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ivana.jovcevska@mf.uni-lj.si

Specialty section:

This article was submitted to

Cancer Genetics,

a section of the journal

Frontiers in Oncology

Received: 03 November 2019

Accepted: 23 April 2020

Published: 15 May 2020

Citation:
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Even with a rare occurrence of only 1.35% of cancer cases in the United States of

America, brain tumors are considered as one of the most lethal malignancies. The most

aggressive and invasive type of brain tumor, glioblastoma, accounts for 60–70% of

all gliomas and presents with life expectancy of only 12–18 months. Despite trimodal

treatment and advances in diagnostic and therapeutic methods, there are no significant

changes in patient outcome. Our understanding of glioblastoma was significantly

improved with the introduction of next generation sequencing technologies. This led

to the identification of different genetic and molecular subtypes, which greatly improve

glioblastoma diagnosis. Still, because of the poor life expectancy, novel diagnostic, and

treatment methods are broadly explored. Epigenetic modifications like methylation and

changes in histone acetylation are such examples. Recently, in addition to genetic

and molecular characteristics, epigenetic profiling of glioblastomas is also used for

sample classification. Further advancement of next generation sequencing technologies

is expected to identify in detail the epigenetic signature of glioblastoma that can open up

new therapeutic opportunities for glioblastoma patients. This should be complemented

with the use of computational power i.e., machine and deep learning algorithms for

objective diagnostics and design of individualized therapies. Using a combination of

phenotypic, genotypic, and epigenetic parameters in glioblastoma diagnostics will bring

us closer to precision medicine where therapies will be tailored to suit the genetic profile

and epigenetic signature of the tumor, which will grant longer life expectancy and better

quality of life. Still, a number of obstacles including potential bias, availability of data for

minorities in heterogeneous populations, data protection, and validation and independent

testing of the learning algorithms have to be overcome on the way.

Keywords: glioblastoma, next generation sequencing, diagnosis, therapy, methylation, epigenetics, machine

learning, deep learning

INTRODUCTION

This review starts with outlining the complex nature of glioblastoma by providing brief
information about its occurrence, mortality rate, molecular features, and heterogeneity. Our level
of understanding of glioblastoma genetics has remarkably increased since the introduction of next
generation sequencing. However, lack of effective patient treatment necessitates implementation
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of modern diagnostic and treatment options using newer
technological developments. One such example is exploration
of epigenetic markers for glioblastoma diagnosis and treatment.
Although epigenetics in glioblastoma is still at its infancy, it
shows potential for development of novel therapies. Moreover,
development of machine learning and deep learning algorithms
for glioblastoma patient care may improve objective disease
diagnosis and can contribute to tailoring the most effective
treatment based on patient molecular profile i.e., precision
medicine. At last, understanding the molecular background of
each patient will raise the quality of clinical care from the
current supportive classical treatment to the level of significantly
improving patient life expectancy and quality of life.

Glioblastoma
In the United States, cancer is the second leading cause of
death in both genders with the four most prevalent types being
lung, breast, prostate, and colorectal, while brain cancers account
for only about 1.35% of the cases (1, 2). However, contrary
to their rare occurrence, in the year 2016 brain tumors were
the major cause of cancer-related death among men younger
than 40 years of age and women younger than 20 years of age
(2). With 26% and 21% of the cases, brain and other nervous
system tumors represent one of the most commonly diagnosed
tumors in children and adolescents, respectively (2). Among
adults, gliomas account for almost 80% of the primary malignant
brain tumors (3). Gliomas can be classified based on location,
differentiation pattern, anaplasia, mitotic activity, and necrosis.
Moreover, according to the World Health Organization (WHO),
histologically they progress from benign (WHO grade I and II)
to malignant (WHO grade III and IV) (3). The most malignant
type is the grade IV glioblastoma which accounts for 60–70%
of all gliomas (4) and 16% of all primary brain tumors (5). The
age-adjusted annual incidence of glioblastoma is 3.19 per 100,000
people in the United States (6). Glioblastoma is most commonly
diagnosed in elderly Caucasian men with mean age of 64 years
(6–8). Genetically there are two main glioblastoma subtypes—
isocitrate dehydrogenase (IDH) wild type (or primary) and
mutant (or secondary) that are histo-pathologically the same,
but with different clinical progression (9, 10). IDH-mutant
glioblastomas tend to develop from previously diagnosed WHO
grade II or III gliomas and appear in patients younger than 50
years of age, while IDH-wild type glioblastomas appear de novo
in patients withmedian age of 60 years (3, 11). In general, patients
with IDH-mutant glioblastomas show better overall survival than
patients with IDH-wild type tumors (11).

Glioblastoma Diagnosis and Therapy
Due to unspecific symptoms like numbness, mood swings,
fatigue, and mild memory loss (12), glioblastoma is usually
diagnosed at an advanced stage, when little can be done for
the patient. Definitive diagnosis can only be done histologically,
but needs to be complemented with the recent advances in
the molecular classification. The latest WHO classification of
brain tumors (13) constitutes a combination of phenotypic and
molecular parameters of brain tumors, and that leads to greater
diagnostic accuracy. Still, in cases where molecular diagnostic

testing is not available or is inconclusive, brain tumors are
labeled as “not otherwise specified (NOS).” Standard treatment
comprises maximal surgical resection, followed by concomitant
chemotherapy with temozolomide and radiation, and then
adjuvant chemotherapy (12). Temozolomide was approved by
the US Food and Drug Administration (FDA) for treatment
of glioblastoma in the year 2005 (14). It is a small lipophilic
molecule that is absorbed completely after oral administration,
minimally binds to plasma proteins and is able to penetrate the
blood brain barrier (15). Still, this aggressive treatment gives
patients only 12–18 months post diagnosis (16, 17), while the 5-
year survival is only 9.8% (17). High mortality rate is a result of
the localization and rapid tumor growth (3). In order to improve
patient care and life expectancy, numerous alternative treatments
such as tumor treating fields (18–20), gamma knife radiosurgery
(21), and immunotherapy (22–25) are currently being explored.

DNA SEQUENCING

Sanger Sequencing
The first commercialized method for DNA sequencing named
Sanger sequencing (26) was extensively used for almost three
decades. Sanger sequencing or chain-termination sequencing is
based on the use of 2′-deoxynucleotides (dNTPs) and 2′,3′-
dideoxynucleotides (ddNTPs) for synthesis and termination of
synthesis of the complementary DNA template, respectively. This
leads to generation of fragments with different sizes which are
separated by high-resolution gel electrophoresis and analyzed to
reveal the DNA sequence. Automated Sanger sequencing used
fluorescently labeled primers or terminating ddNTPs. Excitation
of the fluorophores produced fluorescent emission in different
colors that that were used for revealing the DNA sequence.
One of the greatest accomplishments of automated Sanger
sequencing was sequencing the complete human genome (27)
that is considered the largest project of today’s mankind (28).
Still, its limitations in terms of cost, time, low throughput,
efficiency and sensitivity, drove the development of newer
sequencing technologies collectively named “next generation
sequencing” (NGS).

“Next Generation Sequencing” Boom
NGS methods are based on the same principle as Sanger
sequencing: they both use polymerases for synthesis, modified
nucleotides, and fluorescent detection (29). However, for some
NGS platforms like Illumina, Life Technologies SOLiD, Ion
Torrent Personal Genome Machine (PGM), and Roche 454
systems, the DNA template has to be clonally amplified prior
to sequencing, while for the more sensitive Heliscope and
Pacific Biosciences (PacBio) single molecule real-time (SMRT)
systems pre-amplification is not needed (30). Different NGS
platforms use different chemistry for library preparation and
sequencing (31). For example, Illumina sequencers are based on
the “sequencing by synthesis” approach with fluorescently labeled
reversible nucleotide terminator chemistry (32). On the other
hand, Ion torrent technology generates sequence templates on
a bead or sphere via emulsion PCR with sequencing-by-ligation
approach and proton release detection. At last, PacBio sequencers
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are based on SMRT sequencing with fluorescent detection (30).
One of the major advantages of NGS is increased throughput at
decreased expenditure i.e., its ability to generate large amount
of data at reasonable costs. As an example, the standard Sanger
sequencing yielded ∼6Mb DNA sequence per day at a cost of
$500/1Mb while NGS sequencers like Illumina GA (San Diego,
CA, USA), yield ∼5,000Mb DNA sequence per day at a cost of
$0.50/1Mb (33). Still, potential problems that arise are setting
the necessary infrastructure for NGS including machinery, costs
for reagents, space for sample processing, and data storage (34).
Moreover, trained personnel with adequate understanding of the
software for data analysis and interpretation is a necessity. A
more complex problem that should not be neglected is who owns
the genetic information obtained from such analysis, and to what
extent the raw data can be used for other pathologies besides
the one originally intended? These limitations of NGS are issues
that still need to be addressed together with institutional ethics
boards, researchers and participants as the technology develops.

How did NGS become so popular? After the introduction
of commercial next generation sequencers in the year 2005
(29), a new age in nucleic acid research was started. NGS is
suitable for a wide range of applications in particular for analysis
of genetic variations and mutations, mRNA, non-coding RNA,
methylation studies as well as chromatin immunoprecipitation
(ChIP)-sequencing (35). By generating genetic information from
different individuals, NGSmade it possible to perform large scale,
comparative, and evolutionary studies (36), and also helped in the
development of pharmaceuticals (37). Moreover, NGS started the
era of genomic medicine—incorporating patient’s tumor genetic
information for diagnosis, treatment, and prevention of diseases.
NGS can help in overcoming treatment challenges by identifying
druggable genetic targets. At last, with NGS the human genome
can be resequenced in order to get deeper understanding of
how genetic changes affect health and disease (38). NGS offers
enormous possibilities for increasing our understanding of
human genetics of health and disease, which will change the way
we diagnose disease and treat individuals.

Third Generation Sequencing
The best method for identification of genetic variations
crucial for disease development is DNA sequencing. The right
sequencing method is desired to be high-throughput, low-cost
and able to sequence long reads with high accuracy (39). Despite
all the advantages that next generation sequencing offers, the
short length of the obtained reads is its weak spot. This led to
the emergence of a third generation of sequencing that enables
single molecule long reads (39) such as SMRT sequencing by
PacBio (40) and nanopore sequencing originally introduced in
the year 1996 (41). The authors showed that with an electrical
field, single-stranded DNA (ssDNA), or RNA molecules can
be driven through a 1–10 nm ion channel, i.e., nanopore, in a
lipid bilayer or membrane. When passing through the nanopore,
different bases of the DNA strand will cause specific fluctuations
in the electrical current; these signals can be converted to DNA
sequence information (39). The advantage of this method is
the short time for sample preparation, electrical, or fluorescent
readout and reads in length of several kilobases of single DNA

molecules in real time (29). However, there are two possible issues
that have to be resolved: (1) Length of the recognition region
of the nanopore should not be larger than 0.5 nm—size that
is equivalent to the base-spacing in a ssDNA, otherwise signal
interference from adjacent bases will be observed (39); and (2)
The current speed of DNA translocation, 300 bases/ms, is too fast
for individual bases to be identified—ideally it should be adjusted
to 1 base/ms (39). A solution has been proposed by IBM (New
York, NY, USA) by creating a nanopore matrix i.e., a transistor
with alternating fields of metal and dielectric materials which can
control the speed of DNA translocation (42, 43).

New technological developments in the sequencing fields offer
different techniques for establishing patients’ tumors’ molecular
profiles which are expected to accelerate the development of
personalized medicine. For example, targeted sequencing will
allow detection of specific genetic changes of a predefined set of
genes; whole exome sequencing will provide information about
the coding regions of genes of interest; while RNA sequencing
will give information about the post-transcriptional changes
(44). At last, whole genome sequencing will provide a complete
in depth genetic picture for each patient, but at the cost of
great computational power, time, and resources. Because of the
high molecular diversity of glioblastoma, these technological
advancements are expected to deepen our knowledge of its
mechanisms of development and progression. At last, by
understanding how the disease works at differentmolecular levels
(transcriptomic, genetic, epigenetic, and protein), new more
powerful drugs can be designed that will be of a great benefit for
the patients.

PAVING THE ROAD TO PRECISION
MEDICINE

Cancer is a complex disease which arises as a result of
combination of hereditary i.e., genetic and environmental factors
such as physical and chemical agents, diet, lifestyle, tobacco,
and alcohol use (35). These interactions leave footprints in
the genome either as mutations or as epigenetic modifications.
Genetic changes range from single base substitutions to major
chromosomal losses, while the epigenetic modifications influence
gene expression as well as DNA replication and repair (45, 46).

Glioblastoma is a disease that is characterized with
heterogeneity at both intra- and inter-tumoral level. As a
response to its complexity, the scientific society moves away
from identification of a single gene as a cause of a disease, and
toward identification of combination of molecular changes that
eventually lead to tumor development (35). Such changes can
be commonly observed in different individuals with the same
disease. Personalized medicine implies development of drugs
for the needs of a single patient, while precision medicine refers
to the classification (or diagnosing) of individuals into genomic
subclasses which can be treated in more targeted i.e., precise
ways (47). The advantage of using NGS for diagnostics is the
simultaneous detection of a number of different markers, which
otherwise requires separate consecutive tests and prolongs the
diagnostic process.
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Genetics of Glioblastoma
During the course of The Cancer Genome Atlas (TCGA)
project glioblastomas were genetically characterized. The most
important findings included changes in three core pathways
receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/PI3K, p53,
and retinoblastoma (RB) with alterations in 88, 78, and 87%
of the analyzed cases, respectively (48). The most frequent
gene alterations were found in epidermal growth factor
receptor (EGFR—mutation in 45% of the cases), phosphatase
and tensin homolog (PTEN—inactivated in 36% of the
cases), cyclin-dependent kinase inhibitor 2A (CDKN2A—
inactivated in 52% of the cases), cyclin-dependent kinase
inhibitor 2B (CDKN2B—inactivated in 52% of the cases),
tumor protein p53 (TP53—mutated in 35% of the cases)
and RB (homozygote deletion in 11% of the cases) (11, 48).
IDH mutations are rare in primary glioblastoma patients
with EGFR and PTEN alterations, but are commonly found
in low grade gliomas and together with TP53 mutations in
high grade gliomas that evolved from low grade gliomas
(49). Later, Verhaak et al. established the molecular profile
of glioblastoma (50). In their study, using molecular
profiling they defined four glioblastoma subtypes: classical,
proneural, neural, and mesenchymal with different molecular
properties. This illustrates high glioblastoma heterogeneity at
the molecular level that is present both within (intra) and among
(inter) tumors.

Examining intratumor heterogeneity can be precisely
performed with method that allows for analysis at individual cell
resolution level, such as single-cell RNA sequencing (scRNA-seq)
(51). scRNA-seq can be used not only to analyze tumor cells,
but also non-tumor cells that shape the microenvironment and
aid in tumor progression (52, 53). Numerous research groups
are already using this technology to “shred glioblastomas to
single-cells” and contribute to their molecular understanding
(51, 54–58). One such study identified presence of different
cells within the tumor compared to cells from the surrounding
based on macrophage and microglia gene expression profiles
(52). In another study (59) the authors provided evidence that
glioblastoma stem cells shape the transcriptional and cellular
landscapes of the tumor. In a different study (51), the authors
proposed potential role of the expression levels of rare genes
in glioblastoma tumorigenesis. Using the knowledge about
molecular heterogeneity of glioblastoma, institutes already
implemented next generation sequencing panels containing a
specific set of glioblastoma-specific genes for patient diagnosis
(60). It is reasoned that the intratumoral heterogeneity reflects
the existence of different cellular subclones within the same
tumor—this is why deciding the therapeutic strategy from a
single biopsy specimen may not be enough for successful therapy
(61). Moreover, the molecular diversity of glioblastoma is further
increased during treatment—namely, tumors of patients treated
with temozolomide present with a hypermutation phenotype
(62, 63) which is associated with promotion of tumor growth and
metastasis (64). At last, transcriptome analyses are also used for
defining glioblastoma signatures that will help in precise disease
diagnosis, as well as to anticipate therapy response and patient
outcome (53).

Epigenetics of Glioblastoma
Epigenetic modifications are heritable changes that affect gene
expression, but do not change the DNA sequence itself (65,
66). Such changes are DNA methylation, histone modifications,
and chromatin remodeling (67). Histones are positively charged
proteins H1, H2A, H2B, H3, and H4 (68). Chromatin refers to
the complex of negatively charged DNA and positively charged
histone proteins, or the fundamental subunit “nucleosome” in
the nucleus. Every nucleosome consists of about 146–147 bp
DNA associated with octameric core of histone proteins—two
H3-H4 histone dimers surrounded by two H2A-H2B dimers
(69). Histone acetylation i.e., addition of acetyl groups to lysines
of H3 or H4, weakens the interactions between histones and
DNAwhich opens the accessibility to the transcription apparatus,
while histone deacetylation removes the acetyl groups which
results in histone condensation and gene inactivation (70). These
dynamic processes are maintained by histone acetyltransferases
(HAT) and deacetylases (HDAC). Histone modifications are
different in pediatric and adult gliomas. In pediatric gliomas,
the most common mutations are K27M and G34R/V on histone
variant H3.3 (71). Mutations in H3F3A show specificity for
pediatric high grade gliomas, and are not found in pediatric
low grade gliomas, embryonic tumors, or ependymomas nor
in adult glioblastoma (72). In adult gliomas, IDH1 mutations
indirectly affect H3K27 or H3K36 methylation (73). Lysine (K)
methylation at positions K4, K36, and K39 on H3 marks active
chromatin regions, while at positions K9 and K27 at H3 it marks
inactive chromatin regions (74, 75); still, lysine methylation does
not change the net charge of the histone tail (76). Another
epigenetic modification is chromatin remodeling that causes
conformation changes in chromatin which regulate the DNA-
dependent processes, replication, and repair systems as well
as centromere and telomere maintenance (67, 77). These 3D
conformational chromatin changes can affect gene expression by
regulating access to RNA polymerases and transcription factors
(77). Examples of the involvement of chromatin remodeling
in glioblastoma pathogenesis are switch/sucrose non-fermenting
(SWI/SNF) core complex (78) and Brahma-related gene 1
(BRG1), one of the catalytic subunits of the SWI/SNF chromatin
remodeling complex (79) that regulate stemness and tumorigenic
potential of glioma initiating cells.

DNA Methylation
From the four DNA bases, only cysteine and adenine can
be methylated. Yet, DNA methylation usually refers to the
covalent transfer of methyl groups to the C-5 position of the
cytosine ring to create 5-methylcytosine as shown in Figure 1.
In mammals, DNA methylation occurs on any cytosine of the
genome; however, in the majority of the cases it occurs in a 5′-
CpG-3′ dinucleotide context of somatic cells, and up to 25% of
methylation occurs in non-CpG context of embryonic cells (82).
Typically, CpG islands belong to or are near promoter regions
of genes where transcription starts (74). Adenine methylation is
observed in bacterial, plant, and lately also in mammalian DNA,
but is not that much explored and its role is largely unknown (83–
85). Methylation is needed for silencing transposable elements
and genes on the inactive X-chromosome, as well as maintaining
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FIGURE 1 | Schematic representation of DNA methylation. Cytosine methylation is mediated by a family of DNA methyltransferase enzymes DNMT1, DNMT3A, and

DNMT3B (65, 80, 81).

genome stability (86). Besides, DNA methylation plays an
important role in regulation of gene expression that has an
impact on the clinical outcome of glioblastoma patients (65, 87,
88).

DNA Methylation in Glioblastoma
Cancers in general are characterized by global hypomethylation
which is associated with gene expression, activation, and
chromosomal rearrangements of oncogenes which leads to
genomic instability, oncogene activation, and tumor progression,
as well as locus-specific hypermethylation which results in
heritable transcriptional silencing of tumor suppressor genes
(82, 89). Global hypomethylation occurs in 80% of glioblastomas
(90). DNA methylation that occurs in CpG islands in gene
promoter regions inversely correlates with gene transcription.
In glioblastomas, besides at genetic, intratumor heterogeneity
is present also at DNA methylation level. Wenger et al.
analyzed multiple spatially separated tumor specimens from 12
glioblastoma patients (38 samples total) and observed existence
of different methylation subclasses intertumorally—three
samples presented with combined existence of mesenchymal
and receptor tyrosine kinase (RTK) II subclasses, while two
contained both RTKI and RTKII at once (91). Using clustering
of IDH-mutant gliomas, Ceccarelli et al. observed existence
of three major glioma groups: Codel, IDH-mutant 1p/19q
codeleted low grade gliomas; glioma CpG island methylator
phenotype (G-CIMP)-low, IDH-mutant non-1p/19q codeleted
low and high grade gliomas with low genome-wide DNA
methylation; and G-CIMP-high, IDH-mutant non-1p/19q
codeleted low and high grade gliomas with higher level
of genome-wide DNA methylation (92). Among these, the
G-CIMP low group was found to have worst prognosis,
while G-CIMP and Codel presented with similar favorable
prognoses. The authors also analyzed IDH-wild type gliomas
and observed existence of three DNA methylation groups:
classic-like, mesenchymal-like, and IDH-wildtype low and

high grade gliomas. An interesting observation was that only
patients with low grade gliomas from the IDH-wildtype group
experienced significantly longer survival. In a different study,
Pangeni et al. performed methylation array profiling on a
panel of 23 patient-derived glioblastoma stem cell lines and
data for TCGA patients with IDH-wildtype glioblastomas (89).
Different glioblastoma subtypes were included in the analysis.
The authors observed similar bi-modal distribution of CpG
methylation in glioblastoma stem cells and glioblastoma tumors.
They also found more mesenchymal-hypermethylated than
hypomethylated genes in both glioblastoma stem cells and
glioblastoma tumors. They observed that high expression levels
of proneural-methylated genes CASP8 and FADD-like apoptosis
regulator (CFLAR) and Sp100 nuclear antigen (SP100), and
low expression levels of the mesenchymal-methylated genes
transmembrane and coiled-coil domain family 1 (TMCC1),
Rho guanine nucleotide exchange factor 7 (ARHGEF7), Notch
homolog 1, translocation-associated (NOTCH1), midnolin
(MIDN), potassium voltage-gated channel subfamily Q member
2 (KCNQ2), ataxin 10 (ATXN10), ubiquitin specific peptidase 54
(USP54), and TUB bipartite transcription factor (TUB) correlate
to poorer patient prognosis (89).

In glioblastoma, DNA methylation is closely correlated to
response to temozolomide treatment. So far, methylation of
the O6-methylguanine-DNA methyltransferase (MGMT) is the
only predictive biomarker for patient response to first-line
temozolomide chemotherapy (93, 94). MGMT is a DNA repair
protein that reverses the damage done by alkylating agents such
as temozolomide. Temozolomide adds methyl groups at N7 and
O6 sites on guanines and O3 sites of adenines in genomic DNA
and this is why it is cytotoxic to cells (14). MGMT-promoter
methylation causes gene silencing, therefore less protein is
expressed which leads to sensitivity to chemotherapy with
alkylating agents (95). In a study by Smrdel et al. the authors
compared overall survival and time to progression in patients
with and without methylated MGMT (96). Their results show
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longer overall survival (43 vs. 16months) and time to progression
(36 vs. 11 months) in patients with methylatedMGMT compared
to patients without methylated MGMT, respectively. The authors
also observed MGMTmethylation in 36 out of 38 (95%) patients
who present with long survival (more than 30 months after
diagnosis) and in only 12 out of 33 (36%) patients in the
control group (short term survival patients i.e., <30 months
after diagnosis). In general, patients with methylated MGMT
promoter respond better to temozolomide therapy and present
with longer survival (3, 63, 97, 98). These findings are in
concordance with another study where Felsberg et al. took in
consideration 67 adult patients diagnosed with glioblastoma (99).
The authors conclude that MGMT promoter hypermethylation
is associated with longer time to progression after initiation of
chemotherapy (245 vs. 100 days) and longer overall survival (692
vs. 474 days).

On the other hand, one study reports identification of a new
histone deacetylase inhibitor, 7-ureido-N-hydroxyheptanamide
derivative—CKD5, that shows strong anticancer effect in
glioblastoma in vitro and in vivo (100). The advantages of this
inhibitor are its water solubility (>1,000 mg/mL), negative result
on Ames test which indicated that CKD5 is not genotoxic and
does not introduce DNA mutations, and it showed no signs
of inducing cardiac toxicity in pre-clinical trials. However, for
glioblastoma treatment delivery methods have to be developed
as CKD5 cannot penetrate the blood brain barrier. The use of
H3K4 and H3K9 me1/2 demethylase KDM1 and H3K4 me2/3
demethylase KDM5A as potential therapeutic targets was also
tested (76). The authors of the study show that inhibiting KDM1
and KDM5A enzyme activity presents with strong antitumor
affect in wild-type and temozolomide-resistant glioblastoma
cells. Romani et al. used a multi-KDM inhibitor, JIB 04, that has
strong anti-clonogenic activity in wild-type and temozolomide-
resistant glioblastoma cells after only 4 h incubations at low
JIB 04 concentrations (0.5 and 1µM). The authors also tested
different drug combinations and showed synergistic effect of
JIB 04 and GSK J4 (selective inhibitor of KDM6A/B) on
cell proliferation and reduction of the clonogenic potential of
temozolomide-resistant glioblastoma cells. These studies show
that with targeting epigenetic changes non-traditional treatment
methods for glioblastoma patients whose tumors are resistant
to the temozolomide chemotherapy can be developed. Knowing
the aggressiveness of the tumor and its poor response to current
available treatment options, these findings give new hope for
glioblastoma patients.

Clinical Trials
Since the discovery of the altered epigenetic profiles of
cancers, epigenetics is getting more and more attention in
the research community. Histone deacetylases, the enzymes
that remove the acetyl group from histones which is initially
associated with gene repression, are often overexpressed in
cancer (100). Due to their reversible nature and role in
gene expression, epigenetic changes, especially changes in
histone acetylation, are also considered as possible therapeutic
targets (86) which can be seen from the growing number
of clinical trials based on the use of different enzyme

inhibitors. Data was obtained from the database of publicly and
privately funded clinical studies worldwide, https://clinicaltrials.
gov, using the following keywords: “glioblastoma,” “Vorinostat,”
“Romidepsin,” “Belinostat,” “Panobinostat,” “LHB589,” “Valproic
acid,” “Olaparib,” “Veliparib,” “ABT-888,” “Iniparib,” “BSI-201,”
and “CBL0137.” The search conducted on the 8th of August
2019 gave the results presented in Table 1. Still, an obstacle
in these clinical trials are our current lack of knowledge
about the mechanism of HDAC inhibitors and how they affect
cellular signaling pathways; moreover, methods for improved
penetration of the HDAC inhibitors into the brain and across the
blood brain barrier are still to be found (77).

Novel Next Generation Sequencing-Based
Diagnostic Approaches
Although the work of Verhaak et al. changed the way we diagnose
glioblastoma and increased our understanding of the disease
(50), there are still a number of patients whose tumors cannot
be classified according to the currently defined subtypes (13).
Anyway, understanding the molecular background of disease
requires availability of sets of reference samples from healthy
donors (126) for comparison.

Molecular Re-classification of Glioblastomas
Using next generation sequencing data available from TCGA,
Bolouri et al. report clustering of glioblastomas based on their
methylation profiles (127). The authors of the study used
genome wide and methylation data from a merged cohort of
glioblastomas and lower grade gliomas and obtained three big
glioma clusters: (1) oligodendrogliomas, (2) astrocytomas and
oligoastrocytomas, and (3) mostly glioblastomas with a few
astrocytomas and oligoastrocytomas (127).

More recently, Capper et al. aided in the classification of
glioblastomas that do not belong to the known entities i.e.,
WHO subclasses (128). The authors established a system for
classification of brain tumors based on their epigenetic profiles.
They generated genome-wide DNA methylation profiles of 76
histopathological entities and seven entity variants that occur
in the central nervous system. Unsupervised clustering within
each entity and across histologically similar tumor entities led
to obtaining 82 tumor classes with different DNA methylation
profiles. Of these, 29 classes were equivalent to single WHO
entities, 29 classes were subclasses of WHO entities, in eight
classes WHO entities could not be recapitulated, in 11 classes
were not identical to WHO entities, while the remaining
five classes presented with methylation profiles that are not
described by the WHO. To test clinical implementation of this
system, Capper et al. analyzed 1,104 samples or 64 different
histopathological entities of adult and pediatric brain tumors.
The majority of the samples (88%) matched an established DNA
methylation profile. From these, in 76% of the cases pathological
and methylation profiling were concordant. In the remaining
12% of the cases, methylation and pathological diagnoses were
not concordant; samples were molecularly re-evaluated and
diagnosis was changed as it was suggested by the methylation
subclassifier; diagnoses were changed into both lower (30%)
and higher (41%) WHO grades. The study demonstrates that

Frontiers in Oncology | www.frontiersin.org 6 May 2020 | Volume 10 | Article 798

https://clinicaltrials.gov
https://clinicaltrials.gov
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
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TABLE 1 | List of selected glioblastoma clinical trials using drugs targeted against enzymes involved in epigenetic modifications.

Drug Role Clinical trial number Clinical trial phase Selected references

Vorinostat HDAC inhibitor NCT00762255

NCT01266031

NCT01110876

NCT03426891

NCT01342757

NCT00555399

NCT00731731

NCT00641706

NCT00238303

NCT00939991

NCT01738646

NCT01189266

NCT00268385

NCT01378481

I (completed)

I (completed)

I (terminated)

I (recruiting)

N/A

I/II

I/II

II (completed)

II (completed)

I/II

II (completed)

I/II

I

I (terminated)

(101–107)

Romidepsin HDAC inhibitor NCT00085540 I/II (completed) (108)

Belinostat HDAC inhibitor NCT02137759 II (109)

Panobinostat (LBH589) HDAC inhibitor NCT01115036

NCT00848523

II (withdrawn)

II (terminated)

(110)

Valproic acid HDAC inhibitor NCT02648633

NCT02758366

NCT01817751

NCT01861990

NCT03243461

NCT00302159

I (terminated)

II

II

I (withdrawn)

III

II (completed)

(111–117)

Olaparib PARP inhibitor NCT02974621

NCT01390571

NCT03212274

II

I (completed)

II (recruiting)

(118, 119)

Veliparib (ABT-888) PARP inhibitor NCT02152982

NCT00770471

NCT01026493

NCT03581292

NCT01514201

II/III

I (completed)

I/II (completed)

II (recruiting)

I/II (completed)

(120, 121)

Iniparib (BSI-201) PARP inhibitor NCT00687765 I (completed) (122)

CBL0137 Histone chaperone FACT inhibitor NCT01905228 I (recruiting) (123–125)

HDAC, histone deacetylase; PARP, poly(ADP-ribose) polymerase; FACT, facilitates chromatin transcription; N/A, not applicable.

variability within and among tumors can be detected with deeper
molecular analysis which can lead to more precise diagnosis and
better treatment.

Cancer methylome is a combination of DNA methylation
changes and characteristics of the cells of origin; in heterogeneous
metastatic tumors this can aid in defining the primary cancer
site (128). Although adding molecular characteristics into the
histological diagnosis of glioblastoma is beneficial for precise
diagnosis, single-gene tests based on DNA methylation analysis
likeMGMTmethylation status, fluorescence in situ hybridization
[1p/19q codeletion, EGFR, proto-oncogene C-Myc (MYC), class
E basic helix-loop-helix protein 37 (MYCN), platelet derived
growth factor receptor alpha (PDGFRA) and 19q13.42), or
immunohistochemistry (catenin beta-1 (CTNNB1) and Lin-28
homolog A (LIN28A)], have proven difficult to be standardized
(128). The studies from Bolouri et al. and Capper et al. only
illustrate the importance of implementation of methylation
profiling in glioblastoma diagnosis. Due to tumor heterogeneity it
is important for all variables to be taken in consideration for fully
informed decision about patient’s therapeutic course to be made.

Nanopore Sequencing for Same-Day Patient

Diagnosis
Further development of next generation sequencing techniques
may lead to same-day patient diagnosis with nanopore-based
systems. Similar to a small 100mV electrical current passing
through a nanopore placed in a membrane separating two
chambers with aqueous electrolytes that can be measured
with standard electrophysiological techniques, nucleobases of
electrophoretically driven ssDNA or RNA molecules would
modulate the current when passing through a suitable nanopore
(129). The ideal nanopore sequencer is characterized by
inexpensive sample preparation complemented with disposable
chip with integrated microfluidics and probes, and a portable
benchtop instrument for processing of long reads (>10,000–
50,000 nt). Using a nanopore sequencer, Jain et al. reported
sequencing and assembly of a reference human genome from
ultra-long reads up to 882 kb in length with 5x coverage
(130). The advantage of this benchtop method over next
generation sequencing is its simplicity, speed, size, and reduced
cost—nanopore can provide sequencing results faster and in
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resource-restricted areas (44). One big concern however, is the
amount of starting material; namely, ∼700 µg of human diploid
genetic material will be needed to provide adequate throughput
for the nanopore array, which, in theory, can be obtained with
routine extraction procedures (129). Still, in the time when
single-cell sequencing research is escalating (52, 55, 131) this can
be seen as a pitfall.

Meanwhile, nanopore sequencing is already being tested for
implementation in cancer diagnostics. In their retrospective
proof-of-principle study, Euskirchen et al. examined the utility of
nanopore sequencing (Oxford Nanopore Technologies, Oxford,
UK) for multimodal molecular diagnosis using previously
characterized brain tumors (132). Using deep amplicon
sequencing, the authors were able to identify single nucleotide
variants in IDH1, IDH2, TP53, H3F3A, and TERT promoter, and
diagnostically relevant alterations like 1p/19q codeletion within
minutes of sequencing. Moreover, they obtained 0.1X genome
coverage within 6 h where copy number and epigenetic profiles
matched the ones from microarray data. Because it can detect
base modifications such as 5-methylation of cytosines, nanopore
sequencing is also suitable for methylation analysis without
the need of bisulfite conversion of the DNA. This will increase
consistency during nucleic acid processing as well as significantly
reduce the time needed for sample preparation. In the study,
the authors observed good correlation between the methylation
events in CpG sites obtained with nanopore sequencing and the
corresponding microarray data.

The study by Euskirchen et al. shows the potential that
nanopore sequencing offers for timely cancer diagnosis. In
addition, due to small size and inexpensive technology,
this method of histomolecular disease classification can be
used worldwide even in regions with restricted clinical
resources. However, further optimization like for use with highly
fragmented nucleic acids originating from improperly stored or
formalin-fixed paraffin-embedded tissue samples is still needed.
Furthermore, as the method is still in developmental stages
frequent improvements of the chemistry and software challenge
its clinical implementation at this time.

Artificial Intelligence in Biomedical
Sciences
In the light of new technological developments, the use of
artificial intelligence (AI) in biomedical research will bring
glioblastoma diagnostics on an advanced level. Machine learning
is an application of artificial intelligence that allows for
computers to work on tasks, learn from the data and improve
their performance based on the gained experience (133, 134).
It is a combination of mathematics and computer science that
is based on building statistical models from large datasets i.e.,
billions or trillions data points (133). Classical statistical models
describe the relationship between covariates (e.g., clinical factors)
and a single dependent variable (e.g., outcome) obtained from
a sample population and projected to a larger population. For
instance, statistical models are suitable for deciding on treatment
strategies based on survival, while machine learning models seek
to predict the outcome using clinical factors as input features

(135).Machine learning is defined as “the study of algorithmically
built mathematical models that have been fitted for the training
dataset to make predictions for the similarly obtained and
structured validation dataset” (136). Extensive use of machine
learning in biomedical fields, either for diagnostic, or therapeutic
purposes, is conditioned by the availability of large data sets and
appropriate IT infrastructure. Large datasets containing genetic
information are generated by sequencing the human genome—
a method that became routine with the wide implementation of
next generation sequencing in research.

Machine Learning for Disease Diagnosis and Therapy
In cancer diagnostics, microscopic examination of patient
samples is crucial for determining cancer staging. However,
microscopy is based on the image interpretation of an expert
individual which can also be subjective; lately quantitative
examination of microscopy samples is required; and lastly, the
availability of such expert individuals can be limited (137). AI can
help in automated image analysis for pathological purposes with
improved diagnostic accuracy, quantification, and efficiency. One
such example is the augmented reality microscope—optical light
microscope that enables real-time integration of AI (137).

Generation of large amount of data that contains information
about human genetics allows for the development of machine
learning techniques whose algorithms are either supervised or
unsupervised clustering type. In supervised learning algorithms
learn from labeled data, while in unsupervised learning the
algorithms try to understand relationships from unlabelled
data (134).

Machine learning for therapeutic purposes will be additionally
enriched by the implementation of in silico drug discovery and
design systems. One such example is the DrugBank database
that contains quantitative, analytic and molecular information
about drugs, and drug targets (138). DrugBank is organized into
four major groups: (1). FDA approved small molecule drugs
(>700 entries), (2). FDA approved bio-tech (protein/peptide)
drugs (>100 entries), (3). Nutraceuticals or micronutrients such
as vitamins and metabolites (>60 entries), and (4). Experimental
drugs such as unapproved, de-listed and illicit drugs, enzyme
inhibitors, and potential toxins (3,200 entries). Machine learning
for drug discovery will offer a cost-effective and timely alternative
to current experimental procedures (139). Another perspective
is applying machine learning technology for predicting clinical
efficiency of drugs and individualized treatment methods (140).
This method which is named “drug scoring” or “personalized
(individual) medicine” will take into account features that
describe activation of cell signaling and metabolic pathways
which will distinguish patients who will respond to the treatment
from those who will not benefit from it. There are two principles
for drug scoring: a priori—evaluating the ability of a drug
to restore normal status or stop a physiological process that
is considered pathogenic; and a posteriori—resulting from a
machine learning process on a training dataset containing
information from patients treated with the drug in question
(140). The authors have developed a method for translating drug
efficiency results obtained using cell lines to predict clinical effect
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on humans. The use of this method can potentially reduce the
costs of drug screening.

Even though machine learning shows potential to improve
disease diagnosis and therapy, it still possesses a few limitations
such as separating causation from correlation, removing biased
data, and regulating predictive analytics (141). For machine
learning to be safely used in disease diagnosis and/or treatment,
the data which is taken into consideration has to be thoroughly
examined to ensure it is appropriate for the specific problem. For
correct identification and analysis, data must be equally collected
and annotated, and it must be representative even for minorities
in heterogeneous populations. In addition, self-implemented
risk factors like smoking should be taken in consideration
but should not be a limiting factor when deciding on future
healthcare measures. An ethical issue in deciding treatment
with machine learning can be existence of a permanent health
condition, or chronic infection, like an individual being HIV
positive. Another possible problem is bias toward populations
that provide the most data, and in some societies, toward those
that are able to afford medical procedures. As machine learning
algorithms are trained on retrospective data it is possible for
human subjectivity to influence the results; however, this can be
improved by introducing new raw data (135). Before applying

machine learning into clinical care, researchers must also
consider protecting the privacy of the patients, ensure protection
of data and patient information, and allow for equal treatment
of all affected parties (141). At last, validation and independent
testing of the machine learning algorithms must be performed
in order to exclude mistakes due to technical differences. With
all the advantages that it offers, machine learning in biomedicine
is still at the beginning of its development and requires a
multidisciplinary team to answer questions about ethical, legal,
moral, and technological issues before it can objectively aid in
better patient care.

Deep Learning
Machine learning works only with structured data which means
reduction of amount of data in the raw format, significant time
input from a medical professional to structure the data and
introduction of human subjectivity (135). On the other hand,
deep learning can use a wide range of different parameters which
can be optimized by training on labeled data for prediction.
While machine learning has already been used to determine gene
expression patterns relevant for glioblastoma patient survival
(50, 142), the use of deep learning for prognostic gene discovery
it at its beginnings (143). The advantage of deep learning is that it

FIGURE 2 | Illustration of the changes in diagnosis and treatment of glioblastomas in different medical approaches (classical, modern, and personalized). Classical

medicine relied on histological analysis of tissues, which is merely subjective, while therapy is universal for the patients which does not show much clinical success.

On the other hand, modern medicine takes in consideration both histologic and genetic components which leads to greater diagnostic accuracy [examples:

“glioblastoma, IDH-mutant” and “oligodendroglioma, IDH-mutant and 1p/19q-codeleted” (13)], while therapy is modified to suit tumor genetic profile. The trend is

moving toward personalized medicine, where diagnosis will be thorough and objective aided by automated histological image analysis, next generation sequencing

(NGS) and artificial intelligence (AI) algorithms, and therapy will be adapted not only to the genetic but also transcriptomic and epigenetic patient profile. This will result

in increased overall survival and better quality of life.
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FIGURE 3 | Glioblastoma diagnosis. This figure illustrates what all healthcare

systems have in common and aim for—which is better patient care. Starting

from the classical, to the modern, where we are now, and going toward

personalized medicine the goal is still improving patient quality of life i.e., both

disease diagnosis and patient treatment.

can model a large number of differentially expressed genes. Using
TCGA data as input, Wong et al. used deep learning to model
the relationship between genes and their corresponding proteins
on survival prognosis (143). Their model identified different
genes associated with glioblastoma survival, glioblastoma cancer
cell migration, or glioblastoma stem cells. In a different study,
Young et al. used deep learning to classify glioblastomas into
six subtypes which corresponded with significant differences in
patient survival (144). These findings are in concordance with
those from Brennan et al. who used DNA methylation data to
classify glioblastomas into six subtypes: mesenchymal, proneural,
neural and classical, as identified by Verhaak et al., supplemented
with G-C island methylation phenotype (G-CIMP) and non-G-
CIMP subtypes within the proneural subtype (145).

Although still at its infancy, the use of deep learning may
open up new possibilities for glioblastoma diagnosis. Due to
its ability to analyse large amount of data, deep learning can
aid identifying features with biological significance which are
currently unknown or too complex to be understood. Moreover,
novel applications of deep learning may reveal hidden structures
of cellular pathways and disease mechanisms. Glioblastoma
diagnosis has significantly changed through the years as it can be
seen in Figure 2. It started from histological analysis (classical)
through addition of molecular and genetic characteristics of
the individuals (modern) and is moving toward implementation
of self-learning algorithms (personalized) which will eventually

lead to the next presently unknown level. However, all these
“medicines” have a common goal that is longer life expectancy
and greater quality of life or better patient care (Figure 3). This
transition from the classical through modern to personalized
medicine was greatly aided by the massive use of NGS methods
and is able to further develop also because of them.

CONCLUSIONS

With the use of NGS researchers generate large amount of data
about transcriptomic, genomic, and epigenomic characteristics
of humans. However, so far, only a small fraction has been
proven to have clinical implementation. Understanding the
rest of the “unlocked” data will only be possible with the
development of more powerful analytic objective systems.
The potential that NGS holds for glioblastoma research and
clinical implementation is massive. Intelligent and careful use
of NGS data can change the way we diagnose and treat
glioblastomas. Studying epigenetic modifications in glioblastoma
offers potential for identification of clinical biomarkers either for
patient diagnosis or discovering drug targets. Rapid development
of different methodologies for analysis of big data may lead
to the development of individual diagnosis and patient-tailored
treatment. It is expected for in silico diagnosis to be comparable
and consistent, less variable, objective, and without human
error. However, machine learning and deep learning algorithms
have still a lot to learn before this diagnostic model can
be implemented in everyday clinical practice. At last, these
models need to be trained to understand biological systems
so they can have an “insight” into the disease biology.
This way, machine learning and deep learning models can
adapt their findings in concordance to the nature of the
analyzed disease, and simultaneously learn and change as the
disease evolves.
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