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Glioma groups, including lower-grade glioma (LGG) and glioblastoma multiforme (GBM),

are the most common primary brain tumor. Malignant gliomas, especially glioblastomas,

are associated with a dismal prognosis. Hypoxia is a driver of the malignant

phenotype in glioma groups; it triggers a cascade of immunosuppressive processes

and malignant cellular responses (tumor progression, anti-apoptosis, and resistance to

chemoradiotherapy), which result in disease progression and poor prognosis. However,

approaches to determine the extent of hypoxia in the tumor microenvironment are still

unclear. Here, we downloaded 575 LGG patients and 354 GBM patients from Chinese

Glioma Genome Atlas (GGGA), and 530 LGG patients and 167 GBM patients from

The Cancer Genome Atlas (TCGA) with RNA sequence and clinicopathological data.

We developed a hypoxia risk model to reflect the immune microenvironment in glioma

and predict prognosis. High hypoxia risk score was associated with poor prognosis

and indicated an immunosuppressive microenvironment. Hypoxia signature significantly

correlated with clinical and molecular features and could serve as an independent

prognostic factor for glioma patients. Moreover, Gene Set Enrichment Analysis showed

that gene sets associated with the high-risk group were involved in carcinogenesis and

immunosuppression signaling. In conclusion, we developed and validated a hypoxia

risk model, which served as an independent prognostic indicator and reflected overall

immune response intensity in the glioma microenvironment.

Keywords: hypoxia, gene set enrichment analysis, tumor microenvironment, hypoxia risk model, glioma, immune

response

INTRODUCTION

Hypoxia is a hallmark of the tumor microenvironment; growing tumors frequently exist in hypoxic
conditions because of insufficient blood supply (1). Unlike healthy cells, tumors initiate a wide array
of adaptive behaviors (e.g., angiogenesis, proliferation, and invasion) in response to low oxygen
levels to ultimately promote amore aggressive tumor phenotype (2, 3). Diffuse gliomas are classified
and graded according to histological criteria (oligodendroglioma, oligoastrocytoma, astrocytoma,
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and glioblastoma; grade II–IV). Glioblastoma is characterized by
extensive tissue hypoxia, which is favorable for the induction
and maintenance of a malignant phenotype (4). For glioma
groups, tumor hypoxia is associated with anti-apoptosis, tumor
recurrence, resistance to chemotherapy and radiation therapy,
invasive potential, and decreased patient survival (5).

The importance of hypoxia in driving tumor
immunosuppression and immune escape is receiving increased
attention. Previous evidence indicates that T cells and natural
killer (NK) cells in a hypoxic microenvironment exhibit an
anergic or exhausted state, leading to dysfunction (6–8). Hypoxia
promotes suppressive cells [regulatory T cells (Tregs) and
tumor-associated macrophages (TAMs)] or immunosuppressive
cytokines (e.g., TGFB1, IL-10, VEGFA, and ARG1), which in
turn block immune effector cells (9). Currently, predictive
biomarkers for immunotherapy mainly include programmed
death-ligand 1 (PD-L1), microsatellite instability/defective
mismatch repair (MSI/dMMR), and tumor mutational burden,
but often ignore the problem of “poor soil” (10). Hence, tumor
hypoxia may be exploited as a potential biomarker to predict
immunotherapy outcomes.

At present, approaches to investigating tumor hypoxia are
still limited. As comprehensive mRNA expression analysis has
previously been used to identify potential biomarkers and reflects
the current physiological state of the cell, this study used, for the
first time, throughput mRNA profiling data to develop a hypoxia
risk model as a prognostic biomarker to predict the immune
microenvironment in glioma groups. In the future, this method
may assist clinicians to make important treatment decisions.

MATERIALS AND METHODS

Datasets
The RNA-seq transcriptome data and corresponding
clinicopathological information of 575 LGG patients and
354 GBM patients were obtained from CGGA (www.cgga.
org.cn) as a training set. Similarly, 530 LGG patients and 167
GBM patients from TCGA (http://cancergenome.nih.gov/) were
downloaded as a validation set. The detail information was
supplemented in Table S1. The RNA-seq transcriptome data
were estimated as log2(x+1) transformed RSEM normalized
counts. LGG and GBM datasets from TCGA were accessed by
UCSC (https://xenabrowser.net/datapages/).

Estimation of Immune Cell Type Fractions
CIBERSORT (https://cibersort.stanford.edu/) is an analytical tool
developed by Newman et al. to provide an estimation of the
abundances of member cell types in a mixed cell population,
using gene expression data (11). In CIBERSORT, a leukocyte
gene signature matrix consisting of 547 genes, which was termed
LM22, was used to distinguish 22 immune cell types including
naive B cells, memory B cells, plasma cells, CD8T cells, naive
CD4T cells, resting memory CD4T cells, activated memory
CD4T cells, follicular helper T cells, T cells regulatory (Tregs),
gamma delta T cells, resting NK cells, activated NK cells,
monocytes, macrophages M0, macrophages M1, macrophages
M2, resting dendritic cells, activated dendritic cells, resting mast

cells, activated mast cells, eosinophils, and neutrophils. We
utilized CIBERSORT to estimate the fractions of 22 immune cell
types between low and high hypoxia risk score.

Constitution of a Risk Model
Hypoxia genes found to be statistically significant in univariable
Cox regression were then used in multivariable Cox regression
to achieve the coefficients; the risk-score formula was
constructed as:

risk score =
∑N

i=1

(

Expi × Coei
)

(1)

where N = 5, Expiwas the expression value of every five hypoxia
genes, and the Coei was the corresponding multivariable Cox
regression coefficient.

Survival Analysis
OS was compared between the high and low hypoxia risk groups
via Kaplan-Meier analysis using the survival and survminer
packages in R. Univariate Cox analysis was performed to identify
potential prognostic factors, and multivariate Cox analysis was
used to determine risk score as an independent risk factor for OS
in glioma. A ROC curve was generated to validate the accuracy of
the risk model in predicting the patients’ OS via the survivalROC
R package.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed to detect a significant difference in the set
of genes expressed between the high and low-risk groups in the
enrichment of the MSigDB Collection (h.all.v7.0.cymbols.gmt;
c5.bp.v7.0.symbols.gmt). Gene set permutations were performed
1,000 times for each analysis. The phenotype label was used as a
risk score.

Integration of Protein–Protein Interaction
(PPI) Network
STRING database was utilized to develop a protein–protein
interaction network (PPI). Cytoscape (https://cytoscape.org/)
is an open source software platform for visualizing complex
networks and integrating these with any type of attribute data
(12). We used Cytoscape to construct a protein interaction
relationship network and analyze the interaction relationship
of the key genes in hypoxia associated genes. The Network
Analyzer plug-in was then used to calculate node degree,
defined as the number of interconnections to filter key genes of
the PPI.

RESULTS

Characterization of Hypoxia Risk Signature
to Predict Glioma Prognosis
The hypoxia-related gene set was downloaded from Gene Set
Enrichment Analysis (hallmark-hypoxia), which contained 200
genes upregulated in response to low oxygen levels. To better
understand the interactions among these hypoxia-related genes,
we conducted protein-protein interaction network analysis using
the STRING online database (Available online: http://string-db.
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FIGURE 1 | Characterization of hypoxia risk signature to predict prognosis of glioma. (A) Protein–Protein Interaction interactions among 200 hypoxia-associated

genes. The 20 genes with the highest interaction degrees were labeled; (B) Construction of a hypoxia risk signature to predict glioma prognosis by univariate and

multivariate Cox regression; (C,D) Spearman correlation analysis of five hypoxia genes in the CGGA and TCGA databases.

org) and Cytoscape software (Figure 1A). The 20 genes with
the highest interaction degrees were identified, including GPI,
ALDOA, ENO1, JUN, EGFR, PYGM, H2K, GAPDH, VEGFA,
LDHA, FOS, GCK, HK1, PFKL, TPI1, PGK1, PGM1, PKLR,
PFKP, and IL6, suggesting their important role in response
to hypoxia.

To establish a hypoxia risk signature to predict glioma
patients’ prognoses, univariate and multivariate Cox regression
analyses were performed using the top 20 genes in the CGGA
training dataset. In the univariate Cox analysis, 20 hypoxia-
related genes were significantly associated with patients’ overall
survival (OS). In the multivariate Cox analysis, five hypoxia-
related genes with P<0.05 were then chosen to build the
predictive model consisting of VEGFA, HK2, JUN, LDHA,

and GAPDH (Figure 1B). A risk-score formula was developed
as following:

risk score = (0.90× VEGFA)+ (0.51×HK2)+ (1.18× JUN)

+ (1.12× LDHA)+ (1.29× GAPDH)

All five genes were found to be significantly correlated with
one another in both the CGGA (Figure 1C) and TCGA datasets
(Figure 1D).

Prognostic Value of the Hypoxia Risk
Signature in Glioma Groups
Because hypoxia often promotes a more aggressive tumor
phenotype, we further investigated the prognostic value of the
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hypoxia signature. As shown in the heatmap (Figure 2A), the
expressions of the five hypoxia-related genes were increased
accompanying higher risk scores in both the CGGA and TCGA
databases, implying that patients with high risk tend to develop
a hypoxic microenvironment. Our data also showed that the
mortality rate in the high-risk group was significantly higher
than in the low-risk group (Figures 2B,C). Moreover, Kaplan-
Meier analysis was performed to evaluate the prognostic value
of the hypoxia signature in glioma. As shown in Figure 2C,
high hypoxia risk score was associated with poor OS in the
CGGA cohort, which was further validated by the TCGA cohort
(Figure 2D).

We also determined the prognostic value of the hypoxia risk
signature for different WHO grades. We found that patients with
high risk scores had significantly shorter OS than those with low
scores in LGG in the CGGA and TCGA cohorts (Figures 2E,F).
In GBM, high risk predicted poor OS in the CGGA cohort, but
not in the TCGA cohort (Figures 2G,H) (p= 0.07).

Hypoxia Gene Expression Is Correlated
With Clinicopathological Features in
Gliomas
Considering the important biological functions of hypoxia in
tumorigenesis and development, we systematically investigated
the relationships between the five identified hypoxia genes and
the pathological features of gliomas, including WHO grade, IDH
status, and 1p/19q codeletion status. Gene expression levels and
WHO grades are presented as heatmaps (Figures 3A,B), showing
that gene expression significantly increased in high WHO
grades. The significant correlations between WHO grades and
expression levels were also confirmed by quantitative analyses in
both the CGGA (Figure 3C) and TCGA datasets (Figure 3D); as
the WHO grade increased, the expression levels of the five genes
were elevated.

We then studied the relationship of gene expression with
1p/19q codeletion status and IDH status, respectively. The results
showed that expression levels of VEGFA, HK2, JUN, LDHA, and
GAPDH were significantly high in glioma with wildtype-IDH
(Figure 3E) and wildtype-1p/19q codeletion (Figure 3F).

Hypoxia Risk Signature Shows Strong
Power for Prognosis Assessment
To evaluate the predictive efficiency of the hypoxia risk signature
in the 1-, 3-, and 5-years survival rate, we performed a the
received operating characteristic (ROC) curve utilizing the data
from the CGGA and TCGA datasets. The area under the
ROC curve (AUC) was 0.730 at 1-year, 0.776 at 3-years, and
0.798 at 5-years, respectively, indicating a high predictive value
(Figure 4A). This was further validated by TCGA datasets
(Figure 4B).

Patients with high risk score may develop hypoxia tumor
microenvironment. The standard for high and low risk scores was
evaluated on the basis of cut points associated with the Youden
Index (derived from the AUROC for survival). Cut-off values of
14.4 for the risk model was identified, which served to divide the
patients into high risk group (with levels of risk score≥ 14.4) and

a low risk group (with levels of risk score< 14.4). Patients in high
risk group (risk score ≥ 14.4) are associated with poor OS.

Univariate and multivariate Cox analyses were then applied
to evaluate the independent prognostic value of hypoxia risk
signature in terms of OS of glioma patients. The univariate
analysis indicated that high hypoxia risk score was significantly
correlated with poor OS (Figure 4C). Other variables related
with poor survival included age, WHO grade, IDH status, and
1p19q status. Multivariate analysis showed that high hypoxia
risk score was independently associated with significantly poorer
OS of glioma patients (Figure 4D), which could serve as an
independent prognostic factor for glioma. These were validated
by the TCGA database (Figures 4E,F).

GSEA Identifies Hypoxia-Related Signaling
Pathways
To further verify associated signaling pathways activated in the
high hypoxia risk group, we performed GSEA comparing the
high and low hypoxia risk groups. Gene sets were differentially
enriched in the high risk groups of the CGGA database, as they
were related to processes that stimulate tumor proliferation and
anti-apoptosis, such as hypoxia, DNA repair, PI3K-AKT-MTOR
signaling, and angiogenesis (Figure 5A). These were further
validated in the TCGA database (Figure 5B).

Immune Landscape Between Low and
High Hypoxia Risk Glioma Patients
Accumulating evidence suggests that a hypoxic
microenvironment may protect tumors from natural anti-tumor
immune responses by inhibiting anti-tumor immune effector
cells and facilitating immune escape. Here, we investigated
the capability of a hypoxia risk signature in evaluating the
immune microenvironment.

Using the CIBERSORT method in combination with the
LM22 signature matrix, we estimated differences in the immune
infiltration of 22 immune cell types between low- and high-risk
glioma patients. Figure 6A summarizes the results obtained from
929 glioma patients in CGGA and 697 patients in TCGA. Patients
with high hypoxia risk had significantly higher proportions of
immunosuppressive cells (e.g., Tregs, TAMs, and neutrophils)
(Figures 6B–D), rested T cells, and NK cells (Figures 6E,F), but
significantly lower proportions of activated NK cells (Figure 6G).
Although there was no difference in the CD8+ T cells between
high hypoxia risk tumors and low hypoxia risk tumors (data not
shown), the immunosuppressive cells and inactivated NK cells
may drive the immunosuppressive microenvironment.

Next, we analyzed immune-related biological processes
correlated with the hypoxia gene signature. GSEA analysis was
performed to analyze glioma samples with low or high risk. High
risk gliomas were significantly enriched in negative regulation
of the immunity pathway, such as negative regulation of B
cells, CD4+ αβ cell activation, αβ T cell activation, and T cell
differentiation (Figure 6H).

Therefore, targeting hypoxia may have significant clinical
implications in improving immunotherapy.
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FIGURE 2 | Prognostic value of the hypoxia risk signature in glioma. (A) A heatmap showing five hypoxia gene expression profiles in high and low hypoxia risk groups

from the CGGA and TCGA databases; (B) Patient status distribution in the high and low hypoxia risk groups. The dot presents patient status ranked by the increasing

risk score. The X axis is patient number and Y axis is survival time; (C) Mortality rates of the high and low hypoxia risk groups; (D) Kaplan-Meier overall survival curves

for patients assigned to high and low hypoxia risk groups based on the risk score; (E,F) The prognosis values of hypoxia signature in LGG in the CGGA and TCGA

data; (G,H) The prognosis values of hypoxia signature in GBM in the CGGA and TCGA data.
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FIGURE 3 | Hypoxia gene expression is correlated with clinicopathological features of gliomas. (A,B) Heatmaps showing five hypoxia gene expression profiles in

different WHO grades from the CGGA and TCGA databases; (C,D) The expression levels of five hypoxia genes in gliomas with different WHO grades; (E) The

expression levels of five hypoxia genes in gliomas with different IDH status; (F) The expression levels of five hypoxia genes in gliomas with different 1p/19q codeletion

status; *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

High Hypoxia Risk Score Indicates an
Immunosuppressive Microenvironment
The Cancer-Immunity Cycle has become the intellectual
framework for cancer immunotherapy research. It describes a
cycle of processes involving eradication of cancer by the immune

system: cancer cell antigen release (step 1), cancer antigen
presentation (step 2), priming and activation (step 3), trafficking

of T cells to tumors (step 4), infiltration of T cells into tumors
(step 5), recognition of cancer cells by T cells (step 6), and

killing of cancer cells (step 7) (13). Here, we investigated the

Frontiers in Oncology | www.frontiersin.org 6 May 2020 | Volume 10 | Article 796

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Hypoxia Signature Predict Glioma Prognosis

FIGURE 4 | Prognostic value of the hypoxia risk signature in glioma. (A,B) ROC curves showing the predictive efficiency of the hypoxia risk signature on the 1-, 3-,

and 5-years survival rate; (C–F) Univariate and multivariate Cox analyses evaluating the independent prognostic value of the hypoxia signature in terms of OS in glioma

patients.

expression of genes negatively regulating these processes in low
and high hypoxia risk groups. Genes signatures were download
from Tracking Tumor Immunophenotype website (http://biocc.
hrbmu.edu.cn/TIP/index.jsp) (14). As show in Figures 7A,B,
genes involved in the negative regulation of the Cancer-
Immunity Cycle weremostly upregulated in the high hypoxia risk

group, indicating that patients in this group have low activities of
the processes.

Based on previous evidence that immunosuppressive
cytokines and immune checkpoints can be upregulated under
hypoxic conditions, we investigated the expression of these
molecules in the low and high hypoxia risk groups. Our results
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FIGURE 5 | GSEA enrichment between low and high hypoxia risk groups. (A) GSEA revealing that genes in the high hypoxia risk group were enriched for hallmarks of

malignant tumors in the CGGA data; (B) The results were further validated by the TCGA data. Normalized enrichment score (NES) > 1 and nominal p-value (NOM

p-val) < 0.05 were considered significant gene sets.

showed that PD1 and PD-L1, which positively correlated with
hypoxia risk score, were upregulated in the high hypoxia
risk group (Figures 7C–F). Additionally, the expression of
critical immune checkpoints (i.e., CTLA-4 and LAG-3) in
the high hypoxia risk group was significantly higher than
that in the low group (Figures 7G,H). Immunosuppressive
cytokines were also upregulated in the high hypoxia risk
group (Figures 7I,J).

These results indicate that patients with high hypoxia
risk scores tend to develop an immunosuppressive
microenvironment via the upregulation of immunosuppressive
cytokines and immune checkpoints.

Prognostic Value of the Hypoxia Risk
Signature in LGG
We further analyzed the prognostic value of the hypoxia risk
signature in LGG. Our data also showed that the mortality rate in

the high-risk group was significantly higher than in the low-risk
group (Figures S1A,B). Moreover, ROC curve indicated a high
predictive value of hypoxia risk signature in LGG (Figure S1C).
Besides, univariate and multivariate Cox analyses showed that
hypoxia risk signature could serve as an independent prognostic
factor for LGG patients (Figures S1D,E).

Prognostic Value of the Hypoxia Risk
Signature in GBM
In GBM, patients in high-risk group have a higher mortality
rate compared to low-risk group (Figures S2A,B). Besides,
ROC curve showed a predictive value of hypoxia risk
signature in GBM (Figure S2C), and univariate and multivariate
Cox analyses revealed that hypoxia risk signature could
serve as an independent prognostic factor for GBM patients
(Figures S2D,E).
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FIGURE 6 | Immune landscape between low and high hypoxia risk glioma patients. (A) Relative proportion of immune infiltration in high and low hypoxia risk patients;

(B–G) Box plots visualizing significantly different immune cells between high-risk and low hypoxia risk patients; (H) GSEA analysis revealing immune-related biological

processes correlated with hypoxia signature.
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FIGURE 7 | High hypoxia risk score indicates an immunosuppressive microenvironment. (A,B) Heatmap of the gene profiles involved in the negative regulation of the

Cancer-Immunity Cycle in high and low hypoxia risk groups in the CGGA and TCGA databases; (C) Correlation between PD-L1 expression and hypoxia risk score;

(D) PD-L1 expression in high and low hypoxia risk groups; (E) Correlation between PD1 expression and hypoxia risk score; (F) PD1 expression in high and low

hypoxia risk groups; (G) CTLA-4 expression in high and low hypoxia risk groups; (H) LAG3 expression in high and low hypoxia risk groups; (I,J) Tumor

immunosuppressive cytokine expression in high and low hypoxia risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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DISCUSSION

Substantial data suggest that tumor hypoxia is involved in
processes conferring a growth advantage to tumor cells and the
development of a more malignant phenotype (2, 3). Independent
of standard prognostic factors, such as tumor stage, nodal status,
tumor grade, and tumor hypoxia has been recommended as a
prognostic factor for patient outcome (15). Although detecting
the extent of hypoxia in patient tumors has been achieved using
techniques, such as nitroimidazole, PET imaging, and biomarker
expression by immunohistochemistry, a definitive approach is
still unknown (16, 17).

The risk model created in this study consisted of five hypoxia-
associated genes, most of which were upregulated under a
hypoxic environment. It has been reported that VEGF, an
important mitogen specific to endothelial cells, is dramatically
induced by low oxygen tension in a variety of cell types
and mediates hypoxia-induced angiogenesis (18). Similarly,
HK2 and GAPDH are key mediators of aerobic glycolysis
and promote tumor growth. Hypoxia inducible factor 1α
(HIF1α) upregulates HK2 and GAPDH by binding to hypoxia-
responsive element (HRE) promoters (19, 20). Various studies
report that JUN and LDHA are also upregulated in hypoxic
conditions (21–23).

In clinic, there are some available risk models based
on multiple genes that can predict prognosis in patients
with cancer. For example, the 21-gene expression assay
(Oncotype DX, Genomic Health) is one of several commercially
available gene-expression assays that provide prognostic
information in hormone-receptor–positive breast cancer
(24). National comprehensive cancer network (NCCN)
clinical practice guidelines in breast cancer (Version 4.2018)
has strongly recommended 21-gene expression assay for
breast cancer patients. In our study, the risk model now
consists of five genes representing a convenient detection
in clinic.

Accumulating evidence suggests that a hypoxia may protect
tumors from natural anti-tumor immune responses by (1)
reducing activity of NK or CTL cells, (2) promoting suppressive
cells (Tregs, TAMs, and neutrophils), and (3) increasing
immunosuppressive molecular (25).

Activation of tumor antigen-specific T cells and NK cells
is a critical event needed for anti-tumor immune surveillance.
Many studies report that hypoxia inhibits T cell and NK
cell growth and activation. For example, T cell growth and
survival are impaired at low oxygen levels because hypoxia
downregulates T cell IL-2 mRNA expression (26). Hypoxia
could variably reduce NK cell ability to release IFNγ, GM-
CSF, TNFα, CCL3, and CCL5 following PMA + ionomycin or
IL15 + IL18 stimulation (27). Consistent with this evidence,
our study demonstrated that for patients with high hypoxia
risk, resting T cells and NK cells were increased while activated
cells were decreased, indicating an immune disability status in
this group.

Within the cancerous tissue, macrophages are designated
as TAMs and classified into M1-like macrophage and M2-like

macrophages. It is clear that M1-like macrophages can contribute
to an antitumor response, andM2-likemacrophages can promote
angiogenesis, cell proliferation and immunosuppression. Tumor
hypoxia is thought to play a vital role in the phenotypic
control of TAMs, as hypoxic TAMs release factors that assist
in tumor growth, cancer immunosuppression, and angiogenesis
(28, 29). Previous studies support that the M2 phenotype
of TAMs dominates in hypoxic niches (30). In our study,
CIBERSORT showed that patients with high hypoxia risk
had significantly higher proportions of M2 macrophages
phenotype. Besides, immunosuppressive cells, like Treg cells
and neutrophils, were increased in the high hypoxia group,
indicating that our hypoxia risk model may predict the
immune microenvironment.

Cytokines play an important role in regulating tumor
immunity. Tumor immunosuppressive cytokines are one
of the key factors contributing to immune cell exhaustion.
In advanced malignancies, transforming growth factor-
β (TGF-β) has been shown to suppress the immune
system by inhibiting NK cell activity, decreasing cytokine
production, inhibiting dendritic cell maturation, and
altering T-cell cytotoxic properties (31). Interleukin-10
(IL-10), a key immune-suppressive cytokine secreted by
M2-macrophages, Tregs and Th2-cells, has been shown to
impair the proliferation, cytokine production, and migratory
capacities of effector T cells (32). IL-10 has also contributed
to sustained expression of Foxp3, TGFβ-Receptor-2, and
TGF-β, thus stabilizing Treg phenotype and functions
(33). In our study, immunosuppressive cytokines were
upregulated in the high hypoxia risk group, which further
promoted immunosuppression.

Immune checkpoints play a crucial role in carcinogenesis
by promoting tumor immunosuppressive effects. Tumors
can protect themselves from attack by stimulating immune
checkpoint targets (e.g., PD1, PD-L1, LAG3, CTLA-4,
TIGIT, and TIM-3). It is reported that hypoxia could
induce a selective upregulation of PD-L1 on macrophages
and MDSCs in the tumor microenvironment (34, 35). In
our study, immune checkpoints like PD1, PD-L1, LAG3,
and CTLA-4 were also upregulated in the high hypoxia
risk group.

This study was the first of its kind to develop and
validate a hypoxia risk model based on five hypoxia-associated
genes; this model served as an independent prognostic factor
for glioma patients and reflected the overall intensity of
the immune response in the glioma microenvironment. Our
research therefore offers a new understanding of how hypoxia
status affects prognosis and the immune microenvironment in
glioma and may benefit future hypoxia-targeted therapies for
the tumor.
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Figure S1 | Prognostic value of the hypoxia risk signature in LGG. (A) LGG patient

status distribution in the high and low hypoxia risk groups. The dot presents

patient status ranked by the increasing risk score. The X axis is patient number

and Y axis is survival time; (B) Mortality rates of the high and low hypoxia risk

groups in LGG; (C) ROC curves showing the predictive efficiency of the hypoxia

risk signature on the 1-, 3-, and 5-years survival rate in LGG; (D,E) Univariate and

multivariate Cox analyses evaluating the independent prognostic value of the

hypoxia signature in terms of OS in LGG patients.

Figure S2 | Prognostic value of the hypoxia risk signature in GBM. (A) GBM

patient status distribution in the high and low hypoxia risk groups. The dot

presents patient status ranked by the increasing risk score. The X axis is patient

number and Y axis is survival time; (B) Mortality rates of the high and low hypoxia

risk groups in GBM; (C) ROC curves showing the predictive efficiency of the

hypoxia risk signature on the 1-, 3-, and 5-years survival rate in GBM; (D,E)

Univariate and multivariate Cox analyses evaluating the independent prognostic

value of the hypoxia signature in terms of OS in GBM patients.

Table S1 | Patient characteristics from CGGA and TCGA cohort.
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