clinical
experience and significant socio-economic factors, different
exploratory treatment regimens involving a range of generically
available OV strains were used. These cases are instructive for
documenting clinical and radiological responses to virotherapy
as an important basis for developing standardized and improved
protocols for future clinical research.

CASE PRESENTATION

Informed consent for publication was obtained from all patients
in this case series. Regulatory approval for compassionate use was
within the framework of the German Individueller Heilversuch.
Patients were treated with individualized regimens comprised
of three OVs: wild-type Newcastle disease virus (NDV)
(Wageningen University, Netherlands), wild-type parvovirus
(PV) (University Marburg, Germany), and wild-type vaccinia
virus (VV) (Paul Ehrlich Institut Berlin, Germany). Each virus
was used at a clinical dosage level of 109 TCID50 (tissue culture
infectious doses), as quantified by virus-specific cell-culture
assays. Viruses were prepared for clinical use in conditioned cell
culture medium that had been clarified by centrifugation, diluted
to final TCID50 level as needed, sterile-filtered, stored frozen, and

thawed on the day of injection. Viruses were injected to patients
at intervals of ∼2–3 weeks, administered by sequential 10mL
injections via the same catheter. A summary of the treatments
and clinical and radiological presentations of the four patients is
shown in Table 1 and Figure 1.

Patient 1
A previously healthy 33-year old woman presented in July
2005 (7/05) with slurred speech and left-arm weakness. CT
studies showed a space-occupying lesion (SOL) in the left
parietal lobe. Following total surgical resection (8/05), full
neurological recovery was observed and corresponded with
no radiological evidence of disease (NED) in the post-
surgical MRI. Retrospective pathological evaluations revealed
wild-type sequences for both isocitrate dehydrogenase 1 and
2 (IDH1/2) and O6-methylguanine-DNA methyltransferase
(MGMT) promoter. Routine postoperative radiation (60Gy)
combined with oral TMZ (75 mg/m2/d for 42d) (12/05-1/06)
was discontinued after 20 (instead of the usual 30) doses due to
severe thrombocytopenia (6,000∗109/L) and extreme weakness
(3/06). OV therapy was initiated (5/06) and administered via
an intraarterial (IA) port system implanted end-to-side into the
carotid artery. The patient remained stable with normal quality
of life (QoL) and NED for 3.5 years after initiation treatment,
which was discontinued due to pregnancy (10/09). After an
uneventful pregnancy, she gave birth to a healthy baby. After
a normal QoL for 6 years, she presented (6/15) with blurred
vision, headache, stuttering, right hemiplegia, paranesthesia,
hemianopsia, Jacksonian seizure, confusion, and disorientation
in space and time. MRI (6/15; Figure 1A) confirmed relapse
in the left parietal lesion measuring 9 × 7 × 15mm. OV
therapy was initiated (7/15) and resulted in prompt clinical
improvement, including resolution of seizure activities and EEG
findings of Jacksonian seizures. MRI (11/15) showed shrinkage
of the tumor to 6 × 7 × 8mm (Figure 1A). Virotherapy was
continued with combinations of various viruses and switched
(3/16) to IV administration due to complications with the IA
port system. The patient has remained stable for 4.5 years after
initiating the second phase of OV and 14.5 years after initiating
OV treatment.

Patient 2
A previously healthy 54-year-old woman presented with grand-
mal seizures and left hemiplegia. She had gross surgical resection,
and the tumor was found to be MGMT promoter methylation-
positive. She received routine treatment (2/11) with radiation
(60Gy) and TMZ (75 mg/m2/d for 42 d, followed by 200 mg/m2

for 5 days/month). Full neurological recovery was observed.
She relapsed radiologically, with an MRI (11/11) showing an
irregular right frontal enhancing lesion (25 × 11 × 5mm). The
lesion did not respond to a second round of radio-chemotherapy,
and clinically she progressed to left hemiplegia. There was
no response to second-line chemotherapy with lomustine (110
mg/m2, Day 1/42) and procarbazine (60 mg/m2, Days 8–21/42),
which was discontinued due to thrombocytopenia. The lesion
grew rapidly (12/11; Figure 1B) to 29 × 18 × 25mm and
was accompanied by clinical deterioration. The patient then
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FIGURE 1 | Radiological follow-up of GBM tumors treated with oncolytic

virotherapy. (A) Patient 1 was diagnosed with GBM in 7/05 and underwent

total surgical resection in 8/05. OV therapy was initiated in 5/06 and given for

3.5 years, after which patient remained with NED for 6.0 years. Recurrence in

the left parietal lobe appeared on sagittal T1 contrast-enhanced images in

6/15 (left). The patient improved clinically after renewing OV alone. Five months

thereafter, lesion shrinkage was observed (right). (B) Patient 2 was diagnosed

with GBM in 10/10, underwent surgical resection and chemoradiotherapy.

Relapse occurred (12/11) in the right frontal lobe (left image top row, T1

contrast enhanced images), with clinical deterioration. OV therapy was

initiated. Follow-up imaging showed shrinkage until disappearance of the

pathological enhancement. Concurrent to OV therapy and shrinkage, multiple

scattered FLAIR hyperintense foci (with and without enhancement) were seen

(bottom row, FLAIR images, yellow circle), possibly an immune-mediated

response. (C) Patient 3 was diagnosed with a right temporal lesion (1/11;

left image, T1 post contrast), underwent surgical resection and

chemoradiotherapy, and no residual tumor mass was seen (9/11). Relapse

occurred (6/12; red arrow), and following a second resection, OV therapy was

initiated. The patient has no residual tumor (7/15; right image) and has

remained with no radiological or clinical evidence of disease. (D) Patient 4

was diagnosed with GBM (10/15) and underwent resection and

chemoradiotherapy. Following relapse in the surgical bed (5/16; yellow arrow,

left image of T1 contrast enhanced images), OV was initiated. The focus of

pathological enhancement decreased in size until disappearance (1/17).

Concurrent PET-MRI images (bottom row) showed hypermetabolic activity

even while Gd enhancement was decreasing.

TABLE 1 | Clinical summary of GBM patients undergoing OV therapy.

Patient 1 Patient 2 Patient 3 Patient 4

Age (y) at

diagnosis

33 54 43 46

Sex F F M M

MGMT

hypermethylation

Negative Positive Negative Negative

IDH1/2

status

Wild Type n.a. n.a. Wild Type

Duration of

Tx (y)

3.5 (break

of 6 y) + 4.5

5.0 >7 >3.5

OS from

Diagnosis

14.5 y (alive) 6 y (died 12

months after

stopping OV)

8.5 y (alive) >4 y (alive)

DC + – + –

Radiology NED 10 y;

relapse:

PPG and

shrinkage;

SD 3 y

PPG and slow

shrinkage =>

CR; NED

NED since

Tx

Resolution of

residual

disease →

NED

Comments Relapsed 6

y after Tx;

PR after

renewal of

Tx

Discontinued

Tx after 5 y;

relapsed; died

within 1 y.

NED since Tx

CR, complete response; DC, dendritic cell therapy; NED, no evidence of disease; OS,

overall survival; OV, oncolytic viruses; PPG, pseudo-progression; PR, partial response;

SD, stable disease; Tx, treatment.

started IA OV treatment. Hemiplegia improved clinically 3
weeks after initiating OV therapy, although surveillance MRI
1 month after OV therapy (1/12; Figure 1B) showed an initial
increase in tumor size to 30 × 32 × 30mm, compatible with
either true progression or pseudo-progression. However, follow-
up MRI scans were compatible with central necrosis, followed
by a slow decrease in the size of the enhancing lesion, until
no radiological evidence of disease was seen (9/14; Figure 1B).
Fluid-attenuated inversion, recovery (FLAIR) images captured
during OV treatment showed multiple diffuse foci of FLAIR
abnormalities (without clinical embolic causes, such as atrial

fibrillation). For socio-economic reasons, the treatment protocol

was modified to longer treatment intervals; the patient remained
stable with NED. Five years from diagnosis, she decided to

discontinue treatment for economic and psychological reasons.

She then deteriorated clinically and radiologically and died 12
months later.

Patient 3
A previously healthy 43-year-old man complained for 2 months

of increasing headaches and weakness of his left leg. MRI

(1/11) showed a SOL in the right temporal lobe (48 × 42

× 36mm), which was surgically resected. Histology revealed

MGMT-negative GBM. After standard chemo-radiation with

TMZ (75 mg/m2/d for 42 d), he received five additional cycles

of TMZ (200 mg/m2/d × 5 d/month) and recovered clinically.

Follow-up MRI showed radiological relapse (13 × 10 × 10mm)
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in the initial tumor bed (6/12; Figure 1C), and subsequently he
underwent another surgery. Postoperatively, he refused further
chemo-radiation and started OV treatment instead (8/12), which
he continues to receive. The patient works, enjoys a normal QoL,
and remains radiologically stable with NED (7/15; Figure 1C) for
8.5 years from initial diagnosis.

Patient 4
A previously healthy 46-year-old male presented with right
hemiparesis and unstable gait. MRI detected a left superior
fronto-parietal SOL, which was surgically resected (10/15),
resulting in clinical recovery. Pathology confirmed GBM with
wild-type IDH. Despite negative MGMT, standard chemo-
radiation with TMZ was given. Follow-up MRI showed
suspicious findings of radiological relapse, with nodular
enhancement, superior and inferior to the surgical bed
(5/16; Figure 1D). Thus, the patient decided to proceed
with monthly OV therapy. While remaining clinically
asymptomatic, conventional MRI studies showed continued
resolution of pathological enhancement over the next
12 months (8/16–12/17; Figure 1D). Interestingly, PET-
MRI scans (8/16; 1/17; Figure 1D, bottom row) revealed
diminishing gadolinium (Gd) enhancement and relatively
stable hypermetabolic activity until disappearing during
virotherapy (5/17). The patient remains clinically stable,
conducts full physical work, and enjoys normal QoL >4 years
after diagnosis.

DISCUSSION

The four presented GBM cases, all of which relapsed after
standard treatments, benefited from treatment with various
OV strains. The patients achieved complete response or stable
disease, with long-term overall survival ranging between 4
and 14 years. Oncolytic virotherapy was well-tolerated and
enabled improved QoL for years after its initiation. While the
nature of this case presentation precludes a direct comparison
to empiric median survival rates (5), the prolonged survival
shows the potential of OV therapy for the management of
GBM. These promising observations, corroborated by well-
documented radiological responses, justify further development
of standardized protocols for clinical trials in GBM patients.
Combination therapy, integration of various types of OVs,
and extended duration of treatment after full radiological
response must be carefully considered, given that late relapse
can occur (patients #1 and #2) despite NED in radiological
surveillance. The choice of OV types, dosage and treatment
frequency for each of the four patients was personalized, based
on clinical responses to virotherapy (mainly body temperature,
rash or clinical improvement) as well as socioeconomic
factors. Despite these significant limitations of non-standardized
treatment regimens and the very small number of patients,
the radiological evidence and promising clinical outcomes
illustrate the contribution of OV to GBM management, even
at an advanced stage. As is the case of many protocols in
oncology, different regimens can be clinically effective. Due to
the heterogenicity of the four individual regimens administered,

it is not yet possible to define the critical component(s) for
future clinical study protocols. For example, regarding DC
administration, patients #2 and #4 showed a good response
without DCs, suggesting that DCs could be excluded from
future protocols.

Monitoring tools remain to be established and optimized
to quantify the “virogram,” tumor tissue OV sensitivity,
viremia levels, circulating tumor cells and tumor biomarkers
in the cerebrospinal fluid, immune responses to the OVs, and
radiological observations monitoring responses to OV. Most
importantly, monitoring specific immune profiles before and
after OV immunotherapy might detect a modulation of the
immune system indicative of activation of anti-tumor immune
responses. Indeed, long-term survival among GBM patients has
been correlated with improved immune status (27–29), which
might explain the apparent success of OV immunotherapy in
managing GBM.

At the time of initial diagnosis, brain micro-tumors are
present. Thus, even advanced surgical techniques can provide
only limited disease control, which might account for short-
term extension of patient lifespan but with little impact on long-
term survival. Current standard therapy leads ideally to minimal
residual disease (MRD), which inevitably results in relapse.
Consequently, future clinical trial designs should administer
OV immunotherapies immediately following initial standard
treatment with surgery and chemo-radiation, at which point
patients are closest to MRD (30).

Future radiological protocols should place more focus on
documenting unique immune responses such as those identified
in the presented cases. Punctate foci with abnormal enhancement
and FLAIR signals were seen in patient 2, both adjacent
to as well as distant from the relapse site, a few months
after initiation of OV therapy. MRI of patient 4 showed
decreased pathological Gd enhancement following initiation
of OV therapy, until it disappeared 12 months later. On the
other hand, concurrent PET-MRI images showed hypermetabolic
activity. Conventionally, these findings are interpreted as
possible disease progression or alternative diagnoses (e.g.,
embolic stroke). However, since these foci disappeared over
the subsequent few months, this phenomenon might be
a pseudo-progression reflecting an inflammatory response
to OV infection, as described for some immune therapies
(29). Thus, optimal radiological surveillance is crucial for
identification of the desired and unique immune responses to
OV (31).

While mixtures of OV strains may convey additive clinical
effects, systematic assessment in controlled clinical trials with
multiple OVs remains challenging. To date, combinations of
OVs in clinical trials have been limited to one oncolytic Maraba
vesiculovirus component combined with an adenoviral vaccine
vector (32). Preclinically, a few studies have addressed potential
synergy of OV combinations, such as adenovirus and vaccinia
(33), mumps and measles virus (34), and Newcastle disease
virus (NDV) with reovirus and parvovirus (35). Furthermore,
combination of multiple therapeutic modalities including IM
with DCs and/or CPI, might provide superior results, and the
combined or sequential use of various OVs might boost the
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therapeutic efficacy by avoiding neutralizing antibody responses
elicited against a specific virus strain. Thus, it is important to
monitor immune activation of patients undergoing OV therapy
by testing for antibodies against original tumor tissue as well
as OV-specific neutralizing antibodies. Moreover, activation of
NK and T cells can be monitored and may be relevant in
understanding states of clinical remission. Immune phenotypes
may vary in individual patients when tested shortly after
diagnosis and before surgery (36). Accordingly, we found
individual variations, which may imply that sustained remission
in GBM patients may be based on different effector cells. Ideally,
each patient should be tested before and at different time points
during OV therapy.

Engineered OV strains might further enhance direct tumor
killing and tumor-specific immune activation (37). The feasibility
of these options needs to be explored first in xenograft
mouse models and syngeneic tumor models to validate
the mode of therapeutic activity in controlled settings (38,
39). All of these considerations need to be investigated in
phase 1 trials followed by randomized large multi-center,
controlled clinical trials, with the ultimate aim of developing
standardized clinical protocols to further improve the outcomes
of GBM patients.
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