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Bladder cancer (BC) and Renal cell carcinoma(RCC) are the two most frequent

genitourinary cancers in China. In this study, a comprehensive liquid chromatography—

mass spectrometry (LC-MS) based method, which utilizes both plasma metabolomics

and lipidomics platform, has been carried out to discriminate the global plasma profiles

of 64 patients with BC, 74 patients with RCC, and 141 healthy controls. Apparent

separation was observed between cancer (BC and RCC) plasma samples and controls.

The area under the receiving operator characteristic curve (AUC) was 0.985 and 0.993 by

plasma metabolomics and lipidomics, respectively (external validation group: AUC was

0.944 and 0.976, respectively). Combined plasma metabolomics and lipidomics showed

good predictive ability with an AUC of 1 (external validation group: AUC = 0.99). Then,

separation was observed between the BC and RCC samples. The AUC was 0.862,

0.853 and 0.939, respectively, by plasma metabolomics, lipidomics and combined

metabolomics and lipidomics (external validation group: AUC was 0.802, 0.898, and

0.942, respectively). Furthermore, we also found eight metabolites that showed good

predictive ability for BC, RCC and control discrimination. This study indicated that

plasma metabolomics and lipidomics may be effective for BC, RCC and control

discrimination, and combined plasma metabolomics and lipidomics showed better

predictive performance. This study would provide a reference for BC and RCC biomarker

discovery, not only for early detection and screening, but also for differential diagnosis.

Keywords: bladder cancer, renal cell carcinoma, metabolomics, lipidomics, biomarker

INTRODUCTION

Bladder cancer (BC) and Renal cell carcinoma(RCC) are, respectively, the second and third
most common genitourinary cancers in Europe and North America, and the first two most
commonly occurring genitourinary cancers in China (1). Currently, cystoscopy and cytology
are the standards for initial BC diagnosis and recurrence, but they have some limitations.
Cystoscopy may fail to visualize certain areas within the bladder, and may also fail to detect
some cancers, particularly cases of carcinoma in situ (2). Cytology has high specificity and
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selectivity for high-grade tumors, but fails to provide a strong
predictive value for low-grade tumors (3). With regard to
RCC, computed tomography, magnetic resonance imaging, and
positron emission tomography are commonly used diagnostic
techniques (4). However, even with the combination of these
three techniques, it remains difficult to detect early tumors
because of their small size (5). Therefore, developing convenient
and novel techniques for early detection of BC and RCC with
high sensitivity and specificity is urgently required. There are
increasing numbers of studies evaluating the use of metabolomic
analyses in the diagnosis of a number of pathologies (6–8)
and in the elucidation of the clinical pathogenesis of various
diseases (9, 10). Lipidomics is an emerging independent branch
of metabolomics (11), and lipidmetabolism dysfunction has been
found to be associated with the pathogenesis of many diseases,
such as ovarian cancer (12), prostate cancer (13), and breast
cancer (14), among others.

Metabolomics has also been used to study BC and RCC,
especially to identify biomarkers in urine and serum (15–23). In
2014, Jin et al. (23) applied LC-MS to profile urinary metabolites
of 138 patients with BC and 121 control subjects. The study
identified 12 putative markers that were involved in glycolysis
and beta-oxidation; Wittmann et al. (19) applied LC-MS to
profile urinary metabolites of 66 BC and 266 non-BC subjects.
They suggested that metabolites (palmitoyl sphingomyelin,
phosphocholine, and arachidonate) related to lipid metabolism
may be potential BC markers. In 2016, Zhou et al. (20) developed
a plasma pseudotargeted method based on GC-MS SIM and
foundmetabolites involved in the PPP, nucleic acid, and fatty acid
biosynthesis were disordered in BC patients. For RCC research,
in 2011, Kim et al. (16) analyzed urine metabolomics of 29
kidney cancer patients and 33 control patients and identified 13
significant differentially expressed metabolites (hexanoylglycine,
4-hydroxybenzoate, gentisate, etc) that involved in amino acid
metabolism and fatty acid beta-oxidation metabolism. In 2017,
Falegan et al. (18) applied an NMR and GC-MS platform to
perform urine and serum metabolomics for 40 RCC patients
and 13 benign patients. The results showed alterations in levels
of glycolytic and tricarboxylic acid (TCA) cycle intermediates
in RCC relative to benign masses. In addition, Lin et al. (5)
have utilized both RPLC-MS and HILIC-MS to discriminate the
global serum profiles of BC, RCC, and non-cancer controls. The
study identified some cancer-specific potential biomarkers for
BC and RCC, and they also found acetylphenylalanine, methyl
hippuric acid, PC(40:7) and PC(40:6) were common differential
biomarkers for both BC and RCC. As described, these studies
showed the same changes of pathways, including glycolysis,
amino acidmetabolism and fatty acidmetabolism in BC and RCC
patients, but there is less consistency in identified metabolites in
these studies (Table 5).

As mentioned above, previous studies have identified some
potential disease biomarkers in urine and serum for BC or RCC
diagnosis, but some issues remain to be addressed. First, most of
these studies focus on one kind of cancer. However, in clinic there
is great interest in the possibility of distinguishing different types
of cancer based on metabolomics and to acquire deeper insight
into the tumor biology and cancer type-specific biomarker

discovery (5, 24, 25). Up to now, only one study worked on above
issue. Lin et al. (5) utilized serum metabolomics to discriminate
the global serum profiles of BC, RCC, and non-cancer controls.
The results indicated that serum metabolic profiling could be
used for BC or RCC diagnosis. They also identified some
metabolites that were common differential biomarkers for both
BC and RCC. Lin et al. study provided very useful metabolomic
clues for BC and RCC common biomarker discovery, but their
conclusions and results needed more work to be proved. In
addition, it remains to explore whether serum metabolomics
could be used for differential diagnosis of genitourinary cancer
(16, 18, 19, 23). Second, to our knowledge, urinary metabolomics
has been extensively investigated for BC and RCC biomarker
discovery (15, 18, 19, 26–28), but there are few studies on blood
metabolomics and lipidomics for BC biomarker discovery. Blood
has fewer intra- and inter-individual variations, and it is less
susceptible to dietary changes than urine (29). Moreover, blood
is rich in lipids, which plays an essential role in many biological
processes (30). Lipidomics is proposed as a viable method to
monitor the prognosis, diagnosis, and treatment of cancer and
acts as a new method of cancer biomarker discovery (31).
Therefore, the combination of metabolomics and lipidomics may
be a significant platform for BC and RCC biomarker discovery.

In this study, we tried to explore potential biomarkers for
BC and RCC, which can not only screen BC and/or RCC
before subjective symptom in non-metastatic stage of cancer, but
also provide differential diagnostic clues for BC or RCC in the
clinical stage, so that the proper following tests (cystoscopy or
computed tomography) can be used. Plasma metabolomics and
lipidomics were utilized, first to explore potential biomarkers
between cancer (BC and RCC) and non-cancer. Then, differential
metabolites were explored between BC and RCC to find cancer-
specific biomarker for differential diagnosis. Furthermore, we
also explored common differential metabolites among BC, RCC,
and control groups to find whether it is a panel of metabolites
biomarker could be as potential biomarker for discrimination of
BC, RCC, and control. Our study will provide a reference for BC
and RCC biomarker discovery, not only for early detection and
screening, but also for differential diagnosis.

MATERIALS AND METHODS

Sample Collection and Preparation
The consent procedure and the research protocol for this
study were approved by the Institutional Review Board of the
Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences (Project NO: 047-2019). And all participants provided
informed consent and took a series of physical examinations
and laboratory tests before participating in this study, including
blood pressure, body mass index (BMI), fasting blood glucose
(FBG), total cholesterol (TC), triglyceride (TG) etc. Finally, a total
of 141 participants aged 27–74 years with health standard were
recruited in this study. Meanwhile, the BC and RCC patients
also took above tests, and only the patients with normal results
were recruited.

The plasma samples from 64 bladder cancer (BC) patients,
74 Renal cell carcinoma(RCC) patients and 141 healthy controls
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TABLE 1 | Demographics of cancer (BC and RCC) patients and healthy controls.

Sample group Discovery group Validation group

Healthy controls BC patients RCC patients Healthy controls BC patients RCC patients

No. plasma samples 95 42 53 46 22 21

Mean age ± SD 59.25 ± 11.19 64.21 ± 14.18 56.96 ± 15.09 61.32 ± 9.43 62.59 ± 12.77 53.66 ± 12.35

No. Males 65 31 36 30 14 16

No. Females 30 11 17 16 8 5

were collected from Peking Union Hospital (Table 1, the detailed
clinical information was shown in Table S1). All the plasma
samples in our study were collected before any treatments.
The plasma samples were collected in the morning from
07:00 a.m.−09:00 a.m. after an overnight fast to eliminate dietary
disturbances. After collected, all plasma samples were separated
following centrifugation at 1,024 g for 10min at 4◦C and were
stored at−80◦C.

Sample Preparation
For plasma metabolomics, 50 µL of sample were mixed with
150 µL of H2O by vortexed for 30 s to dilute the sample, then
acetonitrile (400 µl) was added into each sample (200 µl), the
mixture was vortexed for 1min. The mixture was allowed to
stand for 30min at −20◦C and was centrifuged at 14,000 ×

g for 10min. The supernatant was dried under vacuum and
then reconstituted with 100 µL of 2% acetonitrile. For plasma
lipidomics, 200 µL plasma samples were precipitated by the
addition of 600 µL of isopropanol (IPA) precooled to −20◦C.
Samples were stored for 2 h at −20◦C to improve protein
precipitation and then centrifuged at 14,000 × g for 20min. The
supernatant was dried under vacuum and then reconstituted with
100 µL of 50% IPA. The quality control (QC) (32) sample was
a pooled sample prepared by mixing aliquots of two hundred
samples across different groups. And the two hundred samples
were randomly selected from BC, RCC and control groups.

LC-MS Analysis
Ultra-performance LC-MS analyses of samples were conducted
using a Waters ACQUITY H-class LC system coupled with
an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific, MA, USA). An HSS C18 column (3.0 × 100mm,
1.7µm) (Waters, Milford, MA, USA) was used for reversed phase
separation. Plasma metabolites were separated with an 18min
gradient at a flow rate of 0.5 mL/min. Mobile phase A was
0.1% formic acid in H2O and mobile phase B was acetonitrile.
The gradient was set as follows: 0–1min, 2% solvent B; 1–
3min, 2–55% solvent B; 3–8min, 55–100% solvent B; 8–13min,
100% solvent B; 13–13.1min, 100–2% solvent B; 13.1–18min,
2% solvent B. The column temperature was set as 50◦C. Plasma
lipids were separated with a 23min gradient at a flow rate of
0.4 mL/min. Mobile phase A was 10mM ammonium acetate in
acetonitrile (4:6) and mobile phase B was 10mM ammonium
acetate in isopropanol/acetonitrile (9:1). The gradient was set
as follows: 0min, 40% solvent B; 0–2min, 40–43% solvent
B; 2–8min, 43–85% solvent B; 8–15min, 85–99% solvent B;

15–18min, 99% solvent B; 18–18.1min, 99–40% solvent B;
18.1–23min, 40% solvent B. The column temperature was set
as 55◦C.

The mass spectrometer was operated in positive ion mode
using the m/z range 100–1,000 m/z at a resolution of 60K.
Automatic gain control (AGC) target was 1× 106 and maximum
injection time (IT) was 100ms. Subsequently differential
metabolites identification was performed by UPLC targeted-
MS/MS analyses of QC sample. It acquired at a resolution of
15K with AGC target of 5 × 105, maximum IT of 50ms, and
isolation window of 3 m/z. Collision energy was optimized as 20,
40, 60 for each target with higher-energy collisional dissociation
(HCD) fragmentation.

Data Processing
Raw data files (Figure S6) were processed by the Progenesis
QI 2.2 (Waters, Milford, MA, USA) software (33). The
detailed workflow for QI data processing and metabolites
identification was given in Supplementary Methods. Further
data pre-processing including missing value estimation, Log
transformation and Pareto scaling were performed to make
features more comparable using MetaboAnalyst 4.0 (34) (http://
www.metaboanalyst.ca). Pattern recognition analysis (principal
component analysis, PCA; orthogonal partial least squares
discriminant analysis, OPLS-DA) was carried out using SIMCA
14.0 software (Umetrics, Sweden). The differential variables were
selected according to three conditions: (1) adjusted P <0.05; 2)
Fold change between two groups >1.5; 3) VIP value obtained
from OPLS-DA > 1.

Metabolite Annotation and Pathway
Analysis
Significantly differential metabolites were further determined
from the exact mass composition, from the goodness of the
isotopic fit for the predicted molecular formula and from
MS/MS fragmentation matching with databases (HMDB (35),
LIPID MAPS, METLIN, and mzCloud), using Progenesis QI
2.2 (Waters, Milford, MA, USA). In addition, homocysteine
thiolactone, hypoxanthine, 4-Ethylphenol, L-Octanoylcarnitine
and acetylcysteine were confirmed by standard compounds
(Figure S7). Metabolic pathways were analyzed using
Mummichog (36) and MetaboAnalyst 4.0 (34). Identified
differential metabolites were subjected to MetaboAnalyst 4.0 to
perform exploratory ROC analysis. Random Forest algorithms
were used for ROC curve construction. Detailed methods were
listed in the Supplemental Methods.
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FIGURE 1 | The workflow of this study.

RESULTS

The workflow of this study is shown in Figure 1 total of
279 subjects were enrolled in our study, with 141 volunteers
with a normal clinically healthy index, 64 patients who
were clinically diagnosed with bladder cancer and 74
patients who were clinically diagnosed with Renal cell
carcinoma. First, LC-MS based plasma metabolomics and
lipidomics were performed based on 95 healthy controls,
42 patients with BC and 53 patients with RCC. Differential
metabolites were found through a critical selection criterion.
Potential biomarkers for cancer vs. control and BC vs. RCC

were explored and discovered tentatively. Moreover, the
identified differential metabolites were also combined for
better predictive ability. Then, the potential biomarkers were
further externally validated using an independent batch of 22
BC, 21 RCC and 46 control samples. Furthermore, common
differential metabolites were explored for BC, RCC, and
control discrimination.

Quality Control
This large cohort of samples was analyzed randomly in a single
batch. QC is important in large-scale metabolomics studies to
ensure stable system performance and to limit experimental
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bias. A QC standard was prepared as a pooled mixture of
aliquots from representative plasma samples in each group. For
plasma metabolomics and lipidomics analysis, the QC sample
was injected 5 times before the analytical run and was frequently
injected once every ten samples throughout the analytical
run to monitor instrument stability. Metabolomics technical
reproducibility was assessed by analyzing the QC sample
variations with time. The injections showed a stable condition
with small variation (< ± 2SD) in plasma metabolomics and
lipidomics (Figures S1A,B). Tight clustering of QC samples
(Figures S1C,D) further demonstrated the quality of the QC
data and the essential repeatability and stability throughout the
analytical run.

Distinction Cancer (BC and RCC) From
Control by Plasma Metabolomics and
Lipidomics
Distinction Cancer (BC and RCC) From Control by

Plasma Metabolomics
LC-MS-based plasma metabolomics from cancer and control
patients yielded 2,432 spectral features after removal of missing
values and quality control. To select potential biomarkers for
distinguishing cancer (BC and RCC) from control patients,
multivariate statistical analysis models were applied. Apparent
differences between the metabolic profiles of cancer and
control subjects was observed from the PCA score plot
(R2X = 0.624, Q2 = 0.416; Figure S2A). The OPLS-DA
model achieved better separation (R2X = 0.263, R2Y= 0.953,
Q2 = 0.931; Figure 2A; Table S2). Permutation tests were
carried out to confirm the stability and robustness of the
supervised models presented in this study (Figure S2B).
Differential metabolites were assigned based on VIP value
>1, p < 0.05 and FC >1.5. Pathway enrichment analysis
using Mummichog showed significant enrichment (p < 0.05)
of several pathways related to tyrosine metabolism, linoleate
metabolism, porphyrin metabolism, fructose, and mannose
metabolism, and phosphatidylinositol phosphate metabolism,
among others (Figure S2C), in cancer compared with that in the
healthy controls.

Further, significantly differential features obtained from
“mummichog” and OPLS-DA predictions were submitted to
MS/MS fragmentation and Progenesis QI identification. Overall,
25 significantly differential metabolites were identified as shown
in Table S3. The diagnostic accuracy of identified differential
metabolites for cancer (BC and RCC) from control samples was
evaluated. A total of 22 metabolites had a good diagnostic value
with the AUC above 0.8 (37) (Table S4). Combined biomarkers
are more valuable for diagnosing disease progression than just
one biomarker (23). Multivariate ROC curve-based exploratory
analysis was tried to achieve a better predictive model (https://
www.metaboanalyst.ca/faces/upload/RocUploadView.xhtml)
using these differential metabolites. A panel consisting of 9,10,13-
TriHOME, 12,13-DHOME and linolenelaidic acid showed the
best predictive ability with a ROC area of 0.985 for the testing
dataset (Figure S2D) and 0.944 for the external validation
dataset (Figure S2E).

Distinction Cancer (BC and RCC) From Control by

Plasma Lipidomics
LC-MS-based plasma lipidomics from cancer and control
samples was analyzed using similar multiple statistic methods
as above. In total, 1421 spectral features were retained after
quality control. PCA analysis showed apparent discrimination
of cancer and control samples (R2X = 0.682, Q2 = 0.406;
Figure S3A). Further, the OPLS-DA model achieved significant
separation (R2X = 0.296, R2Y = 0.949, Q2 = 0.924;
Figure 2B). Permutation tests showed stability and robustness
of the supervised models (Figure S3B). Pathway enrichment
analysis using Mummichog showed significant enrichment
pathways related to the carnitine shuttle, the urea cycle/amino
group metabolism, and fatty acid metabolism, among others
(Figure S3C), in cancer compared with control samples. Overall,
26 significantly differential lipids were identified as shown in
Table S5, and a total of 20 lipids had potential useful diagnostic
values with the AUC above 0.7 (Table S6). A panel consisting
of 11Z-Eicosenal, 6Z-Heneicosen-9-one, behenic acid and 7Z-
Tricosen-11-one showed the best predictive ability with ROC
area of 0.993 for the testing dataset (Figure S3D) and 0.976 for
the external validation dataset (Figure S3E).

Distinction Cancer (BC and RCC) From Control by

Combination of Plasma Metabolomics and

Lipidomics
Combining the results of identified differential metabolites,
the relative intensity was plotted as a heatmap in Figure 2C. It
showed that the metabolites involved in amino acid metabolism
and fatty acid metabolism were up-regulated in cancer
patients, including dipeptides, bile acid metabolites, and
some fatty acyls (FAs). While the down-regulated metabolites
included some carnitines (3-hydroxyoctanoyl carnitine,
L-Octanoylcarnitine, 2-Hydroxylauroylcarnitine, O-decanoyl-
L-carnitine, Undecanoylcarnitine), glycerophospholipids (GPs),
sphingolipids (SPs), and sterol lipids (STs). Multivariate ROC
curve-based exploratory analysis was tried to achieve a better
predictive model using these combined differential metabolites.
A panel consisting of 9,10,13-TriHOME, 11Z-Eicosenal, 12,13-
DHOME, 6Z-Heneicosen-9-one, linolenelaidic acid, behenic
acid, and 16-Hydroxy-10-oxohexadecanoic acid (Table 2)
showed the best predictive ability with ROC area of 1 for the
testing dataset (Figure 2D) and 0.99 for the external validation
dataset (Figure 2E).

Distinction BC and RCC by Plasma
Metabolomics and Lipidomics
BC and RCC are the first two most frequent genitourinary
cancers in China. The above analysis explored potential
differential metabolites to discriminate cancer (BC and RCC)
from control samples, and the feasibility of using plasma
metabolomics and lipidomics to discover potential biomarkers
for differential diagnosis of the two types of cancer was evaluated.

Distinction BC and RCC by Plasma Metabolomics
Herein, using similar multiple statistic methods as above,
metabolic profiling differentiation was explored between BC and
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FIGURE 2 | Analysis of plasma metabolomics and lipidomics of 95 cancer samples (42 BC and 53 RCC) and 95 healthy control samples. (A) Score plot of OPLS-DA

based on plasma metabolic profiling of cancer and control. (B) Score plot of OPLS-DA based on plasma lipidomic profiling of cancer and control.

(Continued)
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FIGURE 2 | (C) Relative intensity of differential metabolites in cancer and control. (D) ROC plot with discovery group for distinction of cancer and control based on

combined metabolites panel of 9,10,13-TriHOME, 11Z-Eicosenal, 12,13-DHOME, 6Z-Heneicosen-9-one, linolenelaidic acid, behenic acid and

16-Hydroxy-10-oxohexadecanoic acid. (E) ROC plot with external validation group for distinction of cancer and control based on combined metabolites panel.

TABLE 2 | Differential metabolites for distinction of cancer (BC and RCC) and control.

Features Metabolites ID Description Score p-value Fold change (cancer/HC) AUC

5.81_269.2104m/z HMDB41287 16-Hydroxy-10-oxohexadecanoic acida 45.3 2.97E-29 0.0988 0.9948

5.60_331.2470m/z HMDB04710 9,10,13-TriHOMEa 42.3 1.09E-28 0.1001 0.9853

6.60_314.2448n HMDB04705 12,13-DHOMEa 42.7 6.90E-27 0.1859 0.9675

6.59_279.2309m/z HMDB30964 Linolenelaidic acida 38.1 5.15E-23 0.4242 0.9313

9.09_311.3170n LMFA06000248 11Z-Eicosenalb 50.9 5.89E-27 2.2601 0.9788

9.24_325.3325n LMFA12000215 6Z-Heneicosen-9-oneb 41.5 1.27E-24 2.2569 0.9535

8.19_358.3658m/z LMFA01020019 Behenic acidb 48.9 2.53E-17 0.161 0.8726

9.71_354.3710m/z LMFA12000222 7Z-Tricosen-11-oneb 48.7 7.95E-12 1.6531 0.8049

aMetabolites identified by the chemical structure analysis matching with The Human Metabolome Database.
bMetabolites identified by the chemical structure analysis matching with LIPID MAPS.

RCC plasma samples. First, the metabolic profiles of BC and
RCC subjects showed separation trend to some extent from
the PCA score plot (R2X = 0.557, Q2 = 0.324; Figure S4A).
The OPLS-DA model achieved better separation (R2X= 0.322,
R2Y = 0.941, Q2 = 0.652; Figure 3A). Permutation tests
showed stability and robustness of the supervised models
(Figure S4B). Differential metabolites were assigned based on
VIP value > 1 and p < 0.05. Pathway enrichment analysis using
Mummichog showed significant enrichment (p< 0.05) of several
pathways related to caffeine metabolism, porphyrin metabolism,
chondroitin sulfate degradation, heparan sulfate degradation,
and vitamin H (biotin) metabolism, among others (Figure S4C),
in BC samples compared with those in RCC samples. Overall,
24 differential metabolites were identified as shown in Table S7.
ROC analysis showed that 9 metabolites have a potentially useful
diagnostic value for BC and RCC discrimination (Table S8).
Further metabolite panels were explored to achieve better
predictive ability. Using Random Forest algorithms, a metabolite
panel consisting of 7,8-Dihydropteroic acid, Avenoleic acid, and
3,4-Dimethyl-5-pentyl-2-furanundecanoic acid showed the best
predictive ability with ROC area of 0.862 for the testing dataset
(Figure S4D) and of 0.802 for the external validation dataset
(Figure S4E) for BC and RCC discrimination.

Distinction BC and RCC by Plasma Lipidomics
Lipidomic profiling differentiation was explored between BC
and RCC plasma samples using similar multiple statistic
methods. PCA analysis also showed separation trend to
some extent of BC and RCC (R2X = 0.602, Q2 = 0.272;
Figure S5A). Further, the OPLS-DA model achieved better
separation (R2X = 0.339, R2Y = 0.959, Q2 = 0.715;
Figure 3B). Hundred permutation tests showed no over-fitting
of the models (Figure S5B). Pathway enrichment analysis
using Mummichog showed significant enrichment in pathways
related to aspartate and asparagine metabolism, pentose
phosphate pathway, hexose phosphorylation and vitamin H
(biotin) metabolism, among others (Figure S5C), in BC samples

compared with those in RCC samples. Further, a total of 17
differential metabolites were identified as shown in Table S9.
Using Random Forest algorithms, a panel consisting of
PS(P-38:0), 4E,14Z-Sphingadiene, Tetrapedic acid A (Table S10)
showed the best predictive ability with ROC area of 0.853 for the
testing dataset (Figure S5D) and 0.898 for the external validation
dataset (Figure S5E) for BC and RCC discrimination.

Distinction BC and RCC by Combination of Plasma

Metabolomics and Lipidomics
Combining the results of the identified differential metabolites,
the relative intensity was plotted as a heatmap in Figure 3C.
The up-regulated metabolites in BC compared to RCC included
some acyl carnitines, fatty acids, amino acids, and derivatives and
glycerophospholipids (GPs). The down-regulated metabolites
included some dipeptides, sterol lipids (STs), sphingolipids
(SPs), and fatty acyls (FAs) in BC compared with those in
RCC. Multivariate ROC curve-based exploratory analysis
was tried to achieve a better predictive model using these
combined differential metabolites. A panel consisting of 7,8-
Dihydropteroic acid, PS(P-38:0), 9,10,13-TriHOME, Avenoleic
acid, 3,4-Dimethyl-5-pentyl-2-furanundecanoic acid and
4E,14Z-Sphingadiene (Table 3) showed the best predictive ability
with ROC area of 0.939 for the testing dataset (Figure 3D) and
0.942 for the external validation dataset (Figure 3E).

Common Differential Metabolites for
Differential Diagnosis Among BC, RCC,
and Control
According to the above analysis, plasma metabolites could
diagnose cancer (BC and RCC) from controls with high
accuracy, and another panel of plasma metabolites could also
discriminate BC and RCC with high accuracy. We further tried
to find common differential metabolites among BC, RCC and
control groups. Then, differential metabolites were selected
in BC vs. control groups and RCC vs. control groups using
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FIGURE 3 | Analysis of plasma metabolomics and lipidomics between 42 BC and 53 RCC. (A) Score plot of OPLS-DA based on plasma metabolic profiling of BC

and RCC. (B) Score plot of OPLS-DA based on plasma lipidomic profiling of BC and RCC. (C) Relative intensity of differential metabolites in BC and RCC.

(Continued)
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FIGURE 3 | (D) ROC plot with discovery group for distinction of BC and RCC based on combined metabolites panel of 7,8-Dihydropteroic acid, PS(P-38:0),

9,10,13-TriHOME, Avenoleic acid, 3,4-Dimethyl-5-pentyl-2-furanundecanoic acid and 4E,14Z-Sphingadiene. (E) ROC plot with external validation group for

discrimination of BC and RCC based on combined metabolites panel.

TABLE 3 | Differential metabolites for distinction of BC and RCC.

Features Metabolites ID Description Score p-value Fold change (BC/RCC) AUC

1.15_297.1068m/z HMDB01412 7,8-Dihydropteroic acida 47.3 3.29E-04 3.41 0.8055

5.60_331.2470m/z HMDB04710 9,10,13-TriHOMEa 42.3 3.74E-05 4.93 0.7857

6.60_314.2448n HMDB29978 Avenoleic acida 39.5 1.47E-03 1.73 0.7556

4.85_372.2654n HMDB31126 3,4-Dimethyl-5-pentyl-2-furanundecanoic acida 53.1 2.61E-05 0.64 0.7300

8.39_826.5905m/z LMGP03030046 PS(P-38:0)b 43.9 7.74E-07 0.45 0.7925

3.23_320.2539m/z LMSP01080002 4E,14Z-Sphingadieneb 40.3 1.92E-04 0.6 0.7089

2.18_367.2823m/z LMFA01050426 Tetrapedic acid Ab 47.8 1.89E-04 0.34 0.7048

aMetabolites identified by the chemical structure analysis matching with The Human Metabolome Database.
bMetabolites identified by the chemical structure analysis matching with LIPID MAPS.

similar multiple statistic methods as above. In all, 8 metabolites
presented different levels in BC, RCC, and control groups. The
relative content of the 8 metabolites in the BC, RCC, and control
groups was plotted in Figure 4A. Non-parameter test was
performed and the p-values from different groups were all<0.05,
which showed in Figure 4A. Herein, homocysteine thiolactone,
acetylcysteine, methionine sulfoximine, 9,10,13-TriHOME,
avenoleic acid, (10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,12-
dienoic acid, 16-Hydroxy-10-oxohexadecanoic acid were
down-regulated in cancer groups compared with the control
group, and the relative content in the RCC group was lower than
that in the BC group. In addition, 9S,10R-Epoxy-6Z-nonadecene
was up-regulated in the cancer groups compared with the control
group, and the relative content in the RCC group was lower
than that in the BC group. Further PCA score plot indicated
that a panel of 8 common differential metabolites showed good
predictive ability for BC, RCC and control discrimination, with
an AUC of 0.8456 for the BC group, 0.88 for the RCC group, and
0.986 for the control group (Figure 4B).

DISCUSSION

Disease-related metabolomics is currently a hot area of
research, and numerous metabolites have been proposed as
potential biomarkers (5). Lipidomics, a specific component
of metabolomics, has attracted increased attention due to
its unique biological significance (38), and it is widely
studied for the identification and validation of disease-specific
biomarkers (12–14).

Within metabolomics, three analytical techniques are most
used: nuclear magnetic resonance spectroscopy (NMR), and gas
or liquid chromatography coupled tomass spectrometry (GC/MS
and LC/MS, respectively), but they have different operational
performance characteristics(Table S12). NMR is known for its
reproducibility, minimal sample preparation requirements and
its non-destructive nature, but MS methods possess much
higher levels of sensitivity and are certainly more accessible to
most laboratories (18, 39). While several metabolites cannot

be analyzed by GC-MS because they are prone to thermal
decomposition or are unable to be volatilized. In contrast, a
LC-MS based platform can detect a wider range of chemical
species, and reversed phase liquid chromatography (RPLC)-MS
is the most widely used platform in metabonomic studies (27).
Therefore, we applied RPLC-MS analysis in this study.

In this study, plasma metabolomics and lipidomics were
utilized, first to explore potential biomarkers between cancer (BC
and RCC) and non-cancer for early detection of genitourinary
cancer (BC and RCC). Then, differential metabolites were
explored between BC and RCC to find cancer-specific
biomarker for differential diagnosis (Table 4). Furthermore,
8 common differential metabolites were also found that showed
good predictive ability for BC, RCC, and control plasma
sample discrimination.

BC and RC are two different types of genitourinary cancers
differing in their cellular origins, which BC occurs on the
mucous membrane of the bladder and RCC originates in the
urinary tubular epithelial system of the renal parenchyma, thus,
they represent distinct clinical entities (25, 40, 41). However,
proteomics and metabolomics studies showed that similar
pathway dysregulation could be found in both cancers, such
as glycolysis, TCA cycle, fatty acid oxidation, etc (42, 43). We
compared the main findings found in this study with previous
reports (Table 5) and found some common dysregulation
pathways, including glycolysis, lipid metabolism, and fatty acid
beta-oxidation in BC and RCC patients. Among them, a massive
shift in fatty acid metabolism and the carnitine shuttle was found
in both cancers compared with that in the healthy controls. Fatty
acids are involved in energy metabolism and cell membrane
molecule synthesis (20). In tumors tissues, free fatty acids (FFA)
are esterified to fatty acyl-CoAs and then transported into the
mitochondria by carnitine palmitoyltransferase-1 (CPT1) and
the carnitine system, while in normal tissue, they are subjected
to b-oxidation as fatty acyl-CoAs to feed into the TCA cycle (42).
Carnitine is essential in mediating the transport of acyl groups
across the mitochondrial inner membrane (45). Disturbances in
fatty acid metabolism and in the carnitine shuttle may contribute
to energy metabolism disorders in cancer patients (42). Our
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FIGURE 4 | Analysis of 8 common differential metabolites in BC (64 samples), RCC (74 samples), and control (141 samples) group. Homocysteine thiolactone and

acetylcysteine were confirmed by standard compounds. (A) Relative intensity of 8 common differential metabolites in BC, RCC, and control group. *, **, and ***

represent p-value less than 0.05, 0.01, and 0.001 between two groups, respectively. (B) Score plot based on 8 common differential metabolites for BC, RCC, and

control discrimination.

metabolomics studies have led to the identification of carnitine
derivatives as being significantly altered in the plasma of affected
patients. This finding was validated in vitro using several RCC
cell lines and show that these acylcarnitines, as a function
of carbon chain length, affect cell survival, and markers of
inflammation (46).

In addition, linoleate metabolism was found to be disturbed
in cancer samples compared with that in controls. Linoleate
metabolism is involved in the generation of inflammatory
mediators (47) and in the regulation of lipid metabolism by
activation of the peroxisome proliferators-activated receptor
alpha (PPARa) (48). 9,10,13-TriHOME is an important
inflammatory mediator which has the ability to aggregate
neutrophils (49). 12,13-DHOME is known to directly affect cell
differentiation through its PPAR binding activity (50). Taken
together, there is a common regulatory mechanism among these
metabolic pathways that contributes to disturbances of energy

supply, to inflammation, to activation of the immune response
and to oxidative stress in cancer (BC and RCC) patients.

Though similar pathways dysregulations could be found
in BC and RCC, significant different pathways also could be
found between them, such as pentose phosphate pathway (22,
51), amino acid metabolism (43, 52). In this study, pathway
analysis between BC and RCC showed disturbed aspartate and
asparagine metabolism, pentose phosphate pathway, linoleic acid
metabolism, and vitamin H (biotin) metabolism in BC compared
with that in RCC. Pentose phosphate pathway (PPP) is a major
pathway for glucose catabolism. Emerging evidence suggests that
the PPP directly or indirectly provides reducing power to fuel the
biosynthesis of lipids and nucleotides and sustains antioxidant
responses to support cell survival and proliferation (53). Zhou
et al. (20) also found that pentose phosphate pathway(PPP)
were significantly upregulated in bladder cancer. Previous multi-
omics analysis showed that pentose phosphate pathway, fatty
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TABLE 4 | Performance of metabolomics/lipidomics panels for groups discrimination.

ROC analysis Plasma metabolomics Plasma lipidomics Combined plasma metabolomics and lipidomics

Groups Discovery

group

Validation

group

Discovery

group

Validation

group

Discovery group Validation group

Cancer vs. Control 0.985a 0.944a 0.993b 0.976b 1c 0.99c

BC vs. RCC 0.862d 0.802d 0.853e 0.898e 0.939f 0.942f

aA panel consists of 9,10,13-TriHOME, 12,13-DHOME and linolenelaidic acid.
bA panel consists of 11Z-Eicosenal, 6Z-Heneicosen-9-one, behenic acid and 7Z-Tricosen-11-one.
cA panel consists of 9,10,13-TriHOME, 11Z-Eicosenal, 12,13-DHOME, 6Z-Heneicosen-9-one, linolenelaidic acid, behenic acid and 16-Hydroxy-10-oxohexadecanoic acid.
dA panel consists of 7,8-Dihydropteroic acid, Avenoleic acid and 3,4-Dimethyl-5-pentyl-2-furanundecanoic acid.
eA panel consists of PS(P-38:0), 4E,14Z-Sphingadiene and Tetrapedic acid A.
fA panel consists of 7,8-Dihydropteroic acid, PS(P-38:0), 9,10,13-TriHOME, Avenoleic acid, 3,4-Dimethyl-5-pentyl-2-furanundecanoic acid and 4E,14Z-Sphingadiene.

TABLE 5 | The comparison of the main findings found in this study with previous related reports.

Author

(year)

Analytical

platform

Sample

type

BCa RCC a Controla Pathways dysregulated in cancer compared to controlb

Glycolysis TCA cycle Fatty acid

beta-oxidation

Pentose

phosphate

pathway

Amino acid

metabolism

Lipid

metabolism

Cao et al. (44) NMR Serum 37 45 ↑ ↓ ↑

Jin et al. (23) RPLC-MS Urine 138 121 ↑ ↑ ↑

Wittmann

et al. (19)

LC-MS and

GC-MS

Urine 66 266 ↑ ↑ * ↑

Zhou et al.

(20)

GC-MS plasma 92 48 ↑ ↑ ↑ ↑

Kim et al. (16) LC-MS and

GC-MS

Urine 29 33 ↑ ↑ ↓

Lin et al. (17) LC-MS Serum 33 25 * ↓ *

Falegan et al.

(18)

NMR and

GC-MS

Urine

and

serum

40 13 ↑ ↑ * *

Lin et al. (5) LC-MS Serum 24 24 24 * *

Liu et al. (this

study)

LC-MS Serum 64 73 141 * * * *

aThe number of patients recruited in the study.
bChange trend of the Pathways dysregulated in cancer compared to control. (↑): up-regulated; (↓): down-regulated; (*): dysregulated.

acid b-oxidation, glutamine pathway and tryptophanmetabolism
are reprogrammed in RCC, and the changes are related to
energy metabolism, oxidative stress and immunosuppression
(42, 51, 54). These alterations in glucose metabolism and
pentose phosphate pathway were in accordance with previous
findings that oncogenic signaling pathways may promote cancer
through rerouting the sugar metabolism (51, 53). (10E,12Z)-
(9S)-9-Hydroperoxyoctadeca-10,12-dienoic acid and 9,10,13-
TriHOME are involved in linoleic acid metabolism, and they
are both up-regulated in BC compared with RCC. Linoleic
acid has previously been reported to induce carcinogenesis
through oxidative damage and pro-inflammatory mechanisms
(55). Trihydroxyoctadecenoic acids (TriHOMEs) are linoleic
acid-derived oxylipins with potential physiological relevance in
inflammatory processes as well as in maintaining an intact skin
barrier (56). 9,10,13-TriHOME is an important inflammatory
mediator that has the ability to aggregate neutrophils (49), which

suggested that inflammation may be higher in BC than in RCC.
Previous mRNA expression analysis showed that BC samples
showed strong immune expression signature, including T cell
markers and inflammation genes (57). Inflammation occurs
during all stages of the tumor and inflammation establishes
cancer invasion metastasis by reducing apoptosis and increasing
angiogenesis (58, 59).

In this study, 8 metabolites were found to show different levels
in BC, RCC, and control groups. The relative intensity results
(Figure 4A) showed that the 8 metabolites were significantly
statistical different between the two kinds of cancers and control
group, though the difference between the BC and RCC was
less obvious. Herein, homocysteine thiolactone, acetylcysteine,
and methionine sulfoximine are amino acids. 16-Hydroxy-
10-oxohexadecanoic acid and 9S,10R-Epoxy-6Z-nonadecene
are fatty acids that are involved in lipid transport and fatty
acid metabolism. (10E,12Z)-(9S)-9-Hydroperoxyoctadeca-10,
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12-dienoic acid, avenoleic acid and 9,10,13-TriHOME are
linoleic acids and their derivatives. Homocysteine (Hcy) was
converted to Hcy-thiolactone by methionyl-tRNA synthetase
(60). The relevance of cysteine metabolism in cancer has been
reported, but these reports have been largely focused on its role
in generating the antioxidant glutathione (61). Linoleic acid
metabolites have previously been reported to have relevance
in inflammatory processes (49, 55, 56), and 9S,10R-Epoxy-6Z-
nonadecene is one of the unsaturated fatty acid metabolites.
The 9S,10R-Epoxy-6Z-nonadecene level in the cancer group
was obviously higher than that in the control group, and the
relative content in the BC group was higher than that in the RCC
group, as shown in Figure 4A. That finding was consistent with
previous results that saturated fatty acyls decrease and that highly
unsaturated fatty acyls increase in tumor tissues (30). However,
the specific biological function of 9S,10R-Epoxy-6Z-nonadecene
remains to be uncovered.

Among the above 8 metabolites, though the fold changes
of two metabolites (Avenoleic acid and 9S,10R-Epoxy-6Z-
nonadecene) in BC and RCC distinguish were <1.5, their
performances in the difference between BC or RCC and control
were better (Table S11). Moreover, the PCA score plot of the
panel consisting of these 8 metabolites showed good predictive
ability for BC, RCC, and control discrimination, with an AUC of
0.8456 for the BC group, 0.88 for the RCC group and 0.986 for
the control group. Therefore, the panel of 8 common differential
metabolites might be used as potential biomarker for early
detection of BC and RCC from control. On the other hand,
present study was a relative small sample size and single-center
pilot study, further larger sample cohorts and multiple-center
study will be performed in the future for more comprehensive
validation. The prediction of prognosis after surgery was an
important issue for clinical research. The performances of the
panel on this issue need to be evaluated by follow-up data in
the future.

LIMITATION OF THIS STUDY

The results of BC and RCC plasma metabolome in this study
indicated that it was feasible to utilize plasma metabolomics
and lipidomics for discriminating cancer from non-cancer and
for differential diagnose of BC and RCC. However, this study
also has the following limitations to be considered. (1) The
sample size of the present study was relatively small, further
larger sample cohorts and multiple-center study should be
performed for more comprehensive validation. (2) In this study,
the differential metabolites were discovered by non-targeted
LC/MS/MS analysis. This approach provided a preliminary result
in potential candidate biomarkers. To validate the above results,
a targeted approach with authentic standards should be used
in future validation study. (3) The samples recruited in this
study were only from non-metastatic stage, thus the grades and
stages of cancer were not taken into consideration. Whether
different grades and stages of cancer will present different serum
metabolomic pattern or not is of great importance, which should
be thoroughly evaluated by a large-scale cohort in the future. (4)

Due to the short follow-up time of the cohort in this study, we
could not evaluate the relationship of the differential metabolites
and clinical parameters, which should be comprehensively
analyzed in future work. (5) In this study, the potential metabolite
biomarkers of BC and RCC were discovered, but their function
and mechanism in cancers had not been investigated, which
should be presented by cell lines or animal model analysis in
the future.

CONCLUSION

In conclusion, we have for the first time utilized data from a
combination of plasma metabolomics and lipidomics analysis
for BC and RCC early detection and screening, and provided
a new insight into the differential diagnosis of BC and
RCC. The results suggested that the plasma metabolome and
lipidome could differentiate BC and RCC patients from controls,
and panels of plasma metabolites were discovered to have
potential value for BC and RCC discrimination. Moreover,
the results suggested that combining plasma metabolomics
and lipidomics has better predictive performance than either
method alone. We also identified 8 metabolites might be
used as potential biomarker panel to distinguish BC, RCC,
and control.
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