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Background: To compare the predictive power between radiomics and non-radiomics

(conventional imaging and functional imaging methods) for preoperative evaluation of

microvascular invasion (MVI) in hepatocellular carcinoma (HCC).

Methods: Comprehensive publications were screened in PubMed, Embase, and

Cochrane Library. Studies focusing on the discrimination values of imaging methods,

including radiomics and non-radiomics methods, for MVI evaluation were included in

our meta-analysis.

Results: Thirty-three imaging studies with 5,462 cases, focusing on preoperative

evaluation of MVI status in HCC, were included. The sensitivity and specificity of MVI

prediction in HCC were 0.78 [95% confidence interval (CI): 0.75–0.80; I2 = 70.7%]

and 0.78 (95% CI: 0.76–0.81; I2 = 0.0%) for radiomics, respectively, and were 0.73

(95% CI: 0.71–0.75; I2 = 83.7%) and 0.82 (95% CI: 0.80–0.83; I2 = 86.5%) for

non-radiomics, respectively. The areas under the receiver operation curves for radiomics

and non-radiomics to predict MVI status in HCC were 0.8550 and 0.8601, respectively,

showing no significant difference.

Conclusion: The imaging method is feasible to predict the MVI state of HCC. Radiomics

method based on medical image data is a promising application in clinical practice and

can provide quantifiable image features. With the help of these features, highly consistent

prediction performance will be achieved in anticipation.

Keywords: hepatocellular carcinoma, microvascular invasion, radiomics, conventional image, functional image,
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INTRODUCTION

Hepatocellular carcinoma (HCC), causing 781,631 deaths in
2018 worldwide, ranks the fourth cause of death among various
cancers (1). Meanwhile, HCC accounts for 4.7% of new cancer
cases and is one of the common neoplastic diseases that
endanger human health (1). It is well-known that hepatectomy
and liver transplantation are the curative therapies for patients
with non-advanced HCC (2). Unfortunately, about half of the
HCC patients suffer from postoperative recurrence in a few
years, resulting in surgical failure and poor prognosis (3).
Microvascular invasion (MVI) is a histopathologic evidence
of local aggression and is considered as a strong predictor
of postoperative recurrence in HCC (3–6). Based on the
above research evidences, the 2017 Guidelines for Diagnosis
and Treatment of Liver Cancer in China have required the
HCC pathological diagnosis to supply the description of
MVI status based on pathological examination and necessary
immunohistochemical staining (7).

Preoperative evaluation of the MVI status of HCC will
apparently contribute to the development of treatment strategy
and prognosis stratification of patients at the same clinical
stage, but is still a challenge. Given the clinical significance
of MVI status, clinical investigators have attempted to assess
the status of preoperative MVI of HCC. Uncommonly, needle
biopsy including fine needle aspiration cytology and needle core
biopsy were used for preoperative evaluation of liver mass in
some specific cases (8). Yet, preoperative biopsy is an invasive
examination that may cause concomitant complication or tumor
seeding (9). Therefore, it remains disputed whether biopsy can be
used to evaluate theMVI status of HCC. Hence, there is an unmet
clinical need to preoperatively evaluate the MVI status of HCC.

Medical imaging evaluation plays an irreplaceable role in
preoperative evaluation of HCC and can provide clinicians
with valuable information (e.g., position, size, and clinical
stage of tumors) for decision making. Various research based
on preoperative images of HCC was performed to evaluate
the MVI status of HCC, but showed no consensus. At first,
researchers attempted to correlate the morphological features
of tumor images with the MVI status of HCC by comparing
the image features with the pathological MVI results of HCC
(10–12). Also, quantitative parameters of functional imaging
studies were used to evaluate the MVI status of HCC (13–15).
Recently, radiomics, defined as the tumor radiomics features
extracted through logistic regression as well as machine learning
algorithms, has been proposed, which is effective to predict
tumor phenotype (16). In a few studies, preoperative images of
HCC were used to generate radiomics signatures and construct
models to predict theMVI status of HCC (17–19). These different
image-based evaluation methods include non-quantitative or
objective parameters, univariate or multivariate, small- or large-
scale cohorts, and the performance varies in the MVI status
evaluation of HCC.

Timely analysis of different image-based evaluation methods
is necessary to meet the urgent need for individualized diagnosis
and treatment of differential MVI status in clinical practice. In
this study, we are aiming to perform a diagnostic meta-analysis

to compare the preoperative prediction capability for MVI status
of HCC between radiomics and non-radiomics (conventional
image, functional image) methods.

MATERIALS AND METHODS

Literature Retrieving
PubMed, Embase, and Cochrane Library were comprehensively
searched by applying the following keywords: [(microvascular
invasion) OR (MVI)] AND [(malignan∗ OR cancer OR tumor
OR tumor OR neoplas∗ OR carcinoma) AND (hepatocellular
OR liver OR hepatic OR HCC)]. The deadline of our retrieval
was Nov. 20, 2019. After elimination of duplicate articles, the
abstracts of all remaining literature were reviewed. When it
was ambiguous to decide the inclusion of an article only by
abstract, full publication was downloaded and reviewed. All
studies were screened independently by three authors (JH,
TW, and LZ). Discussion was conducted if disagreement about
inclusion occurred.

Selection Criterion
Inclusion criteria were as follows: (1) diagnosis of HCC by
pathologic criteria; (2) determination of MVI by pathologic
diagnosis; (3) numbers of MVI-positive and MVI-negative being
three at least; (4) conduct of computed tomography (CT),
magnetic resonance imaging (MRI), or ultrasonic examination
before hepatectomy, or liver transplantation; (5) imaging analysis
based on radiomics and non-radiomics; and (6) clinical data
or pathological reports being inaccessible to reviewers of
image analyzing.

Exclusion criteria were as follows: (1) preoperative reception
of systemic chemotherapy, transarterial chemoembolization,
percutaneous ethanol injection, and radiofrequency ablation;
(2) number of MVI-positive or MVI-negative being zero; and
(3) evaluation of only clinical characteristics for MVI status
prediction in HCC patients without imaging features.

Data Extraction and Quality Assessment
Numbers of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) were computed according to
the numbers of MVI-present, MVI-absent, sensitivity, and
specificity reported in the individual studies included. The
reference formulas were as follows: sensitivity = TP/(TP+FN),
and specificity= TN/(FP+TN). If there were at least two models
based on the same group of patients in one study, the model
with higher diagnostic accuracy was included into our meta-
analysis. QUADAS-2 scale (20) in Revman 5.3 (Cochrane Library
Software, Oxford, UK) was measured to appraise the quality of
the studies included.

Statistical Analysis
The pooled sensitivity, specificity, positive likelihood ratio (PLR),
and negative likelihood ratio (NLR) were computed inMeta-DiSc
1.4 (Clinical Biostatistics Unit, Ramony Cajal Hospital, Madrid,
Spain) (21). Forest plots were visualized on the ggplot2 package
in R 3.6.1. Cochrane’s Q-test and I2 were considered to detect
the heterogeneity among the included studies, and I2 > 50%
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FIGURE 1 | The PRISMA flowchart of the selection procedure.

indicated the presence of heterogeneity. Meanwhile, summary
receiver operating characteristic (sROC) curve was drawn, and
then the area under the curve (AUC) was computed to exhibit
the diagnostic value of the combined studies (22). The AUC
of 0.5–0.7, 0.7–0.9, and >0.9 indicate low, moderate, and high
diagnostic power, respectively.

RESULTS

Literature Selection and
Quality Assessment
The selection procedure is shown in Figure 1 (23). In total, 33
studies involving nine studies based on radiomics (17–19, 24–
29) and 24 studies based on non-radiomics (10–15, 30–47)
were eligible for this diagnostic meta-analysis. A total of 5,462
HCC patients were included. Among them, 2,284 patients were

pathologically diagnosed as MVI-positive and 3,178 as MVI-
negative. The basic characteristics of the 33 included studies are
shown in Tables 1, 2, and more details are displayed in Table 3.
Figure 2 displays the quality assessment of the included studies
based on QUADAS-2 scale.

Radiomics for Preoperative MVI Evaluation
in HCC
Based on radiomics, there were 1,961 HCC patients, including
812 MVI-present and 1,149 MVI-absent. The diagnostic meta-
analysis forest plots and combined results are manifested in
Figure 3, Supplementary Table 1. The integrated sensitivity,
specificity, PLR, and NLR of the radiomics group were 0.78
[95% confidence interval (CI): 0.75–0.80, I2 = 70.7%; Figure 3A],
0.78 (95% CI: 0.76–0.81, I2 = 0.0%; Figure 3C), 3.51 (95% CI:
3.05–4.03, I2 = 16.6%; Figure 3B), and 0.28 (95% CI: 0.22–0.36,
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TABLE 1 | Baseline of the included studies based on radiomics in this diagnostic meta-analysis.

References MVI+HCC MVI–HCC TP FP FN TN Cohort detail

Zheng et al. (17) 19 32 15 9 4 23 Tumor size ≤ 5 cm

Zheng et al. (17) 34 35 20 4 14 31 Tumor size>5 cm

Peng et al. (24) 127 57 101 16 26 41 Training cohort

Peng et al. (24) 74 46 56 9 18 37 Validation cohort

Xu et al. (19) 100 250 88 58 12 192 Training/validation cohort

Xu et al. (19) 49 96 44 20 5 76 Test cohort

Ma et al. (18) 37 73 28 9 9 64 Training dataset

Ma et al. (18) 18 29 9 7 9 22 Validation dataset

Zhu et al. (29) 37 62 30 13 7 49 Training cohort

Zhu et al. (29) 16 27 13 4 3 23 Validation cohort

Ni et al. (28) 23 35 19 5 4 30

Feng et al. (26) 42 68 60 10 8 32 Training cohort

Feng et al. (26) 20 30 27 5 3 15 Validation cohort

Hu et al. (27) 136 205 88 47 48 158 Training cohort

Hu et al. (27) 59 82 40 23 19 59 Validation cohort

Yao et al. (25) 21 22 19 3 2 19

TP, True positive; TN, True negative; FP, False positive; FN, False negative.

TABLE 2 | Basic characteristic of the included studies based on non-radiomics in this diagnostic meta-analysis.

References Subgroup MVI+HCC MVI–HCC TP FP FN TN Cohort detail

Banerjee et al. (10) Conventional image 45 112 34 7 11 105

Lee et al. (11) Conventional image 63 134 33 10 30 124

Gao et al. (45) Conventional image 28 32 22 4 6 28

Cao et al. (43) Functional image 38 36 26 9 12 27

Chen et al. (44) Conventional image 64 85 39 23 25 62

Lee et al. (12) Conventional image 78 198 54 5 24 193 Derivation cohort

Lee et al. (12) Conventional image 23 78 15 11 8 67 External validation cohort

Wei et al. (15) Functional image 55 80 43 20 12 60

Lin et al. (46) Conventional image 106 151 88 47 18 104 Training cohort

Lin et al. (46) Conventional image 34 66 28 29 6 37 Validation cohort

Ryu et al. (47) Conventional image 51 60 31 4 20 56

Li et al. (41) Functional image 21 20 17 3 4 17

Zhao et al. (42) Functional image 18 33 17 12 1 21

Huang et al. (40) Conventional image 17 43 9 3 8 40

Hyun et al. (13) Functional image 76 82 61 33 15 49

Wang et al. (14) Functional image 40 52 28 12 12 40

Zhao et al. (39) Functional image 211 107 132 37 79 70

Reginelli et al. (36) Conventional image 32 69 28 8 4 61

Zhao et al. (38) Conventional image 77 129 62 19 15 110 Derivation cohort

Zhao et al. (28) Conventional image 39 64 32 11 7 53 Validation cohort

Yang et al. (37) Functional image 44 92 8 4 36 88

Okamura et al. (35) Functional image 33 40 25 9 8 31

Kobayashi et al. (34) Functional image 9 51 8 9 1 42

Ahn et al. (33) Functional image 14 45 11 9 3 36

Xu et al. (32) Functional image 39 70 26 15 13 55

Suh et al. (31) Functional image 31 36 29 10 2 26

Cucchetti et al. (30) Conventional image 127 48 113 8 14 40 Training cohort

Cucchetti et al. (30) Conventional image 59 16 55 3 4 13 Testing cohort

TP, True positive; TN, True negative; FP, False positive; FN, False negative.
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TABLE 3 | Clinical characteristics of the included 33 studies.

Author Modeling methods Imaging modality Feature number Feature type

Zheng et al. (17) Logistic regression CT 162 38 ACM and 128 LBP features

Peng et al. (24) LASSO regression and logistic regression CT 18 13 clinical and 5 CT image

Xu et al. (19) Adjusted OR regression and logistic regression CT 31 19 clinical and 12 CT image

Ma et al. (18) SVM, LASSO regression and logistic regression CT 655 Eight clinical and 647 radiomics

Zhu et al. (29) Logistic regression MRI 66 Seven clinical and 59 texture features

Ni et al. (28) LASSO and GBDT CT 1,044 Texture features

Feng et al. (26) LASSO regression and logistic regression MRI 1,044 Image features

Hu et al. (27) LASSO regression and logistic regression Ultrasound 1,044 Radiomics features

Yao et al. (25) Iterative SR method and SVM Ultrasound 1,024 MR image

Banerjee et al. (10) Cox’s proportional hazard models CT 13 Clinical features

Lee et al. (11) Logistic regression MRI 23 14 clinical and 9 MR image

Gao et al. (45) Logistic regression CT 29 Clinical features

Cao et al. (43) Logistic regression MRI 15 12 clinical and 3 DKI

Chen et al. (44) Cox’s proportional hazard models and logistic regression MRI 19 Clinical features

Lee et al. (12) Logistic regression MRI 20 13 clinical and 7 MR image

Wei et al. (15) Logistic regression MRI 25 17 clinical and 8 MR image

Lin et al. (46) Logistic regression MRI 21 8 clinical and 13 MR image

Ryu et al. (47) Logistic regression MRI 21 Clinical features

Li et al. (41) Logistic regression MRI 8 Clinical features

Zhao et al. (42) Logistic regression MRI 8 Clinical features

Huang et al. (40) Logistic regression MRI 8 Radiomics features

Hyun et al. (13) Logistic regression PET-CT 12 Clinical features

Wang et al. (14) Logistic regression MRI 20 12 clinical and 8 radiomics

Zhao et al. (39) Logistic regression MRI NA

Reginelli A Logistic regression CT 10 Clinical features

Zhao et al. (38) Logistic regression CT NA Clinical and radiomics features

Yang et al. (37) Logistic regression MRI 16 6 clinical and 10 radiomics

Okamura et al. (35) Logistic regression MRI 12 Clinical features

Kobayashi et al. (34) Logistic regression PET-CT 16 Clinical features

Ahn et al. (33) Logistic regression PET-CT 18 3 clinical and 15 PET-CT image

Xu et al. (32) Logistic regression MRI 16 8 clinical and 8 MR image

Suh et al. (31) Logistic regression MRI 8 Clinical features

Cucchetti et al. (30) ANN and logistic regression CT or MRI 15 Clinical features

LASSO, Least Absolute Shrinkage and Selection Operator; OR, Odds ratio; SVM, Support Vector Machine; GBDT, Gradient boosting decision tree; SR, Sparse representation; ANN,

Artificial Neural Network; ACM, Angle co-occurrence matrices; LBP, Local binary patterns; DKI, Diffusion kurtosis imaging.

I2 = 70.4%; Figure 3D), respectively. The AUC based on the
sROC curve was 0.8550 (Figure 7A), which showed moderate
diagnostic value.

Non-radiomics for Preoperative MVI
Evaluation in HCC
Based on non-radiomics, 1,472 HCC patients were MVI-
present and 2,029 were MVI-absent (Supplementary Table 2).
The summarized sensitivity, specificity, PLR, and NLR of the
non-radiomics group were 0.73 (95% CI: 0.71–0.75, I2 = 83.7%;
Figure 4A), 0.82 (95%CI: 0.80–0.83, I2 = 86.5%; Figure 4C), 4.02
(95% CI: 3.24–4.99, I2 = 78.3%; Figure 4B), and 0.31 (95% CI:
0.24–0.40, I2 = 88.0%; Figure 4D), respectively. The sROC curve
displayed the AUC of 0.8601 (Figure 7B).

Subgroup Analysis of CT and MRI for
Preoperative MVI Evaluation in HCC
The results of subgroup analysis based on CT and MRI are
displayed in Table 4. CT showed the sensitivity, specificity, and
AUC of 0.81 (95% CI: 0.75–0.86), 0.88 (95% CI: 0.84–0.91),
and 0.9022, respectively, based on non-radiomics imaging, and
the corresponding values were 0.79 (95% CI: 0.75–0.83), 0.79
(95% CI: 0.76–0.82), and 0.8640, respectively, on radiomics
method. As for MRI, the non-radiomics imaging method
displayed the sensitivity, specificity, and AUC of 0.67 (95% CI:
0.64–0.70), 0.81 (95% CI: 0.79–0.83), and 0.8269, respectively,
and the corresponding values of the radiomics method were
0.86 (95% CI: 0.80–0.91), 0.79 (95% CI: 0.71–0.85), and
0.8829, respectively.

Frontiers in Oncology | www.frontiersin.org 5 June 2020 | Volume 10 | Article 887

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Diagnostic Meta-Analysis of Imaging Methods

FIGURE 2 | Methodological quality assessment of the included studies based on the QUADAS-2 scale. (A) Individual studies, (B) summary.

Conventional Image Analysis for
Preoperative MVI Evaluation in HCC
The included studies based on non-radiomics can be
divided into a conventional imaging subgroup and a

functional imaging subgroup. The former contained

morphologic characteristics, such as tumor size,

tumor capsule, margin, and enhancement. The latter

included diffusion-weighted image (DWI), functional
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FIGURE 3 | Forest plots based on radiomics for preoperative prediction of MVI in HCC. (A) Sensitivity, (B) PLR, (C) specificity, and (D) NLR.

FIGURE 4 | Forest plots based on non-radiomics for preoperative prediction of MVI in HCC. (A) Sensitivity, (B) PLR, (C) specificity, and (D) NLR.

MRI, magnetic resonance spectrum, and digital
image technology.

The integrated sensitivity, specificity, PLR, and NLR of
the conventional imaging subgroup were 0.76 (95% CI:

0.73–0.79, I2 = 80.4%; Figure 5A), 0.85 (95% CI: 0.83–
0.87, I2 = 88.6%; Figure 5C), 5.41 (95% CI: 3.74–7.83, I2

= 84.8%; Figure 5B), and 0.29 (95% CI: 0.23–0.38, I2 =

75.5%; Figure 5D), respectively. Conventional imaging for MVI

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 887

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Diagnostic Meta-Analysis of Imaging Methods

TABLE 4 | Subgroup analysis of CT and MRI for preoperative MVI evaluation in HCC.

Imaging machine Category Sensitivity Specificity PLR NLR AUC

CT Non-radiomics 0.81 (95% CI: 0.75–0.86) 0.88 (95% CI: 0.84–0.91) 6.37 (95% CI: 4.73–8.58) 0.23 (95% CI: 0.17–0.30) 0.9022

MRI Non-radiomics 0.67 (95% CI: 0.64–0.70) 0.81 (95% CI: 0.79–0.83) 3.52 (95% CI: 2.75–4.50) 0.39 (95% CI: 0.30–0.50) 0.8269

CT Radiomics 0.79 (95% CI: 0.75–0.83) 0.79 (95% CI: 0.76–0.82) 3.75 (95% CI: 3.15–4.47) 0.29 (95% CI: 0.20–0.41) 0.8640

MRI Radiomics 0.86 (95% CI: 0.80–0.91) 0.79 (95% CI: 0.71–0.85) 3.92 (95% CI: 2.86–5.37) 0.19 (95% CI: 0.13–0.28) 0.8829

CT, Computed tomography; MRI, Magnetic resonance imaging; PLR, Positive likelihood ratio; NLR, Negative likelihood ratio; AUC, Area under the curve.

FIGURE 5 | Forest plots based on conventional imaging analysis for preoperative prediction of MVI in HCC. (A) Sensitivity, (B) PLR, (C) specificity, and (D) NLR.

prediction in HCC showed the AUC of 0.8794 on the sROC
curve (Figure 7C).

Functional Imaging Analysis for
Preoperative MVI Evaluation in HCC
The aggregated sensitivity, specificity, PLR, and NLR of the
functional imaging subgroup were 0.69 (95% CI: 0.65–0.72, I2

= 85.6%; Figure 6A), 0.76 (95% CI: 0.72–0.79, I2 = 75.6%;
Figure 6C), 2.86 (95% CI: 2.37–3.45, I2 = 43.2%; Figure 6B), and
0.34 (95% CI: 0.23–0.51, I2 = 89.2%; Figure 6D), respectively.
The AUC of 0.8138 was less than that in the conventional imaging
subgroup (Figure 7D).

DISCUSSION

We compared the diagnostic significance to preoperatively
predict MVI status in HCC between radiomics and non-
radiomics (conventional image, functional image) methods. The

radiomics had a moderate diagnostic value to predict MVI
status in HCC with pooled sensitivity, specificity, and AUC of
0.78, 0.78, and 0.8550, respectively. The aggregated sensitivity,
specificity, and AUC based on non-radiomics were 0.73, 0.82,
and 0.8601, respectively. These results showed that the radiomics
method had a little higher sensitivity than the non-radiomics
method for preoperative prediction of MVI status in HCC,
although there was no difference in diagnostic value in terms of
AUC. Another important finding was that radiomics had lower
heterogeneity than non-radiomics for preoperative prediction
of MVI status in HCC. The reasonable interpretation that may
cause the heterogeneity in non-radiomics was partially that
the image reviewing process depended partly on the subjective
experience. In contrast, we considered that radiomics may be
more potentially suitable for preoperative evaluation of MVI
status in HCC patients.

Dataset (sample sizes of training cohort and validation
cohort), modeling methods, imaging modality, feature number,
and feature type all varied among these 33 included studies,
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FIGURE 6 | Forest plots based on functional imaging analysis for preoperative prediction of MVI in HCC. (A) Sensitivity, (B) PLR, (C) specificity, and (D) NLR.

which may influence the pooled sensitivity and specificity.
Almost all studies in the radiomics group had training and
validation cohorts to ensure the credibility of the results, and
the varying sample sizes in different studies may more or less
introduce sample size bias. As for modeling methods, most
studies applied logistic regression because the MVI status (MVI
present or absent) was a dichotomous variable, and mainstream
analyzing methods like least absolute shrinkage and selection
operator (LASSO) regression, support vector machine, and
artificial neural network were also applied in these studies.
Feature number and feature type in the included studies
were derived from modeling methods. Lastly, different imaging
modalities influenced the pooled sensitivity and specificity. In
the radiomics group, MRI had higher predicted MVI than CT in
terms of sensitivity, specificity, and AUC. In the non-radiomics
group, CT had higher sensitivity, specificity, and AUC than
MRI for MVI prediction. Despite the differences among imaging
modalities, the numbers of studies in different subgroups were
relatively small. Therefore, more studies focusing on each group
of imaging modality are needed.

The current guideline of liver cancer diagnosis and treatment
covers preoperative diagnosis, clinical staging, and post-
therapeutic evaluation, which are implemented by radiologists
and clinicians through visual observation of medical images
and analysis of clinical information (7, 48, 49). Similarly, the
Liver Imaging Reporting and Data System (LI-RADS) (50) is
a standardization of the semantic imaging features of liver
cancers, and involves a small portion of functional imaging, but
lacks characteristic evaluation on tumor intrinsic heterogeneity

that reflects different biological behaviors of HCC. Because
the tumor imaging observed by the naked eye is limited by
human visual perception, it cannot perceive certain subtle
differences in the medical imaging data. Therefore, more medical
imaging data should be fully explored and utilized. In recent
years, artificial intelligence has been applied to analyze the
enriched data contained in medical images, aiming to meet the
increasing demands for individualized evaluation (51, 52). With
the popularization of radiomics, different algorithms have been
applied into modeling based on radiomics features for tumor
phenotype prediction (53–56). A recent quantitative review of
radiomics on HCC suggests that radiomics is a very promising
non-invasive method for individualized evaluation based on
intra-tumor heterogeneity analysis (57–59).

Reportedly, the radiomics models onMVI status prediction in
HCC that are constructed on the basis of quantitative imaging
features extracted from preoperative ultrasound, CT, or MRI
images when applied with different algorithms demonstrate
relatively high prediction performance (17–19, 24–29). Texture
feature analysis was first used to demonstrate potential predictors
of MVI status in HCC (17). Later, preoperative contrast-
enhanced CT images of HCC at different phases were combined
for extraction of image features, and the radiomics prediction
model based on the least absolute shrinkage and selection
operator algorithm well-performed MVI status in both the
training group and the validation group (18, 24). A recent study
suggests that LASSO plus GBDT is the optimal approach for
MVI status evaluation in HCC among the diverse screening
and modeling methods of image features (28). Moreover,
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FIGURE 7 | Summary receiver operating characteristic curves. (A) Radiomics, (B) non-radiomics, (C) conventional imaging analysis, and (D) functional

imaging analysis.

the texture features extracted from preoperative contrast-
enhanced MRI images at arterial and portal phases were
also used to construct a predictive model of MVI status
in HCC (29).

Recently, the radiomics features extracted from hepatobiliary-
phase MRI images can improve the efficacy of MVI status
prediction in HCC, given the clearer boundary of HCC
in the hepatobiliary phase (26). In addition, two studies
applying radiomics method to medical ultrasound images
demonstrate that radiomics scores derived from contrast-
enhanced ultrasound and multi-modal ultrasound images are
independent predictors of MVI status in HCC (25, 27), and
the latter performs better (25). Our study shows that the
radiomics method, with relatively high prediction performance
and consistency, can predict MVI non-invasively and provides
more valuable information on clinical evaluation. In the future,
prospective, multi-center, and large-scale studies are needed
to confirm whether the radiomics features (or combined

morphological features) extracted from preoperative images can
work as MVI status predictors in HCC.

Multiple functional imaging parameters derived from DWI
and PET/CT, including ADC, true diffusion coefficient, and
mean apparent kurtosis coefficient, are considered valuable for
MVI status evaluation in HCC. ADC originally based on the
mono-exponential model of diffusion imaging is regarded as a
valuable predictor (31, 32, 35, 39), probably because ADC reflects
the decreased capillary perfusion in HCC accompanied with
MVI (31, 32). Later, the true diffusion coefficient based on the
intratraxel incoherent motion model was found superior over
ADC for MVI status evaluation in HCC, which can truly reflect
the molecular diffusion and microcirculation perfusion in the
capillary network (15, 41, 42). Meanwhile, studies confirm that
the mean apparent kurtosis coefficient based on the diffusion
kurtosis imaging model is superior over the traditional ADC
in evaluating the MVI status of HCC (14, 43), which reflects
the more complicated microenvironment caused by MVI (14).
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Additionally, the 18F-FDG PET-CT reveals that the maximum
uptake related to the uptake of tumor cells, and the standard
intake ratio between tumor and normal liver (13), and the ratio
between the maximum tumor uptake and the average uptake
in normal liver (≥1.2) are all significantly associated with the
MVI status in HCC (33). Taken together, our study indicates
relatively high consistency in MVI status evaluation of HCC
among these functional imaging studies, regardless of some
problems in the way of our analysis, including interpretation of
heterogeneity source. However, on the contrary from radiomics
and conventional imaging studies, the smaller case number in
the functional imaging subgroup may be limited in clinical
applications due to lack of advanced MRI technology.

At present, the semantic features (e.g., peritumoral
enhancement, non-smooth tumor margin, and peritumoral
hypo-intensity at the hepatobiliary phase) derived from
preoperative imaging may be potential independent predictors
for MVI status in HCC (11, 12, 36, 40, 44, 45, 47). However,
there is no consensus. Many studies focusing on MVI status
prediction in HCC demonstrate that image features (e.g., tumor
size, peritumoral enhancement, non-smooth tumor margin,
peritumoral hypo-intensity at the hepatobiliary phase, intra-
tumoral artery, and non-nodule type) are correlated with MVI
status in HCC, which can be utilized to predict MVI status in
HCC (10–12, 30, 36, 38, 40, 44–47). Among them, peritumor
enhancement and non-smooth tumor margin are considered as
important independent predictors in different studies (11, 44–
46). However, mosaic architecture is the only independent
predictor of MVI in Liver Imaging Reporting and Data System
category 5 (LR-5) HCCs based on LI-RADS (44). The conflicting
results can be partially attributed to the limited case numbers
in different retrospective observational studies. Although
these studies show certain correlation between macroscopic
morphological features and microscopic pathological diagnosis,
it is still difficult to establish a perfect interpretation between
morphological features and pathophysiological changes of
MVI status in HCC. In addition, the semantic features of
these observations are non-uniform among different studies,
and should be defined in a standardized way to realize the
universality and reproducibility of image features. The factors
mentioned above demonstrate that although the overall MVI
status evaluation in HCC by semantic features is desirable, the
relatively large deviation of evaluation performance may lead to
unreliable results when applied with such prediction method.
Finally, stable and effective imaging features with high predictive
value should be discovered, standardized, and validated in
further studies.

Our meta-analysis on the imaging methods in preoperative
prediction of MVI status in HCC has two advantages. First, to the
extent of our knowledge, this study involving 33 articles and 5,462
HCC cases is the first meta-analysis for preoperative assessment
of MVI status in HCC patients by comparing radiomics,
functional imaging, and conventional imaging methods. Second,
radiomics based on machine learning algorithms is a new
multidisciplinary branch in imageology and is widely used
in medical image processing with rapid development. In this

study, we have compared radiomics, functional imaging, and
conventional imaging methods in evaluation of MVI status
in HCC, which can facilitate the comparison of differences
among imaging evaluation methods and provide references for
subsequent studies and selection of clinical evaluations.

The drawbacks of this study around medical imaging
MVI evaluation should be discussed. First, the pathological
diagnosis of MVI status of HCC is the gold standard, but
the specific pathological sampling and immunohistochemistry
are not completely consistent in these studies, which will
potentially lead to differences in judging MVI status of HCC
and affect the consistency of the results. Second, image features
have good predictive power for MVI status of HCC, but the
subsequent treatment, recurrence, and survival analysis are not
fully presented after enrollment. The value of imaging features
used to evaluate the MVI status of HCC may be overestimated in
prognostic stratification. Third, subjective image features (10) in
a part of the studies, quantitative parameters in specific sequences
(29), and concrete result interpretation steps (24) are inaccessible
in certain studies, which makes a detailed subgroup quantitative
judgement impossible.

CONCLUSIONS

Our meta-analysis shows that preoperative imaging features are
feasible to predict the MVI status of HCC and are potential
biomarkers for postoperative recurrence of HCC. Radiomics
method is more desirable than non-radiomics method, and
possesses the objectivity of quantified features, high diagnostic
efficacy, and high consistency among the studies.
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